Skip to content
Snippets Groups Projects
ixgbe_common.c 88.4 KiB
Newer Older
/*******************************************************************************

  Intel 10 Gigabit PCI Express Linux driver
  Copyright(c) 1999 - 2011 Intel Corporation.

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/netdevice.h>
#include "ixgbe_common.h"
#include "ixgbe_phy.h"

static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
                                        u16 count);
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_release_eeprom(struct ixgbe_hw *hw);

static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw);
static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw);
static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw);
static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw);
static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm);
static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num);
static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data);
static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data);
static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
						 u16 offset);
 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 *  @hw: pointer to hardware structure
 *
 *  Starts the hardware by filling the bus info structure and media type, clears
 *  all on chip counters, initializes receive address registers, multicast
 *  table, VLAN filter table, calls routine to set up link and flow control
 *  settings, and leaves transmit and receive units disabled and uninitialized
 **/
s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
{
	u32 ctrl_ext;

	/* Set the media type */
	hw->phy.media_type = hw->mac.ops.get_media_type(hw);

	/* Identify the PHY */
	hw->phy.ops.identify(hw);

	/* Clear the VLAN filter table */
	hw->mac.ops.clear_vfta(hw);

	/* Clear statistics registers */
	hw->mac.ops.clear_hw_cntrs(hw);

	/* Set No Snoop Disable */
	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
	IXGBE_WRITE_FLUSH(hw);
	/* Setup flow control */
	ixgbe_setup_fc(hw, 0);

	/* Clear adapter stopped flag */
	hw->adapter_stopped = false;

	return 0;
}

/**
 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 *  @hw: pointer to hw structure
 *
 * Performs the init sequence common to the second generation
 * of 10 GbE devices.
 * Devices in the second generation:
 *     82599
 *     X540
 **/
s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
{
	u32 i;

	/* Clear the rate limiters */
	for (i = 0; i < hw->mac.max_tx_queues; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
	}
	IXGBE_WRITE_FLUSH(hw);

	/* Disable relaxed ordering */
	for (i = 0; i < hw->mac.max_tx_queues; i++) {
		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
		regval &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
	}

	for (i = 0; i < hw->mac.max_rx_queues; i++) {
		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
		regval &= ~(IXGBE_DCA_RXCTRL_DESC_WRO_EN |
					IXGBE_DCA_RXCTRL_DESC_HSRO_EN);
		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
	}

 *  ixgbe_init_hw_generic - Generic hardware initialization
 *  @hw: pointer to hardware structure
 *
 *  Initialize the hardware by resetting the hardware, filling the bus info
 *  structure and media type, clears all on chip counters, initializes receive
 *  address registers, multicast table, VLAN filter table, calls routine to set
 *  up link and flow control settings, and leaves transmit and receive units
 *  disabled and uninitialized
 **/
s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
	status = hw->mac.ops.reset_hw(hw);
	if (status == 0) {
		/* Start the HW */
		status = hw->mac.ops.start_hw(hw);
	}
 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 *  @hw: pointer to hardware structure
 *
 *  Clears all hardware statistics counters by reading them from the hardware
 *  Statistics counters are clear on read.
 **/
s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
{
	u16 i = 0;

	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
	IXGBE_READ_REG(hw, IXGBE_ERRBC);
	IXGBE_READ_REG(hw, IXGBE_MSPDC);
	for (i = 0; i < 8; i++)
		IXGBE_READ_REG(hw, IXGBE_MPC(i));

	IXGBE_READ_REG(hw, IXGBE_MLFC);
	IXGBE_READ_REG(hw, IXGBE_MRFC);
	IXGBE_READ_REG(hw, IXGBE_RLEC);
	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
	if (hw->mac.type >= ixgbe_mac_82599EB) {
		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
	} else {
		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
	}

	for (i = 0; i < 8; i++) {
		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
		if (hw->mac.type >= ixgbe_mac_82599EB) {
			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
		} else {
			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
		}
	if (hw->mac.type >= ixgbe_mac_82599EB)
		for (i = 0; i < 8; i++)
			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
	IXGBE_READ_REG(hw, IXGBE_PRC64);
	IXGBE_READ_REG(hw, IXGBE_PRC127);
	IXGBE_READ_REG(hw, IXGBE_PRC255);
	IXGBE_READ_REG(hw, IXGBE_PRC511);
	IXGBE_READ_REG(hw, IXGBE_PRC1023);
	IXGBE_READ_REG(hw, IXGBE_PRC1522);
	IXGBE_READ_REG(hw, IXGBE_GPRC);
	IXGBE_READ_REG(hw, IXGBE_BPRC);
	IXGBE_READ_REG(hw, IXGBE_MPRC);
	IXGBE_READ_REG(hw, IXGBE_GPTC);
	IXGBE_READ_REG(hw, IXGBE_GORCL);
	IXGBE_READ_REG(hw, IXGBE_GORCH);
	IXGBE_READ_REG(hw, IXGBE_GOTCL);
	IXGBE_READ_REG(hw, IXGBE_GOTCH);
	for (i = 0; i < 8; i++)
		IXGBE_READ_REG(hw, IXGBE_RNBC(i));
	IXGBE_READ_REG(hw, IXGBE_RUC);
	IXGBE_READ_REG(hw, IXGBE_RFC);
	IXGBE_READ_REG(hw, IXGBE_ROC);
	IXGBE_READ_REG(hw, IXGBE_RJC);
	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
	IXGBE_READ_REG(hw, IXGBE_TORL);
	IXGBE_READ_REG(hw, IXGBE_TORH);
	IXGBE_READ_REG(hw, IXGBE_TPR);
	IXGBE_READ_REG(hw, IXGBE_TPT);
	IXGBE_READ_REG(hw, IXGBE_PTC64);
	IXGBE_READ_REG(hw, IXGBE_PTC127);
	IXGBE_READ_REG(hw, IXGBE_PTC255);
	IXGBE_READ_REG(hw, IXGBE_PTC511);
	IXGBE_READ_REG(hw, IXGBE_PTC1023);
	IXGBE_READ_REG(hw, IXGBE_PTC1522);
	IXGBE_READ_REG(hw, IXGBE_MPTC);
	IXGBE_READ_REG(hw, IXGBE_BPTC);
	for (i = 0; i < 16; i++) {
		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
		if (hw->mac.type >= ixgbe_mac_82599EB) {
			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
		} else {
			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
		}
	if (hw->mac.type == ixgbe_mac_X540) {
		if (hw->phy.id == 0)
			hw->phy.ops.identify(hw);
		hw->phy.ops.read_reg(hw, 0x3, IXGBE_PCRC8ECL, &i);
		hw->phy.ops.read_reg(hw, 0x3, IXGBE_PCRC8ECH, &i);
		hw->phy.ops.read_reg(hw, 0x3, IXGBE_LDPCECL, &i);
		hw->phy.ops.read_reg(hw, 0x3, IXGBE_LDPCECH, &i);
	}

 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 *  @hw: pointer to hardware structure
 *  @pba_num: stores the part number string from the EEPROM
 *  @pba_num_size: part number string buffer length
 *  Reads the part number string from the EEPROM.
s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
                                  u32 pba_num_size)
	u16 pba_ptr;
	u16 offset;
	u16 length;

	if (pba_num == NULL) {
		hw_dbg(hw, "PBA string buffer was null\n");
		return IXGBE_ERR_INVALID_ARGUMENT;
	}

	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}

	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}

	/*
	 * if data is not ptr guard the PBA must be in legacy format which
	 * means pba_ptr is actually our second data word for the PBA number
	 * and we can decode it into an ascii string
	 */
	if (data != IXGBE_PBANUM_PTR_GUARD) {
		hw_dbg(hw, "NVM PBA number is not stored as string\n");

		/* we will need 11 characters to store the PBA */
		if (pba_num_size < 11) {
			hw_dbg(hw, "PBA string buffer too small\n");
			return IXGBE_ERR_NO_SPACE;
		}

		/* extract hex string from data and pba_ptr */
		pba_num[0] = (data >> 12) & 0xF;
		pba_num[1] = (data >> 8) & 0xF;
		pba_num[2] = (data >> 4) & 0xF;
		pba_num[3] = data & 0xF;
		pba_num[4] = (pba_ptr >> 12) & 0xF;
		pba_num[5] = (pba_ptr >> 8) & 0xF;
		pba_num[6] = '-';
		pba_num[7] = 0;
		pba_num[8] = (pba_ptr >> 4) & 0xF;
		pba_num[9] = pba_ptr & 0xF;

		/* put a null character on the end of our string */
		pba_num[10] = '\0';

		/* switch all the data but the '-' to hex char */
		for (offset = 0; offset < 10; offset++) {
			if (pba_num[offset] < 0xA)
				pba_num[offset] += '0';
			else if (pba_num[offset] < 0x10)
				pba_num[offset] += 'A' - 0xA;
		}

		return 0;
	}

	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}

	if (length == 0xFFFF || length == 0) {
		hw_dbg(hw, "NVM PBA number section invalid length\n");
		return IXGBE_ERR_PBA_SECTION;
	}

	/* check if pba_num buffer is big enough */
	if (pba_num_size  < (((u32)length * 2) - 1)) {
		hw_dbg(hw, "PBA string buffer too small\n");
		return IXGBE_ERR_NO_SPACE;
	}

	/* trim pba length from start of string */
	pba_ptr++;
	length--;

	for (offset = 0; offset < length; offset++) {
		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
		if (ret_val) {
			hw_dbg(hw, "NVM Read Error\n");
			return ret_val;
		}
		pba_num[offset * 2] = (u8)(data >> 8);
		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
	}
	pba_num[offset * 2] = '\0';

	return 0;
}

/**
 *  ixgbe_get_mac_addr_generic - Generic get MAC address
 *  @hw: pointer to hardware structure
 *  @mac_addr: Adapter MAC address
 *
 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 *  A reset of the adapter must be performed prior to calling this function
 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 **/
s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
{
	u32 rar_high;
	u32 rar_low;
	u16 i;

	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));

	for (i = 0; i < 4; i++)
		mac_addr[i] = (u8)(rar_low >> (i*8));

	for (i = 0; i < 2; i++)
		mac_addr[i+4] = (u8)(rar_high >> (i*8));

	return 0;
}

/**
 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 *  @hw: pointer to hardware structure
 *
 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 **/
s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
{
	struct ixgbe_adapter *adapter = hw->back;
	struct ixgbe_mac_info *mac = &hw->mac;
	u16 link_status;

	hw->bus.type = ixgbe_bus_type_pci_express;

	/* Get the negotiated link width and speed from PCI config space */
	pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
	                     &link_status);

	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
	case IXGBE_PCI_LINK_WIDTH_1:
		hw->bus.width = ixgbe_bus_width_pcie_x1;
		break;
	case IXGBE_PCI_LINK_WIDTH_2:
		hw->bus.width = ixgbe_bus_width_pcie_x2;
		break;
	case IXGBE_PCI_LINK_WIDTH_4:
		hw->bus.width = ixgbe_bus_width_pcie_x4;
		break;
	case IXGBE_PCI_LINK_WIDTH_8:
		hw->bus.width = ixgbe_bus_width_pcie_x8;
		break;
	default:
		hw->bus.width = ixgbe_bus_width_unknown;
		break;
	}

	switch (link_status & IXGBE_PCI_LINK_SPEED) {
	case IXGBE_PCI_LINK_SPEED_2500:
		hw->bus.speed = ixgbe_bus_speed_2500;
		break;
	case IXGBE_PCI_LINK_SPEED_5000:
		hw->bus.speed = ixgbe_bus_speed_5000;
		break;
	default:
		hw->bus.speed = ixgbe_bus_speed_unknown;
		break;
	}

	mac->ops.set_lan_id(hw);

	return 0;
}

/**
 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 *  @hw: pointer to the HW structure
 *
 *  Determines the LAN function id by reading memory-mapped registers
 *  and swaps the port value if requested.
 **/
void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
{
	struct ixgbe_bus_info *bus = &hw->bus;
	u32 reg;

	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
	bus->lan_id = bus->func;

	/* check for a port swap */
	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
	if (reg & IXGBE_FACTPS_LFS)
		bus->func ^= 0x1;
}

 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 *  @hw: pointer to hardware structure
 *
 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 *  disables transmit and receive units. The adapter_stopped flag is used by
 *  the shared code and drivers to determine if the adapter is in a stopped
 *  state and should not touch the hardware.
 **/
s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
{
	u32 number_of_queues;
	u32 reg_val;
	u16 i;

	/*
	 * Set the adapter_stopped flag so other driver functions stop touching
	 * the hardware
	 */
	hw->adapter_stopped = true;

	/* Disable the receive unit */
	reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
	reg_val &= ~(IXGBE_RXCTRL_RXEN);
	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
	IXGBE_WRITE_FLUSH(hw);
	usleep_range(2000, 4000);

	/* Clear interrupt mask to stop from interrupts being generated */
	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);

	/* Clear any pending interrupts */
	IXGBE_READ_REG(hw, IXGBE_EICR);

	/* Disable the transmit unit.  Each queue must be disabled. */
	number_of_queues = hw->mac.max_tx_queues;
	for (i = 0; i < number_of_queues; i++) {
		reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
		if (reg_val & IXGBE_TXDCTL_ENABLE) {
			reg_val &= ~IXGBE_TXDCTL_ENABLE;
			IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
		}
	}

	/*
	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
	 * access and verify no pending requests
	 */
 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 *  @hw: pointer to hardware structure
 *  @index: led number to turn on
 **/
s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
{
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

	/* To turn on the LED, set mode to ON. */
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
	IXGBE_WRITE_FLUSH(hw);
 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 *  @hw: pointer to hardware structure
 *  @index: led number to turn off
 **/
s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
{
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

	/* To turn off the LED, set mode to OFF. */
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
	IXGBE_WRITE_FLUSH(hw);
 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 *  @hw: pointer to hardware structure
 *
 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 *  ixgbe_hw struct in order to set up EEPROM access.
 **/
s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
{
	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
	u32 eec;
	u16 eeprom_size;

	if (eeprom->type == ixgbe_eeprom_uninitialized) {
		eeprom->type = ixgbe_eeprom_none;
		/* Set default semaphore delay to 10ms which is a well
		 * tested value */
		eeprom->semaphore_delay = 10;
		/* Clear EEPROM page size, it will be initialized as needed */
		eeprom->word_page_size = 0;

		/*
		 * Check for EEPROM present first.
		 * If not present leave as none
		 */
		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
		if (eec & IXGBE_EEC_PRES) {
			eeprom->type = ixgbe_eeprom_spi;

			/*
			 * SPI EEPROM is assumed here.  This code would need to
			 * change if a future EEPROM is not SPI.
			 */
			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
					    IXGBE_EEC_SIZE_SHIFT);
			eeprom->word_size = 1 << (eeprom_size +
						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
		}

		if (eec & IXGBE_EEC_ADDR_SIZE)
			eeprom->address_bits = 16;
		else
			eeprom->address_bits = 8;
		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
			  "%d\n", eeprom->type, eeprom->word_size,
			  eeprom->address_bits);
	}

	return 0;
}

 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to write
 *  @words: number of words
 *  @data: 16 bit word(s) to write to EEPROM
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
					       u16 words, u16 *data)
	s32 status = 0;
	u16 i, count;
	if (words == 0) {
		status = IXGBE_ERR_INVALID_ARGUMENT;
		goto out;
	}

	if (offset + words > hw->eeprom.word_size) {
	/*
	 * The EEPROM page size cannot be queried from the chip. We do lazy
	 * initialization. It is worth to do that when we write large buffer.
	 */
	if ((hw->eeprom.word_page_size == 0) &&
	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
		ixgbe_detect_eeprom_page_size_generic(hw, offset);

	/*
	 * We cannot hold synchronization semaphores for too long
	 * to avoid other entity starvation. However it is more efficient
	 * to read in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
							    count, &data[i]);

		if (status != 0)
			break;
	}

out:
	return status;
}

/**
 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of word(s)
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 *  EEPROM will most likely contain an invalid checksum.
 **/
static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					      u16 words, u16 *data)
{
	s32 status;
	u16 word;
	u16 page_size;
	u16 i;
	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;

	/* Prepare the EEPROM for writing  */
	status = ixgbe_acquire_eeprom(hw);

	if (status == 0) {
		if (ixgbe_ready_eeprom(hw) != 0) {
			ixgbe_release_eeprom(hw);
			status = IXGBE_ERR_EEPROM;
		}
	}

	if (status == 0) {
		for (i = 0; i < words; i++) {
			ixgbe_standby_eeprom(hw);
			/*  Send the WRITE ENABLE command (8 bit opcode )  */
			ixgbe_shift_out_eeprom_bits(hw,
						  IXGBE_EEPROM_WREN_OPCODE_SPI,
						  IXGBE_EEPROM_OPCODE_BITS);
			ixgbe_standby_eeprom(hw);
			/*
			 * Some SPI eeproms use the 8th address bit embedded
			 * in the opcode
			 */
			if ((hw->eeprom.address_bits == 8) &&
			    ((offset + i) >= 128))
				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;

			/* Send the Write command (8-bit opcode + addr) */
			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
						    IXGBE_EEPROM_OPCODE_BITS);
			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
						    hw->eeprom.address_bits);

			page_size = hw->eeprom.word_page_size;

			/* Send the data in burst via SPI*/
			do {
				word = data[i];
				word = (word >> 8) | (word << 8);
				ixgbe_shift_out_eeprom_bits(hw, word, 16);

				if (page_size == 0)
					break;

				/* do not wrap around page */
				if (((offset + i) & (page_size - 1)) ==
				    (page_size - 1))
					break;
			} while (++i < words);

			ixgbe_standby_eeprom(hw);
			usleep_range(10000, 20000);
		}
		/* Done with writing - release the EEPROM */
		ixgbe_release_eeprom(hw);
	}
	return status;
}

/**
 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be written to
 *  @data: 16 bit word to be written to the EEPROM
 *
 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 *  EEPROM will most likely contain an invalid checksum.
 **/
s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
{
	s32 status;
	hw->eeprom.ops.init_params(hw);
	if (offset >= hw->eeprom.word_size) {
		status = IXGBE_ERR_EEPROM;
		goto out;
	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);

 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
 *  @words: number of word(s)
 *  @data: read 16 bit words(s) from EEPROM
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
					      u16 words, u16 *data)
	s32 status = 0;
	u16 i, count;

	hw->eeprom.ops.init_params(hw);

	if (words == 0) {
		status = IXGBE_ERR_INVALID_ARGUMENT;
		goto out;
	}

	if (offset + words > hw->eeprom.word_size) {
		status = IXGBE_ERR_EEPROM;
		goto out;
	}

	/*
	 * We cannot hold synchronization semaphores for too long
	 * to avoid other entity starvation. However it is more efficient
	 * to read in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);

		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
							   count, &data[i]);

		if (status != 0)
			break;
	}

out:
	return status;
}

/**
 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
 *  @words: number of word(s)
 *  @data: read 16 bit word(s) from EEPROM
 *
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 **/
static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data)
{
	s32 status;
	u16 word_in;
	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
	u16 i;

	/* Prepare the EEPROM for reading  */
	status = ixgbe_acquire_eeprom(hw);

	if (status == 0) {
		if (ixgbe_ready_eeprom(hw) != 0) {
			ixgbe_release_eeprom(hw);
			status = IXGBE_ERR_EEPROM;
		}
	}

	if (status == 0) {
		for (i = 0; i < words; i++) {
			ixgbe_standby_eeprom(hw);
			/*
			 * Some SPI eeproms use the 8th address bit embedded
			 * in the opcode
			 */
			if ((hw->eeprom.address_bits == 8) &&
			    ((offset + i) >= 128))
				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;

			/* Send the READ command (opcode + addr) */
			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
						    IXGBE_EEPROM_OPCODE_BITS);
			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
						    hw->eeprom.address_bits);

			/* Read the data. */
			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
			data[i] = (word_in >> 8) | (word_in << 8);
		}
		/* End this read operation */
		ixgbe_release_eeprom(hw);
	}
/**
 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
 *  @data: read 16 bit value from EEPROM
 *
 *  Reads 16 bit value from EEPROM through bit-bang method
 **/
s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
				       u16 *data)
{
	s32 status;
	hw->eeprom.ops.init_params(hw);

	if (offset >= hw->eeprom.word_size) {
		status = IXGBE_ERR_EEPROM;
		goto out;
	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);

 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
 *  @hw: pointer to hardware structure
 *  @offset: offset of word in the EEPROM to read
 *  @words: number of word(s)
 *  @data: 16 bit word(s) from the EEPROM
 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
				   u16 words, u16 *data)
	s32 status = 0;
	u32 i;
	hw->eeprom.ops.init_params(hw);

	if (words == 0) {
		status = IXGBE_ERR_INVALID_ARGUMENT;
		goto out;
	}

	if (offset >= hw->eeprom.word_size) {
		status = IXGBE_ERR_EEPROM;
		goto out;
	}

	for (i = 0; i < words; i++) {
		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
		       IXGBE_EEPROM_RW_REG_START;
		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
		if (status == 0) {
			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
				   IXGBE_EEPROM_RW_REG_DATA);
		} else {
			hw_dbg(hw, "Eeprom read timed out\n");
			goto out;
		}
	}
out:
	return status;
}
/**
 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be used as a scratch pad
 *
 *  Discover EEPROM page size by writing marching data at given offset.
 *  This function is called only when we are writing a new large buffer
 *  at given offset so the data would be overwritten anyway.
 **/
static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
						 u16 offset)
{
	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
	s32 status = 0;
	u16 i;

	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
		data[i] = i;

	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
	hw->eeprom.word_page_size = 0;
	if (status != 0)
		goto out;

	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
	if (status != 0)
		goto out;

	/*
	 * When writing in burst more than the actual page size
	 * EEPROM address wraps around current page.
	 */
	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];

	hw_dbg(hw, "Detected EEPROM page size = %d words.",