Commit 39804b20 authored by Linus Torvalds's avatar Linus Torvalds
Browse files

Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6

* 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6: (77 commits)
  ACPI: Populate /sys/firmware/acpi/tables/
  ACPI: create CONFIG_ACPI_DEBUG_FUNC_TRACE
  ACPI: update ACPI proc I/F removal schedule
  ACPI: update feature-removal-schedule.txt, /sys/firmware/acpi/namespace is gone
  ACPI: export ACPI events via acpi_mc_group multicast group
  ACPI: fix empty macros found by -Wextra
  ACPI: drivers/acpi/pci_link.c: lower printk severity
  sony-laptop: Fix event reading in sony-laptop
  sony-laptop: Add Vaio FE to the special init sequence
  sony-laptop: Make the driver use MSC_SCAN and a setkeycode and getkeycode key table.
  sony-laptop: Invoke _INI for SNC devices that provide it
  sony-laptop: Add support for recent Vaios Fn keys (C series for now)
  sony-laptop: map wireless switch events to KEY_WLAN
  sony-laptop: add new SNC handlers
  ACPI: thinkpad-acpi: add locking to brightness subdriver
  ACPI: thinkpad-acpi: bump up version to 0.15
  ACPI: thinkpad-acpi: make EC-based thermal readings non-experimental
  ACPI: thinkpad-acpi: make sure DSDT TMPx readings don't return +128
  ACPI: thinkpad-acpi: react to Lenovo ThinkPad differences in hot key
  ACPI: thinkpad-acpi: allow use of CMOS NVRAM for brightness control
  ...
parents 83e2b5ef 17c50b41
......@@ -180,24 +180,11 @@ Who: Adrian Bunk <bunk@stusta.de>
---------------------------
What: /sys/firmware/acpi/namespace
When: 2.6.21
Why: The ACPI namespace is effectively the symbol list for
the BIOS. The device names are completely arbitrary
and have no place being exposed to user-space.
For those interested in the BIOS ACPI namespace,
the BIOS can be extracted and disassembled with acpidump
and iasl as documented in the pmtools package here:
http://ftp.kernel.org/pub/linux/kernel/people/lenb/acpi/utils
Who: Len Brown <len.brown@intel.com>
---------------------------
What: ACPI procfs interface
When: July 2007
Why: After ACPI sysfs conversion, ACPI attributes will be duplicated
in sysfs and the ACPI procfs interface should be removed.
When: July 2008
Why: ACPI sysfs conversion should be finished by January 2008.
ACPI procfs interface will be removed in July 2008 so that
there is enough time for the user space to catch up.
Who: Zhang Rui <rui.zhang@intel.com>
---------------------------
......
ThinkPad ACPI Extras Driver
Version 0.14
April 21st, 2007
Version 0.15
July 1st, 2007
Borislav Deianov <borislav@users.sf.net>
Henrique de Moraes Holschuh <hmh@hmh.eng.br>
http://ibm-acpi.sf.net/
Henrique de Moraes Holschuh <hmh@hmh.eng.br>
http://ibm-acpi.sf.net/
This is a Linux driver for the IBM and Lenovo ThinkPad laptops. It
......@@ -134,54 +134,68 @@ end of this document. Changes to the sysfs interface done by the kernel
subsystems are not documented here, nor are they tracked by this
attribute.
Changes to the thinkpad-acpi sysfs interface are only considered
non-experimental when they are submitted to Linux mainline, at which
point the changes in this interface are documented and interface_version
may be updated. If you are using any thinkpad-acpi features not yet
sent to mainline for merging, you do so on your own risk: these features
may disappear, or be implemented in a different and incompatible way by
the time they are merged in Linux mainline.
Changes that are backwards-compatible by nature (e.g. the addition of
attributes that do not change the way the other attributes work) do not
always warrant an update of interface_version. Therefore, one must
expect that an attribute might not be there, and deal with it properly
(an attribute not being there *is* a valid way to make it clear that a
feature is not available in sysfs).
Hot keys
--------
procfs: /proc/acpi/ibm/hotkey
sysfs device attribute: hotkey_*
Without this driver, only the Fn-F4 key (sleep button) generates an
ACPI event. With the driver loaded, the hotkey feature enabled and the
mask set (see below), the various hot keys generate ACPI events in the
In a ThinkPad, the ACPI HKEY handler is responsible for comunicating
some important events and also keyboard hot key presses to the operating
system. Enabling the hotkey functionality of thinkpad-acpi signals the
firmware that such a driver is present, and modifies how the ThinkPad
firmware will behave in many situations.
When the hotkey feature is enabled and the hot key mask is set (see
below), the various hot keys either generate ACPI events in the
following format:
ibm/hotkey HKEY 00000080 0000xxxx
The last four digits vary depending on the key combination pressed.
All labeled Fn-Fx key combinations generate distinct events. In
addition, the lid microswitch and some docking station buttons may
also generate such events.
The bit mask allows some control over which hot keys generate ACPI
events. Not all bits in the mask can be modified. Not all bits that
can be modified do anything. Not all hot keys can be individually
controlled by the mask. Most recent ThinkPad models honor the
following bits (assuming the hot keys feature has been enabled):
key bit behavior when set behavior when unset
Fn-F3 always generates ACPI event
Fn-F4 always generates ACPI event
Fn-F5 0010 generate ACPI event enable/disable Bluetooth
Fn-F7 0040 generate ACPI event switch LCD and external display
Fn-F8 0080 generate ACPI event expand screen or none
Fn-F9 0100 generate ACPI event none
Fn-F12 always generates ACPI event
Some models do not support all of the above. For example, the T30 does
not support Fn-F5 and Fn-F9. Other models do not support the mask at
all. On those models, hot keys cannot be controlled individually.
Note that enabling ACPI events for some keys prevents their default
behavior. For example, if events for Fn-F5 are enabled, that key will
no longer enable/disable Bluetooth by itself. This can still be done
from an acpid handler for the ibm/hotkey event.
Note also that not all Fn key combinations are supported through
ACPI. For example, on the X40, the brightness, volume and "Access IBM"
buttons do not generate ACPI events even with this driver. They *can*
be used through the "ThinkPad Buttons" utility, see
http://www.nongnu.org/tpb/
or events over the input layer. The input layer support accepts the
standard IOCTLs to remap the keycodes assigned to each hotkey.
When the input device is open, the driver will suppress any ACPI hot key
events that get translated into a meaningful input layer event, in order
to avoid sending duplicate events to userspace. Hot keys that are
mapped to KEY_RESERVED in the keymap are not translated, and will always
generate an ACPI ibm/hotkey HKEY event, and no input layer events.
The hot key bit mask allows some control over which hot keys generate
events. If a key is "masked" (bit set to 0 in the mask), the firmware
will handle it. If it is "unmasked", it signals the firmware that
thinkpad-acpi would prefer to handle it, if the firmware would be so
kind to allow it (and it often doesn't!).
Not all bits in the mask can be modified. Not all bits that can be
modified do anything. Not all hot keys can be individually controlled
by the mask. Some models do not support the mask at all, and in those
models, hot keys cannot be controlled individually. The behaviour of
the mask is, therefore, higly dependent on the ThinkPad model.
Note that unmasking some keys prevents their default behavior. For
example, if Fn+F5 is unmasked, that key will no longer enable/disable
Bluetooth by itself.
Note also that not all Fn key combinations are supported through ACPI.
For example, on the X40, the brightness, volume and "Access IBM" buttons
do not generate ACPI events even with this driver. They *can* be used
through the "ThinkPad Buttons" utility, see http://www.nongnu.org/tpb/
procfs notes:
......@@ -189,9 +203,9 @@ The following commands can be written to the /proc/acpi/ibm/hotkey file:
echo enable > /proc/acpi/ibm/hotkey -- enable the hot keys feature
echo disable > /proc/acpi/ibm/hotkey -- disable the hot keys feature
echo 0xffff > /proc/acpi/ibm/hotkey -- enable all possible hot keys
echo 0x0000 > /proc/acpi/ibm/hotkey -- disable all possible hot keys
... any other 4-hex-digit mask ...
echo 0xffffffff > /proc/acpi/ibm/hotkey -- enable all hot keys
echo 0 > /proc/acpi/ibm/hotkey -- disable all possible hot keys
... any other 8-hex-digit mask ...
echo reset > /proc/acpi/ibm/hotkey -- restore the original mask
sysfs notes:
......@@ -202,7 +216,7 @@ sysfs notes:
key feature status will be restored to this value.
0: hot keys were disabled
1: hot keys were enabled
1: hot keys were enabled (unusual)
hotkey_bios_mask:
Returns the hot keys mask when thinkpad-acpi was loaded.
......@@ -217,9 +231,182 @@ sysfs notes:
1: enables the hot keys feature / feature enabled
hotkey_mask:
bit mask to enable ACPI event generation for each hot
key (see above). Returns the current status of the hot
keys mask, and allows one to modify it.
bit mask to enable driver-handling and ACPI event
generation for each hot key (see above). Returns the
current status of the hot keys mask, and allows one to
modify it.
hotkey_all_mask:
bit mask that should enable event reporting for all
supported hot keys, when echoed to hotkey_mask above.
Unless you know which events need to be handled
passively (because the firmware *will* handle them
anyway), do *not* use hotkey_all_mask. Use
hotkey_recommended_mask, instead. You have been warned.
hotkey_recommended_mask:
bit mask that should enable event reporting for all
supported hot keys, except those which are always
handled by the firmware anyway. Echo it to
hotkey_mask above, to use.
hotkey_radio_sw:
if the ThinkPad has a hardware radio switch, this
attribute will read 0 if the switch is in the "radios
disabled" postition, and 1 if the switch is in the
"radios enabled" position.
input layer notes:
A Hot key is mapped to a single input layer EV_KEY event, possibly
followed by an EV_MSC MSC_SCAN event that shall contain that key's scan
code. An EV_SYN event will always be generated to mark the end of the
event block.
Do not use the EV_MSC MSC_SCAN events to process keys. They are to be
used as a helper to remap keys, only. They are particularly useful when
remapping KEY_UNKNOWN keys.
The events are available in an input device, with the following id:
Bus: BUS_HOST
vendor: 0x1014 (PCI_VENDOR_ID_IBM) or
0x17aa (PCI_VENDOR_ID_LENOVO)
product: 0x5054 ("TP")
version: 0x4101
The version will have its LSB incremented if the keymap changes in a
backwards-compatible way. The MSB shall always be 0x41 for this input
device. If the MSB is not 0x41, do not use the device as described in
this section, as it is either something else (e.g. another input device
exported by a thinkpad driver, such as HDAPS) or its functionality has
been changed in a non-backwards compatible way.
Adding other event types for other functionalities shall be considered a
backwards-compatible change for this input device.
Thinkpad-acpi Hot Key event map (version 0x4101):
ACPI Scan
event code Key Notes
0x1001 0x00 FN+F1 -
0x1002 0x01 FN+F2 IBM: battery (rare)
Lenovo: Screen lock
0x1003 0x02 FN+F3 Many IBM models always report
this hot key, even with hot keys
disabled or with Fn+F3 masked
off
IBM: screen lock
Lenovo: battery
0x1004 0x03 FN+F4 Sleep button (ACPI sleep button
semanthics, i.e. sleep-to-RAM).
It is always generate some kind
of event, either the hot key
event or a ACPI sleep button
event. The firmware may
refuse to generate further FN+F4
key presses until a S3 or S4 ACPI
sleep cycle is performed or some
time passes.
0x1005 0x04 FN+F5 Radio. Enables/disables
the internal BlueTooth hardware
and W-WAN card if left in control
of the firmware. Does not affect
the WLAN card.
Should be used to turn on/off all
radios (bluetooth+W-WAN+WLAN),
really.
0x1006 0x05 FN+F6 -
0x1007 0x06 FN+F7 Video output cycle.
Do you feel lucky today?
0x1008 0x07 FN+F8 IBM: toggle screen expand
Lenovo: configure ultranav
0x1009 0x08 FN+F9 -
.. .. ..
0x100B 0x0A FN+F11 -
0x100C 0x0B FN+F12 Sleep to disk. You are always
supposed to handle it yourself,
either through the ACPI event,
or through a hotkey event.
The firmware may refuse to
generate further FN+F4 key
press events until a S3 or S4
ACPI sleep cycle is performed,
or some time passes.
0x100D 0x0C FN+BACKSPACE -
0x100E 0x0D FN+INSERT -
0x100F 0x0E FN+DELETE -
0x1010 0x0F FN+HOME Brightness up. This key is
always handled by the firmware
in IBM ThinkPads, even when
unmasked. Just leave it alone.
For Lenovo ThinkPads with a new
BIOS, it has to be handled either
by the ACPI OSI, or by userspace.
0x1011 0x10 FN+END Brightness down. See brightness
up for details.
0x1012 0x11 FN+PGUP Thinklight toggle. This key is
always handled by the firmware,
even when unmasked.
0x1013 0x12 FN+PGDOWN -
0x1014 0x13 FN+SPACE Zoom key
0x1015 0x14 VOLUME UP Internal mixer volume up. This
key is always handled by the
firmware, even when unmasked.
NOTE: Lenovo seems to be changing
this.
0x1016 0x15 VOLUME DOWN Internal mixer volume up. This
key is always handled by the
firmware, even when unmasked.
NOTE: Lenovo seems to be changing
this.
0x1017 0x16 MUTE Mute internal mixer. This
key is always handled by the
firmware, even when unmasked.
0x1018 0x17 THINKPAD Thinkpad/Access IBM/Lenovo key
0x1019 0x18 unknown
.. .. ..
0x1020 0x1F unknown
The ThinkPad firmware does not allow one to differentiate when most hot
keys are pressed or released (either that, or we don't know how to, yet).
For these keys, the driver generates a set of events for a key press and
immediately issues the same set of events for a key release. It is
unknown by the driver if the ThinkPad firmware triggered these events on
hot key press or release, but the firmware will do it for either one, not
both.
If a key is mapped to KEY_RESERVED, it generates no input events at all,
and it may generate a legacy thinkpad-acpi ACPI hotkey event.
If a key is mapped to KEY_UNKNOWN, it generates an input event that
includes an scan code, and it may also generate a legacy thinkpad-acpi
ACPI hotkey event.
If a key is mapped to anything else, it will only generate legacy
thinkpad-acpi ACPI hotkey events if nobody has opened the input device.
Non hot-key ACPI HKEY event map:
0x5001 Lid closed
0x5002 Lid opened
0x7000 Radio Switch may have changed state
Bluetooth
......@@ -437,27 +624,34 @@ CMOS control
procfs: /proc/acpi/ibm/cmos
sysfs device attribute: cmos_command
This feature is used internally by the ACPI firmware to control the
ThinkLight on most newer ThinkPad models. It may also control LCD
brightness, sounds volume and more, but only on some models.
This feature is mostly used internally by the ACPI firmware to keep the legacy
CMOS NVRAM bits in sync with the current machine state, and to record this
state so that the ThinkPad will retain such settings across reboots.
Some of these commands actually perform actions in some ThinkPad models, but
this is expected to disappear more and more in newer models. As an example, in
a T43 and in a X40, commands 12 and 13 still control the ThinkLight state for
real, but commands 0 to 2 don't control the mixer anymore (they have been
phased out) and just update the NVRAM.
The range of valid cmos command numbers is 0 to 21, but not all have an
effect and the behavior varies from model to model. Here is the behavior
on the X40 (tpb is the ThinkPad Buttons utility):
0 - no effect but tpb reports "Volume down"
1 - no effect but tpb reports "Volume up"
2 - no effect but tpb reports "Mute on"
3 - simulate pressing the "Access IBM" button
4 - LCD brightness up
5 - LCD brightness down
11 - toggle screen expansion
12 - ThinkLight on
13 - ThinkLight off
14 - no effect but tpb reports ThinkLight status change
0 - Related to "Volume down" key press
1 - Related to "Volume up" key press
2 - Related to "Mute on" key press
3 - Related to "Access IBM" key press
4 - Related to "LCD brightness up" key pess
5 - Related to "LCD brightness down" key press
11 - Related to "toggle screen expansion" key press/function
12 - Related to "ThinkLight on"
13 - Related to "ThinkLight off"
14 - Related to "ThinkLight" key press (toggle thinklight)
The cmos command interface is prone to firmware split-brain problems, as
in newer ThinkPads it is just a compatibility layer.
in newer ThinkPads it is just a compatibility layer. Do not use it, it is
exported just as a debug tool.
LED control -- /proc/acpi/ibm/led
---------------------------------
......@@ -516,23 +710,15 @@ Temperature sensors
procfs: /proc/acpi/ibm/thermal
sysfs device attributes: (hwmon) temp*_input
Most ThinkPads include six or more separate temperature sensors but
only expose the CPU temperature through the standard ACPI methods.
This feature shows readings from up to eight different sensors on older
ThinkPads, and it has experimental support for up to sixteen different
sensors on newer ThinkPads.
EXPERIMENTAL: The 16-sensors feature is marked EXPERIMENTAL because the
implementation directly accesses hardware registers and may not work as
expected. USE WITH CAUTION! To use this feature, you need to supply the
experimental=1 parameter when loading the module. When EXPERIMENTAL
mode is enabled, reading the first 8 sensors on newer ThinkPads will
also use an new experimental thermal sensor access mode.
Most ThinkPads include six or more separate temperature sensors but only
expose the CPU temperature through the standard ACPI methods. This
feature shows readings from up to eight different sensors on older
ThinkPads, and up to sixteen different sensors on newer ThinkPads.
For example, on the X40, a typical output may be:
temperatures: 42 42 45 41 36 -128 33 -128
EXPERIMENTAL: On the T43/p, a typical output may be:
On the T43/p, a typical output may be:
temperatures: 48 48 36 52 38 -128 31 -128 48 52 48 -128 -128 -128 -128 -128
The mapping of thermal sensors to physical locations varies depending on
......@@ -562,7 +748,8 @@ http://thinkwiki.org/wiki/Thermal_Sensors#ThinkPad_T43.2C_T43p
2: System board, left side (near PCMCIA slot), reported as HDAPS temp
3: PCMCIA slot
9: MCH (northbridge) to DRAM Bus
10: ICH (southbridge), under Mini-PCI card, under touchpad
10: Clock-generator, mini-pci card and ICH (southbridge), under Mini-PCI
card, under touchpad
11: Power regulator, underside of system board, below F2 key
The A31 has a very atypical layout for the thermal sensors
......@@ -681,6 +868,12 @@ cannot be controlled.
The backlight control has eight levels, ranging from 0 to 7. Some of the
levels may not be distinct.
There are two interfaces to the firmware for brightness control, EC and CMOS.
To select which one should be used, use the brightness_mode module parameter:
brightness_mode=1 selects EC mode, brightness_mode=2 selects CMOS mode,
brightness_mode=3 selects both EC and CMOS. The driver tries to autodetect
which interface to use.
Procfs notes:
The available commands are:
......@@ -976,3 +1169,9 @@ Sysfs interface changelog:
0x000100: Initial sysfs support, as a single platform driver and
device.
0x000200: Hot key support for 32 hot keys, and radio slider switch
support.
0x010000: Hot keys are now handled by default over the input
layer, the radio switch generates input event EV_RADIO,
and the driver enables hot key handling by default in
the firmware.
......@@ -225,15 +225,15 @@ T: git kernel.org:/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6.git
S: Supported
ACPI BATTERY DRIVERS
P: Vladimir P. Lebedev
M: vladimir.p.lebedev@intel.com
P: Alexey Starikovskiy
M: astarikovskiy@suse.de
L: linux-acpi@vger.kernel.org
W: http://acpi.sourceforge.net/
S: Supported
ACPI EC DRIVER
P: Alexey Starikovskiy
M: alexey.y.starikovskiy@linux.intel.com
M: astarikovskiy@suse.de
L: linux-acpi@vger.kernel.org
W: http://acpi.sourceforge.net/
S: Supported
......
......@@ -984,14 +984,6 @@ static struct dmi_system_id __initdata acpi_dmi_table[] = {
DMI_MATCH(DMI_PRODUCT_NAME, "PRIMERGY T850"),
},
},
{
.callback = force_acpi_ht,
.ident = "DELL GX240",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "Dell Computer Corporation"),
DMI_MATCH(DMI_BOARD_NAME, "OptiPlex GX240"),
},
},
{
.callback = force_acpi_ht,
.ident = "HP VISUALIZE NT Workstation",
......
......@@ -665,8 +665,8 @@ static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
data->max_freq = perf->states[0].core_frequency * 1000;
/* table init */
for (i=0; i<perf->state_count; i++) {
if (i>0 && perf->states[i].core_frequency ==
perf->states[i-1].core_frequency)
if (i>0 && perf->states[i].core_frequency >=
data->freq_table[valid_states-1].frequency / 1000)
continue;
data->freq_table[valid_states].index = i;
......
......@@ -2,16 +2,12 @@
# ACPI Configuration
#
menu "ACPI (Advanced Configuration and Power Interface) Support"
menuconfig ACPI
bool "ACPI Support (Advanced Configuration and Power Interface) Support"
depends on !X86_NUMAQ
depends on !X86_VISWS
depends on !IA64_HP_SIM
depends on IA64 || X86
depends on PM
config ACPI
bool "ACPI Support"
depends on IA64 || X86
depends on PCI
depends on PM
select PNP
......@@ -49,7 +45,6 @@ if ACPI
config ACPI_SLEEP
bool "Sleep States"
depends on X86 && (!SMP || SUSPEND_SMP)
depends on PM
default y
---help---
This option adds support for ACPI suspend states.
......@@ -82,7 +77,6 @@ config ACPI_SLEEP_PROC_SLEEP
config ACPI_PROCFS
bool "Procfs interface (deprecated)"
depends on ACPI
default y
---help---
The Procfs interface for ACPI is made optional for backward compatibility.
......@@ -124,7 +118,7 @@ config ACPI_BUTTON
config ACPI_VIDEO
tristate "Video"
depends on X86 && BACKLIGHT_CLASS_DEVICE
depends on X86 && BACKLIGHT_CLASS_DEVICE && VIDEO_OUTPUT_CONTROL
help
This driver implement the ACPI Extensions For Display Adapters
for integrated graphics devices on motherboard, as specified in
......@@ -280,6 +274,14 @@ config ACPI_DEBUG
of verbosity. Saying Y enables these statements. This will increase
your kernel size by around 50K.
config ACPI_DEBUG_FUNC_TRACE
bool "Additionally enable ACPI function tracing"
default n
depends on ACPI_DEBUG
help
ACPI Debug Statements slow down ACPI processing. Function trace
is about half of the penalty and is rarely useful.
config ACPI_EC
bool
default y
......@@ -330,7 +332,6 @@ config ACPI_CONTAINER
config ACPI_HOTPLUG_MEMORY
tristate "Memory Hotplug"
depends on ACPI
depends on MEMORY_HOTPLUG
default n
help
......@@ -359,5 +360,3 @@ config ACPI_SBS
to today's ACPI "Control Method" battery.
endif # ACPI
endmenu
This diff is collapsed.
......@@ -288,6 +288,11 @@ static int bay_add(acpi_handle handle, int id)
new_bay->pdev = pdev;
platform_set_drvdata(pdev, new_bay);
/*
* we want the bay driver to be able to send uevents
*/
pdev->dev.uevent_suppress = 0;
if (acpi_bay_add_fs(new_bay)) {
platform_device_unregister(new_bay->pdev);
goto bay_add_err;
......@@ -328,18 +333,12 @@ static void bay_notify(acpi_handle handle, u32 event, void *data)
{
struct bay *bay_dev = (struct bay *)data;
struct device *dev = &bay_dev->pdev->dev;
char event_string[12];
char *envp[] = { event_string, NULL };
bay_dprintk(handle, "Bay event");
switch(event) {
case ACPI_NOTIFY_BUS_CHECK:
case ACPI_NOTIFY_DEVICE_CHECK:
case ACPI_NOTIFY_EJECT_REQUEST:
kobject_uevent(&dev->kobj, KOBJ_CHANGE);
break;
default:
printk(KERN_ERR PREFIX "Bay: unknown event %d\n", event);
}
sprintf(event_string, "BAY_EVENT=%d\n", event);
kobject_uevent_env(&dev->kobj, KOBJ_CHANGE, envp);
}
static acpi_status
......
......@@ -292,6 +292,10 @@ int acpi_bus_generate_event(struct acpi_device *device, u8 type, int data)
if (!device)
return -EINVAL;
if (acpi_bus_generate_genetlink_event(device, type, data))
printk(KERN_WARNING PREFIX
"Failed to generate an ACPI event via genetlink!\n");
/* drop event on the floor if no one's listening */
if (!event_is_open)
return 0;
......
......@@ -40,8 +40,15 @@ MODULE_AUTHOR("Kristen Carlson Accardi");
MODULE_DESCRIPTION(ACPI_DOCK_DRIVER_DESCRIPTION);
MODULE_LICENSE("GPL");
static int immediate_undock = 1;