Newer
Older
Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
Module: rt2x00lib
Abstract: rt2x00 queue specific routines.
*/
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include "rt2x00.h"
#include "rt2x00lib.h"
struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry)
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct sk_buff *skb;
struct skb_frame_desc *skbdesc;
unsigned int frame_size;
unsigned int head_size = 0;
unsigned int tail_size = 0;
/*
* The frame size includes descriptor size, because the
* hardware directly receive the frame into the skbuffer.
*/
frame_size = entry->queue->data_size + entry->queue->desc_size;
/*
* The payload should be aligned to a 4-byte boundary,
* this means we need at least 3 bytes for moving the frame
* into the correct offset.
head_size = 4;
/*
* For IV/EIV/ICV assembly we must make sure there is
* at least 8 bytes bytes available in headroom for IV/EIV
* and 8 bytes for ICV data as tailroon.
if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) {
tail_size += 8;
/*
* Allocate skbuffer.
*/
skb = dev_alloc_skb(frame_size + head_size + tail_size);
if (!skb)
return NULL;
/*
* Make sure we not have a frame with the requested bytes
* available in the head and tail.
*/
skb_reserve(skb, head_size);
skb_put(skb, frame_size);
/*
* Populate skbdesc.
*/
skbdesc = get_skb_frame_desc(skb);
memset(skbdesc, 0, sizeof(*skbdesc));
skbdesc->entry = entry;
if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) {
skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
skb->data,
skb->len,
DMA_FROM_DEVICE);
skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
}
return skb;
}
void rt2x00queue_map_txskb(struct queue_entry *entry)
struct device *dev = entry->queue->rt2x00dev->dev;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
}
EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
void rt2x00queue_unmap_skb(struct queue_entry *entry)
{
struct device *dev = entry->queue->rt2x00dev->dev;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
DMA_FROM_DEVICE);
skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
} else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
DMA_TO_DEVICE);
skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
}
}
EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
void rt2x00queue_free_skb(struct queue_entry *entry)
{
rt2x00queue_unmap_skb(entry);
dev_kfree_skb_any(entry->skb);
entry->skb = NULL;
void rt2x00queue_align_frame(struct sk_buff *skb)
{
unsigned int frame_length = skb->len;
unsigned int align = ALIGN_SIZE(skb, 0);
if (!align)
return;
skb_push(skb, align);
memmove(skb->data, skb->data + align, frame_length);
skb_trim(skb, frame_length);
}
void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
{
unsigned int payload_length = skb->len - header_length;
unsigned int header_align = ALIGN_SIZE(skb, 0);
unsigned int payload_align = ALIGN_SIZE(skb, header_length);
unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
/*
* Adjust the header alignment if the payload needs to be moved more
* than the header.
*/
if (payload_align > header_align)
header_align += 4;
/* There is nothing to do if no alignment is needed */
if (!header_align)
return;
/* Reserve the amount of space needed in front of the frame */
skb_push(skb, header_align);
/*
* Move the header.
*/
memmove(skb->data, skb->data + header_align, header_length);
/* Move the payload, if present and if required */
if (payload_length && payload_align)
memmove(skb->data + header_length + l2pad,
skb->data + header_length + l2pad + payload_align,
payload_length);
/* Trim the skb to the correct size */
skb_trim(skb, header_length + l2pad + payload_length);
void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
{
/*
* L2 padding is only present if the skb contains more than just the
* IEEE 802.11 header.
*/
unsigned int l2pad = (skb->len > header_length) ?
L2PAD_SIZE(header_length) : 0;
memmove(skb->data + l2pad, skb->data, header_length);
skb_pull(skb, l2pad);
static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
struct txentry_desc *txdesc)
{
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
unsigned long irqflags;
if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
if (!test_bit(REQUIRE_SW_SEQNO, &entry->queue->rt2x00dev->cap_flags))
return;
* The hardware is not able to insert a sequence number. Assign a
* software generated one here.
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
*
* This is wrong because beacons are not getting sequence
* numbers assigned properly.
*
* A secondary problem exists for drivers that cannot toggle
* sequence counting per-frame, since those will override the
* sequence counter given by mac80211.
*/
spin_lock_irqsave(&intf->seqlock, irqflags);
if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
intf->seqno += 0x10;
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
spin_unlock_irqrestore(&intf->seqlock, irqflags);
}
static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
struct txentry_desc *txdesc,
const struct rt2x00_rate *hwrate)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
unsigned int data_length;
unsigned int duration;
unsigned int residual;
/*
* Determine with what IFS priority this frame should be send.
* Set ifs to IFS_SIFS when the this is not the first fragment,
* or this fragment came after RTS/CTS.
*/
if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
txdesc->u.plcp.ifs = IFS_BACKOFF;
else
txdesc->u.plcp.ifs = IFS_SIFS;
/* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
data_length = entry->skb->len + 4;
data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
/*
* PLCP setup
* Length calculation depends on OFDM/CCK rate.
*/
txdesc->u.plcp.signal = hwrate->plcp;
txdesc->u.plcp.service = 0x04;
if (hwrate->flags & DEV_RATE_OFDM) {
txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
txdesc->u.plcp.length_low = data_length & 0x3f;
} else {
/*
* Convert length to microseconds.
*/
residual = GET_DURATION_RES(data_length, hwrate->bitrate);
duration = GET_DURATION(data_length, hwrate->bitrate);
if (residual != 0) {
duration++;
/*
* Check if we need to set the Length Extension
*/
if (hwrate->bitrate == 110 && residual <= 30)
txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
txdesc->u.plcp.length_low = duration & 0xff;
/*
* When preamble is enabled we should set the
* preamble bit for the signal.
*/
if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
struct txentry_desc *txdesc)
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
struct ieee80211_rate *rate;
const struct rt2x00_rate *hwrate = NULL;
memset(txdesc, 0, sizeof(*txdesc));
Gertjan van Wingerde
committed
* Header and frame information.
Gertjan van Wingerde
committed
txdesc->length = entry->skb->len;
txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
/*
* Check whether this frame is to be acked.
*/
if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
__set_bit(ENTRY_TXD_ACK, &txdesc->flags);
/*
* Check if this is a RTS/CTS frame
*/
if (ieee80211_is_rts(hdr->frame_control) ||
ieee80211_is_cts(hdr->frame_control)) {
__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
if (ieee80211_is_rts(hdr->frame_control))
__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
__set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
if (tx_info->control.rts_cts_rate_idx >= 0)
ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
}
/*
* Determine retry information.
*/
txdesc->retry_limit = tx_info->control.rates[0].count - 1;
if (txdesc->retry_limit >= rt2x00dev->long_retry)
__set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
/*
* Check if more fragments are pending
*/
if (ieee80211_has_morefrags(hdr->frame_control)) {
__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
}
/*
* Check if more frames (!= fragments) are pending
*/
if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
/*
* Beacons and probe responses require the tsf timestamp
* to be inserted into the frame.
if (ieee80211_is_beacon(hdr->frame_control) ||
ieee80211_is_probe_resp(hdr->frame_control))
__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
!test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
__set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
/*
* Determine rate modulation.
*/
if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
else if (txrate->flags & IEEE80211_TX_RC_MCS)
txdesc->rate_mode = RATE_MODE_HT_MIX;
else {
rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
hwrate = rt2x00_get_rate(rate->hw_value);
if (hwrate->flags & DEV_RATE_OFDM)
txdesc->rate_mode = RATE_MODE_OFDM;
else
txdesc->rate_mode = RATE_MODE_CCK;
}
/*
* Apply TX descriptor handling by components
*/
rt2x00crypto_create_tx_descriptor(entry, txdesc);
rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
if (test_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags))
rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
else
rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
Gertjan van Wingerde
committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
static int rt2x00queue_write_tx_data(struct queue_entry *entry,
struct txentry_desc *txdesc)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
/*
* This should not happen, we already checked the entry
* was ours. When the hardware disagrees there has been
* a queue corruption!
*/
if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
rt2x00dev->ops->lib->get_entry_state(entry))) {
ERROR(rt2x00dev,
"Corrupt queue %d, accessing entry which is not ours.\n"
"Please file bug report to %s.\n",
entry->queue->qid, DRV_PROJECT);
return -EINVAL;
}
/*
* Add the requested extra tx headroom in front of the skb.
*/
skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
/*
* Call the driver's write_tx_data function, if it exists.
Gertjan van Wingerde
committed
*/
if (rt2x00dev->ops->lib->write_tx_data)
rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
Gertjan van Wingerde
committed
/*
* Map the skb to DMA.
*/
if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
Gertjan van Wingerde
committed
return 0;
}
static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
struct txentry_desc *txdesc)
struct data_queue *queue = entry->queue;
queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
/*
* All processing on the frame has been completed, this means
* it is now ready to be dumped to userspace through debugfs.
*/
rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
struct txentry_desc *txdesc)
{
* Check if we need to kick the queue, there are however a few rules
* 1) Don't kick unless this is the last in frame in a burst.
* When the burst flag is set, this frame is always followed
* by another frame which in some way are related to eachother.
* This is true for fragments, RTS or CTS-to-self frames.
* 2) Rule 1 can be broken when the available entries
* in the queue are less then a certain threshold.
if (rt2x00queue_threshold(queue) ||
!test_bit(ENTRY_TXD_BURST, &txdesc->flags))
queue->rt2x00dev->ops->lib->kick_queue(queue);
int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
bool local)
struct ieee80211_tx_info *tx_info;
struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
struct txentry_desc txdesc;
if (unlikely(rt2x00queue_full(queue))) {
ERROR(queue->rt2x00dev,
"Dropping frame due to full tx queue %d.\n", queue->qid);
if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
&entry->flags))) {
ERROR(queue->rt2x00dev,
"Arrived at non-free entry in the non-full queue %d.\n"
"Please file bug report to %s.\n",
queue->qid, DRV_PROJECT);
return -EINVAL;
}
/*
* Copy all TX descriptor information into txdesc,
* after that we are free to use the skb->cb array
* for our information.
*/
entry->skb = skb;
rt2x00queue_create_tx_descriptor(entry, &txdesc);
* All information is retrieved from the skb->cb array,
* now we should claim ownership of the driver part of that
* array, preserving the bitrate index and flags.
tx_info = IEEE80211_SKB_CB(skb);
rate_idx = tx_info->control.rates[0].idx;
rate_flags = tx_info->control.rates[0].flags;
memset(skbdesc, 0, sizeof(*skbdesc));
skbdesc->entry = entry;
skbdesc->tx_rate_idx = rate_idx;
skbdesc->tx_rate_flags = rate_flags;
if (local)
skbdesc->flags |= SKBDESC_NOT_MAC80211;
/*
* When hardware encryption is supported, and this frame
* is to be encrypted, we should strip the IV/EIV data from
* the frame so we can provide it to the driver separately.
*/
if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
!test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
if (test_bit(REQUIRE_COPY_IV, &queue->rt2x00dev->cap_flags))
rt2x00crypto_tx_copy_iv(skb, &txdesc);
rt2x00crypto_tx_remove_iv(skb, &txdesc);
/*
* When DMA allocation is required we should guarentee to the
* driver that the DMA is aligned to a 4-byte boundary.
* However some drivers require L2 padding to pad the payload
* rather then the header. This could be a requirement for
* PCI and USB devices, while header alignment only is valid
* for PCI devices.
*/
if (test_bit(REQUIRE_L2PAD, &queue->rt2x00dev->cap_flags))
rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
else if (test_bit(REQUIRE_DMA, &queue->rt2x00dev->cap_flags))
rt2x00queue_align_frame(entry->skb);
/*
* It could be possible that the queue was corrupted and this
* call failed. Since we always return NETDEV_TX_OK to mac80211,
* this frame will simply be dropped.
Gertjan van Wingerde
committed
if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
set_bit(ENTRY_DATA_PENDING, &entry->flags);
rt2x00queue_index_inc(entry, Q_INDEX);
rt2x00queue_write_tx_descriptor(entry, &txdesc);
rt2x00queue_kick_tx_queue(queue, &txdesc);
return 0;
}
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
struct ieee80211_vif *vif)
{
struct rt2x00_intf *intf = vif_to_intf(vif);
if (unlikely(!intf->beacon))
return -ENOBUFS;
mutex_lock(&intf->beacon_skb_mutex);
/*
* Clean up the beacon skb.
*/
rt2x00queue_free_skb(intf->beacon);
/*
* Clear beacon (single bssid devices don't need to clear the beacon
* since the beacon queue will get stopped anyway).
*/
if (rt2x00dev->ops->lib->clear_beacon)
rt2x00dev->ops->lib->clear_beacon(intf->beacon);
mutex_unlock(&intf->beacon_skb_mutex);
return 0;
}
int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev,
struct ieee80211_vif *vif)
{
struct rt2x00_intf *intf = vif_to_intf(vif);
struct skb_frame_desc *skbdesc;
struct txentry_desc txdesc;
if (unlikely(!intf->beacon))
return -ENOBUFS;
/*
* Clean up the beacon skb.
*/
rt2x00queue_free_skb(intf->beacon);
intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
if (!intf->beacon->skb)
return -ENOMEM;
/*
* Copy all TX descriptor information into txdesc,
* after that we are free to use the skb->cb array
* for our information.
*/
rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
/*
* Fill in skb descriptor
*/
skbdesc = get_skb_frame_desc(intf->beacon->skb);
memset(skbdesc, 0, sizeof(*skbdesc));
skbdesc->entry = intf->beacon;
/*
* Send beacon to hardware.
rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
return 0;
}
int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
struct ieee80211_vif *vif)
{
struct rt2x00_intf *intf = vif_to_intf(vif);
int ret;
mutex_lock(&intf->beacon_skb_mutex);
ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif);
mutex_unlock(&intf->beacon_skb_mutex);
return ret;
bool rt2x00queue_for_each_entry(struct data_queue *queue,
enum queue_index start,
enum queue_index end,
void *data,
bool (*fn)(struct queue_entry *entry,
void *data))
{
unsigned long irqflags;
unsigned int index_start;
unsigned int index_end;
unsigned int i;
if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
ERROR(queue->rt2x00dev,
"Entry requested from invalid index range (%d - %d)\n",
start, end);
}
/*
* Only protect the range we are going to loop over,
* if during our loop a extra entry is set to pending
* it should not be kicked during this run, since it
* is part of another TX operation.
*/
spin_lock_irqsave(&queue->index_lock, irqflags);
index_start = queue->index[start];
index_end = queue->index[end];
spin_unlock_irqrestore(&queue->index_lock, irqflags);
/*
* Start from the TX done pointer, this guarentees that we will
* send out all frames in the correct order.
*/
if (index_start < index_end) {
for (i = index_start; i < index_end; i++) {
if (fn(&queue->entries[i], data))
return true;
}
for (i = index_start; i < queue->limit; i++) {
if (fn(&queue->entries[i], data))
return true;
}
for (i = 0; i < index_end; i++) {
if (fn(&queue->entries[i], data))
return true;
}
}
EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
enum queue_index index)
{
struct queue_entry *entry;
if (unlikely(index >= Q_INDEX_MAX)) {
ERROR(queue->rt2x00dev,
"Entry requested from invalid index type (%d)\n", index);
return NULL;
}
spin_lock_irqsave(&queue->index_lock, irqflags);
entry = &queue->entries[queue->index[index]];
spin_unlock_irqrestore(&queue->index_lock, irqflags);
return entry;
}
EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
struct data_queue *queue = entry->queue;
if (unlikely(index >= Q_INDEX_MAX)) {
ERROR(queue->rt2x00dev,
"Index change on invalid index type (%d)\n", index);
return;
}
spin_lock_irqsave(&queue->index_lock, irqflags);
queue->index[index]++;
if (queue->index[index] >= queue->limit)
queue->index[index] = 0;
if (index == Q_INDEX) {
queue->length++;
} else if (index == Q_INDEX_DONE) {
queue->length--;
spin_unlock_irqrestore(&queue->index_lock, irqflags);
void rt2x00queue_pause_queue(struct data_queue *queue)
{
if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
!test_bit(QUEUE_STARTED, &queue->flags) ||
test_and_set_bit(QUEUE_PAUSED, &queue->flags))
return;
switch (queue->qid) {
case QID_AC_BE:
case QID_AC_BK:
/*
* For TX queues, we have to disable the queue
* inside mac80211.
*/
ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
break;
default:
break;
}
}
EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
void rt2x00queue_unpause_queue(struct data_queue *queue)
{
if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
!test_bit(QUEUE_STARTED, &queue->flags) ||
!test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
return;
switch (queue->qid) {
case QID_AC_BE:
case QID_AC_BK:
/*
* For TX queues, we have to enable the queue
* inside mac80211.
*/
ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
break;
case QID_RX:
/*
* For RX we need to kick the queue now in order to
* receive frames.
*/
queue->rt2x00dev->ops->lib->kick_queue(queue);
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
default:
break;
}
}
EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
void rt2x00queue_start_queue(struct data_queue *queue)
{
mutex_lock(&queue->status_lock);
if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
mutex_unlock(&queue->status_lock);
return;
}
set_bit(QUEUE_PAUSED, &queue->flags);
queue->rt2x00dev->ops->lib->start_queue(queue);
rt2x00queue_unpause_queue(queue);
mutex_unlock(&queue->status_lock);
}
EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
void rt2x00queue_stop_queue(struct data_queue *queue)
{
mutex_lock(&queue->status_lock);
if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
mutex_unlock(&queue->status_lock);
return;
}
rt2x00queue_pause_queue(queue);
queue->rt2x00dev->ops->lib->stop_queue(queue);
mutex_unlock(&queue->status_lock);
}
EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
{
bool started;
bool tx_queue =
(queue->qid == QID_AC_BE) ||
(queue->qid == QID_AC_BK);
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
mutex_lock(&queue->status_lock);
/*
* If the queue has been started, we must stop it temporarily
* to prevent any new frames to be queued on the device. If
* we are not dropping the pending frames, the queue must
* only be stopped in the software and not the hardware,
* otherwise the queue will never become empty on its own.
*/
started = test_bit(QUEUE_STARTED, &queue->flags);
if (started) {
/*
* Pause the queue
*/
rt2x00queue_pause_queue(queue);
/*
* If we are not supposed to drop any pending
* frames, this means we must force a start (=kick)
* to the queue to make sure the hardware will
* start transmitting.
*/
if (!drop && tx_queue)
queue->rt2x00dev->ops->lib->kick_queue(queue);
}
/*
* Check if driver supports flushing, if that is the case we can
* defer the flushing to the driver. Otherwise we must use the
* alternative which just waits for the queue to become empty.
if (likely(queue->rt2x00dev->ops->lib->flush_queue))
queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
/*
* The queue flush has failed...
*/
if (unlikely(!rt2x00queue_empty(queue)))
WARNING(queue->rt2x00dev, "Queue %d failed to flush\n", queue->qid);
/*
* Restore the queue to the previous status
*/
if (started)
rt2x00queue_unpause_queue(queue);
mutex_unlock(&queue->status_lock);
}
EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
{
struct data_queue *queue;
/*
* rt2x00queue_start_queue will call ieee80211_wake_queue
* for each queue after is has been properly initialized.
*/
tx_queue_for_each(rt2x00dev, queue)
rt2x00queue_start_queue(queue);
rt2x00queue_start_queue(rt2x00dev->rx);
}
EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
{
struct data_queue *queue;
/*
* rt2x00queue_stop_queue will call ieee80211_stop_queue
* as well, but we are completely shutting doing everything
* now, so it is much safer to stop all TX queues at once,
* and use rt2x00queue_stop_queue for cleaning up.
*/
ieee80211_stop_queues(rt2x00dev->hw);
tx_queue_for_each(rt2x00dev, queue)
rt2x00queue_stop_queue(queue);
rt2x00queue_stop_queue(rt2x00dev->rx);
}
EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
{
struct data_queue *queue;
tx_queue_for_each(rt2x00dev, queue)
rt2x00queue_flush_queue(queue, drop);
rt2x00queue_flush_queue(rt2x00dev->rx, drop);
}
EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
static void rt2x00queue_reset(struct data_queue *queue)
{
unsigned int i;
spin_lock_irqsave(&queue->index_lock, irqflags);
queue->count = 0;
queue->length = 0;
for (i = 0; i < Q_INDEX_MAX; i++)
queue->index[i] = 0;
spin_unlock_irqrestore(&queue->index_lock, irqflags);
void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
{
struct data_queue *queue;
unsigned int i;
rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
}
}
static int rt2x00queue_alloc_entries(struct data_queue *queue,
const struct data_queue_desc *qdesc)
{
struct queue_entry *entries;
unsigned int entry_size;
unsigned int i;
rt2x00queue_reset(queue);
queue->limit = qdesc->entry_num;
queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
queue->data_size = qdesc->data_size;
queue->desc_size = qdesc->desc_size;
/*
* Allocate all queue entries.
*/
entry_size = sizeof(*entries) + qdesc->priv_size;