Commit 0437e109 authored by Ingo Molnar's avatar Ingo Molnar

sched: zap the migration init / cache-hot balancing code

the SMP load-balancer uses the boot-time migration-cost estimation
code to attempt to improve the quality of balancing. The reason for
this code is that the discrete priority queues do not preserve
the order of scheduling accurately, so the load-balancer skips
tasks that were running on a CPU 'recently'.

this code is fundamental fragile: the boot-time migration cost detector
doesnt really work on systems that had large L3 caches, it caused boot
delays on large systems and the whole cache-hot concept made the
balancing code pretty undeterministic as well.

(and hey, i wrote most of it, so i can say it out loud that it sucks ;-)

under CFS the same purpose of cache affinity can be achieved without
any special cache-hot special-case: tasks are sorted in the 'timeline'
tree and the SMP balancer picks tasks from the left side of the
tree, thus the most cache-cold task is balanced automatically.
Signed-off-by: default avatarIngo Molnar <mingo@elte.hu>
parent 0e6aca43
......@@ -1014,49 +1014,6 @@ and is between 256 and 4096 characters. It is defined in the file
mga= [HW,DRM]
migration_cost=
[KNL,SMP] debug: override scheduler migration costs
Format: <level-1-usecs>,<level-2-usecs>,...
This debugging option can be used to override the
default scheduler migration cost matrix. The numbers
are indexed by 'CPU domain distance'.
E.g. migration_cost=1000,2000,3000 on an SMT NUMA
box will set up an intra-core migration cost of
1 msec, an inter-core migration cost of 2 msecs,
and an inter-node migration cost of 3 msecs.
WARNING: using the wrong values here can break
scheduler performance, so it's only for scheduler
development purposes, not production environments.
migration_debug=
[KNL,SMP] migration cost auto-detect verbosity
Format=<0|1|2>
If a system's migration matrix reported at bootup
seems erroneous then this option can be used to
increase verbosity of the detection process.
We default to 0 (no extra messages), 1 will print
some more information, and 2 will be really
verbose (probably only useful if you also have a
serial console attached to the system).
migration_factor=
[KNL,SMP] multiply/divide migration costs by a factor
Format=<percent>
This debug option can be used to proportionally
increase or decrease the auto-detected migration
costs for all entries of the migration matrix.
E.g. migration_factor=150 will increase migration
costs by 50%. (and thus the scheduler will be less
eager migrating cache-hot tasks)
migration_factor=80 will decrease migration costs
by 20%. (thus the scheduler will be more eager to
migrate tasks)
WARNING: using the wrong values here can break
scheduler performance, so it's only for scheduler
development purposes, not production environments.
mousedev.tap_time=
[MOUSE] Maximum time between finger touching and
leaving touchpad surface for touch to be considered
......
......@@ -941,17 +941,6 @@ exit:
}
#endif
static void smp_tune_scheduling(void)
{
if (cpu_khz) {
/* cache size in kB */
long cachesize = boot_cpu_data.x86_cache_size;
if (cachesize > 0)
max_cache_size = cachesize * 1024;
}
}
/*
* Cycle through the processors sending APIC IPIs to boot each.
*/
......@@ -980,7 +969,6 @@ static void __init smp_boot_cpus(unsigned int max_cpus)
x86_cpu_to_apicid[0] = boot_cpu_physical_apicid;
current_thread_info()->cpu = 0;
smp_tune_scheduling();
set_cpu_sibling_map(0);
......
......@@ -805,7 +805,6 @@ static void __cpuinit
get_max_cacheline_size (void)
{
unsigned long line_size, max = 1;
unsigned int cache_size = 0;
u64 l, levels, unique_caches;
pal_cache_config_info_t cci;
s64 status;
......@@ -835,8 +834,6 @@ get_max_cacheline_size (void)
line_size = 1 << cci.pcci_line_size;
if (line_size > max)
max = line_size;
if (cache_size < cci.pcci_cache_size)
cache_size = cci.pcci_cache_size;
if (!cci.pcci_unified) {
status = ia64_pal_cache_config_info(l,
/* cache_type (instruction)= */ 1,
......@@ -853,9 +850,6 @@ get_max_cacheline_size (void)
ia64_i_cache_stride_shift = cci.pcci_stride;
}
out:
#ifdef CONFIG_SMP
max_cache_size = max(max_cache_size, cache_size);
#endif
if (max > ia64_max_cacheline_size)
ia64_max_cacheline_size = max;
}
......
......@@ -51,16 +51,6 @@ int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
EXPORT_SYMBOL(phys_cpu_present_map);
EXPORT_SYMBOL(cpu_online_map);
/* This happens early in bootup, can't really do it better */
static void smp_tune_scheduling (void)
{
struct cache_desc *cd = &current_cpu_data.scache;
unsigned long cachesize = cd->linesz * cd->sets * cd->ways;
if (cachesize > max_cache_size)
max_cache_size = cachesize;
}
extern void __init calibrate_delay(void);
extern ATTRIB_NORET void cpu_idle(void);
......@@ -228,7 +218,6 @@ void __init smp_prepare_cpus(unsigned int max_cpus)
{
init_new_context(current, &init_mm);
current_thread_info()->cpu = 0;
smp_tune_scheduling();
plat_prepare_cpus(max_cpus);
#ifndef CONFIG_HOTPLUG_CPU
cpu_present_map = cpu_possible_map;
......
......@@ -68,16 +68,6 @@ void __cpuinit smp_store_cpu_info(int id)
cpu_data(id).prom_node = cpu_node;
cpu_data(id).mid = cpu_get_hwmid(cpu_node);
/* this is required to tune the scheduler correctly */
/* is it possible to have CPUs with different cache sizes? */
if (id == boot_cpu_id) {
int cache_line,cache_nlines;
cache_line = 0x20;
cache_line = prom_getintdefault(cpu_node, "ecache-line-size", cache_line);
cache_nlines = 0x8000;
cache_nlines = prom_getintdefault(cpu_node, "ecache-nlines", cache_nlines);
max_cache_size = cache_line * cache_nlines;
}
if (cpu_data(id).mid < 0)
panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
}
......
......@@ -1163,32 +1163,6 @@ int setup_profiling_timer(unsigned int multiplier)
return -EINVAL;
}
static void __init smp_tune_scheduling(void)
{
unsigned int smallest = ~0U;
int i;
for (i = 0; i < NR_CPUS; i++) {
unsigned int val = cpu_data(i).ecache_size;
if (val && val < smallest)
smallest = val;
}
/* Any value less than 256K is nonsense. */
if (smallest < (256U * 1024U))
smallest = 256 * 1024;
max_cache_size = smallest;
if (smallest < 1U * 1024U * 1024U)
printk(KERN_INFO "Using max_cache_size of %uKB\n",
smallest / 1024U);
else
printk(KERN_INFO "Using max_cache_size of %uMB\n",
smallest / 1024U / 1024U);
}
/* Constrain the number of cpus to max_cpus. */
void __init smp_prepare_cpus(unsigned int max_cpus)
{
......@@ -1206,7 +1180,6 @@ void __init smp_prepare_cpus(unsigned int max_cpus)
}
cpu_data(boot_cpu_id).udelay_val = loops_per_jiffy;
smp_tune_scheduling();
}
void __devinit smp_prepare_boot_cpu(void)
......
......@@ -754,12 +754,6 @@ struct sched_domain {
extern int partition_sched_domains(cpumask_t *partition1,
cpumask_t *partition2);
/*
* Maximum cache size the migration-costs auto-tuning code will
* search from:
*/
extern unsigned int max_cache_size;
#endif /* CONFIG_SMP */
......
......@@ -5797,483 +5797,6 @@ init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
#define SD_NODES_PER_DOMAIN 16
/*
* Self-tuning task migration cost measurement between source and target CPUs.
*
* This is done by measuring the cost of manipulating buffers of varying
* sizes. For a given buffer-size here are the steps that are taken:
*
* 1) the source CPU reads+dirties a shared buffer
* 2) the target CPU reads+dirties the same shared buffer
*
* We measure how long they take, in the following 4 scenarios:
*
* - source: CPU1, target: CPU2 | cost1
* - source: CPU2, target: CPU1 | cost2
* - source: CPU1, target: CPU1 | cost3
* - source: CPU2, target: CPU2 | cost4
*
* We then calculate the cost3+cost4-cost1-cost2 difference - this is
* the cost of migration.
*
* We then start off from a small buffer-size and iterate up to larger
* buffer sizes, in 5% steps - measuring each buffer-size separately, and
* doing a maximum search for the cost. (The maximum cost for a migration
* normally occurs when the working set size is around the effective cache
* size.)
*/
#define SEARCH_SCOPE 2
#define MIN_CACHE_SIZE (64*1024U)
#define DEFAULT_CACHE_SIZE (5*1024*1024U)
#define ITERATIONS 1
#define SIZE_THRESH 130
#define COST_THRESH 130
/*
* The migration cost is a function of 'domain distance'. Domain
* distance is the number of steps a CPU has to iterate down its
* domain tree to share a domain with the other CPU. The farther
* two CPUs are from each other, the larger the distance gets.
*
* Note that we use the distance only to cache measurement results,
* the distance value is not used numerically otherwise. When two
* CPUs have the same distance it is assumed that the migration
* cost is the same. (this is a simplification but quite practical)
*/
#define MAX_DOMAIN_DISTANCE 32
static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
{ [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
/*
* Architectures may override the migration cost and thus avoid
* boot-time calibration. Unit is nanoseconds. Mostly useful for
* virtualized hardware:
*/
#ifdef CONFIG_DEFAULT_MIGRATION_COST
CONFIG_DEFAULT_MIGRATION_COST
#else
-1LL
#endif
};
/*
* Allow override of migration cost - in units of microseconds.
* E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
* of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
*/
static int __init migration_cost_setup(char *str)
{
int ints[MAX_DOMAIN_DISTANCE+1], i;
str = get_options(str, ARRAY_SIZE(ints), ints);
printk("#ints: %d\n", ints[0]);
for (i = 1; i <= ints[0]; i++) {
migration_cost[i-1] = (unsigned long long)ints[i]*1000;
printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
}
return 1;
}
__setup ("migration_cost=", migration_cost_setup);
/*
* Global multiplier (divisor) for migration-cutoff values,
* in percentiles. E.g. use a value of 150 to get 1.5 times
* longer cache-hot cutoff times.
*
* (We scale it from 100 to 128 to long long handling easier.)
*/
#define MIGRATION_FACTOR_SCALE 128
static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
static int __init setup_migration_factor(char *str)
{
get_option(&str, &migration_factor);
migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
return 1;
}
__setup("migration_factor=", setup_migration_factor);
/*
* Estimated distance of two CPUs, measured via the number of domains
* we have to pass for the two CPUs to be in the same span:
*/
static unsigned long domain_distance(int cpu1, int cpu2)
{
unsigned long distance = 0;
struct sched_domain *sd;
for_each_domain(cpu1, sd) {
WARN_ON(!cpu_isset(cpu1, sd->span));
if (cpu_isset(cpu2, sd->span))
return distance;
distance++;
}
if (distance >= MAX_DOMAIN_DISTANCE) {
WARN_ON(1);
distance = MAX_DOMAIN_DISTANCE-1;
}
return distance;
}
static unsigned int migration_debug;
static int __init setup_migration_debug(char *str)
{
get_option(&str, &migration_debug);
return 1;
}
__setup("migration_debug=", setup_migration_debug);
/*
* Maximum cache-size that the scheduler should try to measure.
* Architectures with larger caches should tune this up during
* bootup. Gets used in the domain-setup code (i.e. during SMP
* bootup).
*/
unsigned int max_cache_size;
static int __init setup_max_cache_size(char *str)
{
get_option(&str, &max_cache_size);
return 1;
}
__setup("max_cache_size=", setup_max_cache_size);
/*
* Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
* is the operation that is timed, so we try to generate unpredictable
* cachemisses that still end up filling the L2 cache:
*/
static void touch_cache(void *__cache, unsigned long __size)
{
unsigned long size = __size / sizeof(long);
unsigned long chunk1 = size / 3;
unsigned long chunk2 = 2 * size / 3;
unsigned long *cache = __cache;
int i;
for (i = 0; i < size/6; i += 8) {
switch (i % 6) {
case 0: cache[i]++;
case 1: cache[size-1-i]++;
case 2: cache[chunk1-i]++;
case 3: cache[chunk1+i]++;
case 4: cache[chunk2-i]++;
case 5: cache[chunk2+i]++;
}
}
}
/*
* Measure the cache-cost of one task migration. Returns in units of nsec.
*/
static unsigned long long
measure_one(void *cache, unsigned long size, int source, int target)
{
cpumask_t mask, saved_mask;
unsigned long long t0, t1, t2, t3, cost;
saved_mask = current->cpus_allowed;
/*
* Flush source caches to RAM and invalidate them:
*/
sched_cacheflush();
/*
* Migrate to the source CPU:
*/
mask = cpumask_of_cpu(source);
set_cpus_allowed(current, mask);
WARN_ON(smp_processor_id() != source);
/*
* Dirty the working set:
*/
t0 = sched_clock();
touch_cache(cache, size);
t1 = sched_clock();
/*
* Migrate to the target CPU, dirty the L2 cache and access
* the shared buffer. (which represents the working set
* of a migrated task.)
*/
mask = cpumask_of_cpu(target);
set_cpus_allowed(current, mask);
WARN_ON(smp_processor_id() != target);
t2 = sched_clock();
touch_cache(cache, size);
t3 = sched_clock();
cost = t1-t0 + t3-t2;
if (migration_debug >= 2)
printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
source, target, t1-t0, t1-t0, t3-t2, cost);
/*
* Flush target caches to RAM and invalidate them:
*/
sched_cacheflush();
set_cpus_allowed(current, saved_mask);
return cost;
}
/*
* Measure a series of task migrations and return the average
* result. Since this code runs early during bootup the system
* is 'undisturbed' and the average latency makes sense.
*
* The algorithm in essence auto-detects the relevant cache-size,
* so it will properly detect different cachesizes for different
* cache-hierarchies, depending on how the CPUs are connected.
*
* Architectures can prime the upper limit of the search range via
* max_cache_size, otherwise the search range defaults to 20MB...64K.
*/
static unsigned long long
measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
{
unsigned long long cost1, cost2;
int i;
/*
* Measure the migration cost of 'size' bytes, over an
* average of 10 runs:
*
* (We perturb the cache size by a small (0..4k)
* value to compensate size/alignment related artifacts.
* We also subtract the cost of the operation done on
* the same CPU.)
*/
cost1 = 0;
/*
* dry run, to make sure we start off cache-cold on cpu1,
* and to get any vmalloc pagefaults in advance:
*/
measure_one(cache, size, cpu1, cpu2);
for (i = 0; i < ITERATIONS; i++)
cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
measure_one(cache, size, cpu2, cpu1);
for (i = 0; i < ITERATIONS; i++)
cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
/*
* (We measure the non-migrating [cached] cost on both
* cpu1 and cpu2, to handle CPUs with different speeds)
*/
cost2 = 0;
measure_one(cache, size, cpu1, cpu1);
for (i = 0; i < ITERATIONS; i++)
cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
measure_one(cache, size, cpu2, cpu2);
for (i = 0; i < ITERATIONS; i++)
cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
/*
* Get the per-iteration migration cost:
*/
do_div(cost1, 2 * ITERATIONS);
do_div(cost2, 2 * ITERATIONS);
return cost1 - cost2;
}
static unsigned long long measure_migration_cost(int cpu1, int cpu2)
{
unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
unsigned int max_size, size, size_found = 0;
long long cost = 0, prev_cost;
void *cache;
/*
* Search from max_cache_size*5 down to 64K - the real relevant
* cachesize has to lie somewhere inbetween.
*/
if (max_cache_size) {
max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
} else {
/*
* Since we have no estimation about the relevant
* search range
*/
max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
size = MIN_CACHE_SIZE;
}
if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
printk("cpu %d and %d not both online!\n", cpu1, cpu2);
return 0;
}
/*
* Allocate the working set:
*/
cache = vmalloc(max_size);
if (!cache) {
printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
return 1000000; /* return 1 msec on very small boxen */
}
while (size <= max_size) {
prev_cost = cost;
cost = measure_cost(cpu1, cpu2, cache, size);
/*
* Update the max:
*/
if (cost > 0) {
if (max_cost < cost) {
max_cost = cost;
size_found = size;
}
}
/*
* Calculate average fluctuation, we use this to prevent
* noise from triggering an early break out of the loop:
*/
fluct = abs(cost - prev_cost);
avg_fluct = (avg_fluct + fluct)/2;
if (migration_debug)
printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
"(%8Ld %8Ld)\n",
cpu1, cpu2, size,
(long)cost / 1000000,
((long)cost / 100000) % 10,
(long)max_cost / 1000000,
((long)max_cost / 100000) % 10,
domain_distance(cpu1, cpu2),
cost, avg_fluct);
/*
* If we iterated at least 20% past the previous maximum,
* and the cost has dropped by more than 20% already,
* (taking fluctuations into account) then we assume to
* have found the maximum and break out of the loop early:
*/
if (size_found && (size*100 > size_found*SIZE_THRESH))
if (cost+avg_fluct <= 0 ||
max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
if (migration_debug)
printk("-> found max.\n");
break;
}
/*
* Increase the cachesize in 10% steps:
*/
size = size * 10 / 9;
}
if (migration_debug)
printk("[%d][%d] working set size found: %d, cost: %Ld\n",
cpu1, cpu2, size_found, max_cost);
vfree(cache);
/*
* A task is considered 'cache cold' if at least 2 times
* the worst-case cost of migration has passed.
*
* (this limit is only listened to if the load-balancing
* situation is 'nice' - if there is a large imbalance we
* ignore it for the sake of CPU utilization and
* processing fairness.)
*/
return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
}
static void calibrate_migration_costs(const cpumask_t *cpu_map)
{
int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
unsigned long j0, j1, distance, max_distance = 0;
struct sched_domain *sd;
j0 = jiffies;
/*
* First pass - calculate the cacheflush times:
*/
for_each_cpu_mask(cpu1, *cpu_map) {
for_each_cpu_mask(cpu2, *cpu_map) {
if (cpu1 == cpu2)
continue;
distance = domain_distance(cpu1, cpu2);
max_distance = max(max_distance, distance);
/*
* No result cached yet?
*/
if (migration_cost[distance] == -1LL)
migration_cost[distance] =
measure_migration_cost(cpu1, cpu2);
}
}
/*
* Second pass - update the sched domain hierarchy with
* the new cache-hot-time estimations:
*/
for_each_cpu_mask(cpu, *cpu_map) {
distance = 0;
for_each_domain(cpu, sd) {
sd->cache_hot_time = migration_cost[distance];
distance++;
}
}
/*
* Print the matrix:
*/
if (migration_debug)
printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
max_cache_size,
#ifdef CONFIG_X86
cpu_khz/1000