Skip to content
Snippets Groups Projects
sge.c 58.1 KiB
Newer Older
/*****************************************************************************
 *                                                                           *
 * File: sge.c                                                               *
 * $Revision: 1.26 $                                                         *
 * $Date: 2005/06/21 18:29:48 $                                              *
 * Description:                                                              *
 *  DMA engine.                                                              *
 *  part of the Chelsio 10Gb Ethernet Driver.                                *
 *                                                                           *
 * This program is free software; you can redistribute it and/or modify      *
 * it under the terms of the GNU General Public License, version 2, as       *
 * published by the Free Software Foundation.                                *
 *                                                                           *
 * You should have received a copy of the GNU General Public License along   *
 * with this program; if not, write to the Free Software Foundation, Inc.,   *
 * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.                 *
 *                                                                           *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    *
 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      *
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     *
 *                                                                           *
 * http://www.chelsio.com                                                    *
 *                                                                           *
 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
 * All rights reserved.                                                      *
 *                                                                           *
 * Maintainers: maintainers@chelsio.com                                      *
 *                                                                           *
 * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
 *          Tina Yang               <tainay@chelsio.com>                     *
 *          Felix Marti             <felix@chelsio.com>                      *
 *          Scott Bardone           <sbardone@chelsio.com>                   *
 *          Kurt Ottaway            <kottaway@chelsio.com>                   *
 *          Frank DiMambro          <frank@chelsio.com>                      *
 *                                                                           *
 * History:                                                                  *
 *                                                                           *
 ****************************************************************************/

#include "common.h"

#include <linux/types.h>
#include <linux/errno.h>
#include <linux/pci.h>
#include <linux/ktime.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/tcp.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/if_arp.h>
#include <linux/prefetch.h>

#include "cpl5_cmd.h"
#include "sge.h"
#include "regs.h"
#include "espi.h"

/* This belongs in if_ether.h */
#define ETH_P_CPL5 0xf

#define SGE_CMDQ_N		2
#define SGE_FREELQ_N		2
#define SGE_CMDQ0_E_N		1024
#define SGE_CMDQ1_E_N		128
#define SGE_FREEL_SIZE		4096
#define SGE_JUMBO_FREEL_SIZE	512
#define SGE_FREEL_REFILL_THRESH	16
#define SGE_RESPQ_E_N		1024
#define SGE_INTRTIMER_NRES	1000
#define SGE_RX_SM_BUF_SIZE	1536
#define SGE_TX_DESC_MAX_PLEN	16384
#define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)

/*
 * Period of the TX buffer reclaim timer.  This timer does not need to run
 * frequently as TX buffers are usually reclaimed by new TX packets.
 */
#define TX_RECLAIM_PERIOD (HZ / 4)
#define M_CMD_LEN       0x7fffffff
#define V_CMD_LEN(v)    (v)
#define G_CMD_LEN(v)    ((v) & M_CMD_LEN)
#define V_CMD_GEN1(v)   ((v) << 31)
#define V_CMD_GEN2(v)   (v)
#define F_CMD_DATAVALID (1 << 1)
#define F_CMD_SOP       (1 << 2)
#define V_CMD_EOP(v)    ((v) << 3)

 * Command queue, receive buffer list, and response queue descriptors.
 */
#if defined(__BIG_ENDIAN_BITFIELD)
struct cmdQ_e {
	u32 addr_lo;
	u32 len_gen;
	u32 flags;
	u32 addr_hi;
	u32 addr_lo;
	u32 len_gen;
	u32 gen2;
	u32 addr_hi;
};

struct respQ_e {
	u32 Qsleeping		: 4;
	u32 Cmdq1CreditReturn	: 5;
	u32 Cmdq1DmaComplete	: 5;
	u32 Cmdq0CreditReturn	: 5;
	u32 Cmdq0DmaComplete	: 5;
	u32 FreelistQid		: 2;
	u32 CreditValid		: 1;
	u32 DataValid		: 1;
	u32 Offload		: 1;
	u32 Eop			: 1;
	u32 Sop			: 1;
	u32 GenerationBit	: 1;
	u32 BufferLength;
};
#elif defined(__LITTLE_ENDIAN_BITFIELD)
struct cmdQ_e {
	u32 len_gen;
	u32 addr_lo;
	u32 addr_hi;
	u32 flags;
	u32 len_gen;
	u32 addr_lo;
	u32 addr_hi;
	u32 gen2;
};

struct respQ_e {
	u32 BufferLength;
	u32 GenerationBit	: 1;
	u32 Sop			: 1;
	u32 Eop			: 1;
	u32 Offload		: 1;
	u32 DataValid		: 1;
	u32 CreditValid		: 1;
	u32 FreelistQid		: 2;
	u32 Cmdq0DmaComplete	: 5;
	u32 Cmdq0CreditReturn	: 5;
	u32 Cmdq1DmaComplete	: 5;
	u32 Cmdq1CreditReturn	: 5;
	u32 Qsleeping		: 4;
} ;
#endif

/*
 * SW Context Command and Freelist Queue Descriptors
 */
struct cmdQ_ce {
	struct sk_buff *skb;
	DEFINE_DMA_UNMAP_ADDR(dma_addr);
	DEFINE_DMA_UNMAP_LEN(dma_len);
};

struct freelQ_ce {
	struct sk_buff *skb;
	DEFINE_DMA_UNMAP_ADDR(dma_addr);
	DEFINE_DMA_UNMAP_LEN(dma_len);
 * SW command, freelist and response rings
	unsigned long   status;         /* HW DMA fetch status */
	unsigned int    in_use;         /* # of in-use command descriptors */
	unsigned int	size;	        /* # of descriptors */
	unsigned int    processed;      /* total # of descs HW has processed */
	unsigned int    cleaned;        /* total # of descs SW has reclaimed */
	unsigned int    stop_thres;     /* SW TX queue suspend threshold */
	u16		pidx;           /* producer index (SW) */
	u16		cidx;           /* consumer index (HW) */
	u8		genbit;         /* current generation (=valid) bit */
	u8              sop;            /* is next entry start of packet? */
	struct cmdQ_e  *entries;        /* HW command descriptor Q */
	struct cmdQ_ce *centries;       /* SW command context descriptor Q */
	dma_addr_t	dma_addr;       /* DMA addr HW command descriptor Q */
	spinlock_t	lock;           /* Lock to protect cmdQ enqueuing */
	unsigned int	credits;        /* # of available RX buffers */
	unsigned int	size;	        /* free list capacity */
	u16		pidx;           /* producer index (SW) */
	u16		cidx;           /* consumer index (HW) */
	u16		rx_buffer_size; /* Buffer size on this free list */
	u16             dma_offset;     /* DMA offset to align IP headers */
	u16             recycleq_idx;   /* skb recycle q to use */
	u8		genbit;	        /* current generation (=valid) bit */
	struct freelQ_e	*entries;       /* HW freelist descriptor Q */
	struct freelQ_ce *centries;     /* SW freelist context descriptor Q */
	dma_addr_t	dma_addr;       /* DMA addr HW freelist descriptor Q */
	unsigned int	credits;        /* credits to be returned to SGE */
	unsigned int	size;	        /* # of response Q descriptors */
	u16		cidx;	        /* consumer index (SW) */
	u8		genbit;	        /* current generation(=valid) bit */
	struct respQ_e *entries;        /* HW response descriptor Q */
	dma_addr_t	dma_addr;       /* DMA addr HW response descriptor Q */
};

/* Bit flags for cmdQ.status */
enum {
	CMDQ_STAT_RUNNING = 1,          /* fetch engine is running */
	CMDQ_STAT_LAST_PKT_DB = 2       /* last packet rung the doorbell */
/* T204 TX SW scheduler */

/* Per T204 TX port */
struct sched_port {
	unsigned int	avail;		/* available bits - quota */
	unsigned int	drain_bits_per_1024ns; /* drain rate */
	unsigned int	speed;		/* drain rate, mbps */
	unsigned int	mtu;		/* mtu size */
	struct sk_buff_head skbq;	/* pending skbs */
};

/* Per T204 device */
struct sched {
	ktime_t         last_updated;   /* last time quotas were computed */
	unsigned int	max_avail;	/* max bits to be sent to any port */
	unsigned int	port;		/* port index (round robin ports) */
	unsigned int	num;		/* num skbs in per port queues */
	struct sched_port p[MAX_NPORTS];
	struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
};
static void restart_sched(unsigned long);


/*
 * Main SGE data structure
 *
 * Interrupts are handled by a single CPU and it is likely that on a MP system
 * the application is migrated to another CPU. In that scenario, we try to
 * separate the RX(in irq context) and TX state in order to decrease memory
	struct adapter *adapter;	/* adapter backpointer */
	struct net_device *netdev;      /* netdevice backpointer */
	struct freelQ	freelQ[SGE_FREELQ_N]; /* buffer free lists */
	struct respQ	respQ;		/* response Q */
	unsigned long   stopped_tx_queues; /* bitmap of suspended Tx queues */
	unsigned int	rx_pkt_pad;     /* RX padding for L2 packets */
	unsigned int	jumbo_fl;       /* jumbo freelist Q index */
	unsigned int	intrtimer_nres;	/* no-resource interrupt timer */
	unsigned int    fixed_intrtimer;/* non-adaptive interrupt timer */
	struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
	struct timer_list espibug_timer;
	unsigned long	espibug_timeout;
	struct sk_buff	*espibug_skb[MAX_NPORTS];
	u32		sge_control;	/* shadow value of sge control reg */
	struct sge_intr_counts stats;
	struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
	struct sched	*tx_sched;
	struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
static const u8 ch_mac_addr[ETH_ALEN] = {
	0x0, 0x7, 0x43, 0x0, 0x0, 0x0
};

/*
 * stop tasklet and free all pending skb's
 */
static void tx_sched_stop(struct sge *sge)
{
	struct sched *s = sge->tx_sched;
	int i;

	tasklet_kill(&s->sched_tsk);

	for (i = 0; i < MAX_NPORTS; i++)
		__skb_queue_purge(&s->p[s->port].skbq);
}

/*
 * t1_sched_update_parms() is called when the MTU or link speed changes. It
 * re-computes scheduler parameters to scope with the change.
 */
unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
				   unsigned int mtu, unsigned int speed)
{
	struct sched *s = sge->tx_sched;
	struct sched_port *p = &s->p[port];
	unsigned int max_avail_segs;

	pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
	if (speed)
		p->speed = speed;
	if (mtu)
		p->mtu = mtu;

	if (speed || mtu) {
		unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
		do_div(drain, (p->mtu + 50) * 1000);
		p->drain_bits_per_1024ns = (unsigned int) drain;

		if (p->speed < 1000)
			p->drain_bits_per_1024ns =
				90 * p->drain_bits_per_1024ns / 100;
	}

	if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
		p->drain_bits_per_1024ns -= 16;
		s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
		max_avail_segs = max(1U, 4096 / (p->mtu - 40));
	} else {
		s->max_avail = 16384;
		max_avail_segs = max(1U, 9000 / (p->mtu - 40));
	}

	pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
		 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
		 p->speed, s->max_avail, max_avail_segs,
		 p->drain_bits_per_1024ns);

	return max_avail_segs * (p->mtu - 40);
}

/*
 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
 * data that can be pushed per port.
 */
void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
{
	struct sched *s = sge->tx_sched;
	unsigned int i;

	s->max_avail = val;
	for (i = 0; i < MAX_NPORTS; i++)
		t1_sched_update_parms(sge, i, 0, 0);
}

/*
 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
 * is draining.
 */
void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
					 unsigned int val)
{
	struct sched *s = sge->tx_sched;
	struct sched_port *p = &s->p[port];
	p->drain_bits_per_1024ns = val * 1024 / 1000;
	t1_sched_update_parms(sge, port, 0, 0);
}


/*
 * get_clock() implements a ns clock (see ktime_get)
 */
static inline ktime_t get_clock(void)
{
	struct timespec ts;

	ktime_get_ts(&ts);
	return timespec_to_ktime(ts);
}

/*
 * tx_sched_init() allocates resources and does basic initialization.
 */
static int tx_sched_init(struct sge *sge)
{
	struct sched *s;
	int i;

	s = kzalloc(sizeof (struct sched), GFP_KERNEL);
	if (!s)
		return -ENOMEM;

	pr_debug("tx_sched_init\n");
	tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
	sge->tx_sched = s;

	for (i = 0; i < MAX_NPORTS; i++) {
		skb_queue_head_init(&s->p[i].skbq);
		t1_sched_update_parms(sge, i, 1500, 1000);
	}

	return 0;
}

/*
 * sched_update_avail() computes the delta since the last time it was called
 * and updates the per port quota (number of bits that can be sent to the any
 * port).
 */
static inline int sched_update_avail(struct sge *sge)
{
	struct sched *s = sge->tx_sched;
	ktime_t now = get_clock();
	unsigned int i;
	long long delta_time_ns;

	delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));

	pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
	if (delta_time_ns < 15000)
		return 0;

	for (i = 0; i < MAX_NPORTS; i++) {
		struct sched_port *p = &s->p[i];
		unsigned int delta_avail;

		delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
		p->avail = min(p->avail + delta_avail, s->max_avail);
	}

	s->last_updated = now;

	return 1;
}

/*
 * sched_skb() is called from two different places. In the tx path, any
 * packet generating load on an output port will call sched_skb()
 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
 * context (skb == NULL).
 * The scheduler only returns a skb (which will then be sent) if the
 * length of the skb is <= the current quota of the output port.
 */
static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
				unsigned int credits)
{
	struct sched *s = sge->tx_sched;
	struct sk_buff_head *skbq;
	unsigned int i, len, update = 1;

	pr_debug("sched_skb %p\n", skb);
	if (!skb) {
		if (!s->num)
			return NULL;
	} else {
		skbq = &s->p[skb->dev->if_port].skbq;
		__skb_queue_tail(skbq, skb);
		s->num++;
		skb = NULL;
	}

	if (credits < MAX_SKB_FRAGS + 1)
		goto out;

	for (i = 0; i < MAX_NPORTS; i++) {
		s->port = (s->port + 1) & (MAX_NPORTS - 1);
		skbq = &s->p[s->port].skbq;

		skb = skb_peek(skbq);

		if (!skb)
			continue;

		len = skb->len;
		if (len <= s->p[s->port].avail) {
			s->p[s->port].avail -= len;
			s->num--;
			__skb_unlink(skb, skbq);
			goto out;
		}
		skb = NULL;
	}

	if (update-- && sched_update_avail(sge))
		goto again;

out:
	/* If there are more pending skbs, we use the hardware to schedule us
	 * again.
	 */
	if (s->num && !skb) {
		struct cmdQ *q = &sge->cmdQ[0];
		clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
		if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
			set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
			writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
		}
	}
	pr_debug("sched_skb ret %p\n", skb);

	return skb;
}

/*
 * PIO to indicate that memory mapped Q contains valid descriptor(s).
 */
static inline void doorbell_pio(struct adapter *adapter, u32 val)
	writel(val, adapter->regs + A_SG_DOORBELL);
}

/*
 * Frees all RX buffers on the freelist Q. The caller must make sure that
 * the SGE is turned off before calling this function.
 */
static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
	unsigned int cidx = q->cidx;
	while (q->credits--) {
		struct freelQ_ce *ce = &q->centries[cidx];
		pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
				 dma_unmap_len(ce, dma_len),
				 PCI_DMA_FROMDEVICE);
		dev_kfree_skb(ce->skb);
		ce->skb = NULL;
		if (++cidx == q->size)
			cidx = 0;
	}
}

/*
 * Free RX free list and response queue resources.
 */
static void free_rx_resources(struct sge *sge)
{
	struct pci_dev *pdev = sge->adapter->pdev;
	unsigned int size, i;

	if (sge->respQ.entries) {
		size = sizeof(struct respQ_e) * sge->respQ.size;
		pci_free_consistent(pdev, size, sge->respQ.entries,
				    sge->respQ.dma_addr);
	}

	for (i = 0; i < SGE_FREELQ_N; i++) {
		struct freelQ *q = &sge->freelQ[i];
		if (q->centries) {
			free_freelQ_buffers(pdev, q);
			kfree(q->centries);
		if (q->entries) {
			size = sizeof(struct freelQ_e) * q->size;
			pci_free_consistent(pdev, size, q->entries,
					    q->dma_addr);
		}
	}
}

/*
 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
 * response queue.
 */
static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
{
	struct pci_dev *pdev = sge->adapter->pdev;
	unsigned int size, i;

	for (i = 0; i < SGE_FREELQ_N; i++) {
		struct freelQ *q = &sge->freelQ[i];

		q->genbit = 1;
		q->size = p->freelQ_size[i];
		q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
		size = sizeof(struct freelQ_e) * q->size;
		q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
		if (!q->entries)
		size = sizeof(struct freelQ_ce) * q->size;
		q->centries = kzalloc(size, GFP_KERNEL);
		if (!q->centries)
			goto err_no_mem;
	}

	/*
	 * Calculate the buffer sizes for the two free lists.  FL0 accommodates
	 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
	 * including all the sk_buff overhead.
	 *
	 * Note: For T2 FL0 and FL1 are reversed.
	 */
	sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
		sizeof(struct cpl_rx_data) +
		sge->freelQ[!sge->jumbo_fl].dma_offset;

		size = (16 * 1024) -
		    SKB_DATA_ALIGN(sizeof(struct skb_shared_info));

	sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
	/*
	 * Setup which skb recycle Q should be used when recycling buffers from
	 * each free list.
	 */
	sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
	sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;

	sge->respQ.size = SGE_RESPQ_E_N;
	sge->respQ.credits = 0;
	size = sizeof(struct respQ_e) * sge->respQ.size;
	sge->respQ.entries =
		pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
	if (!sge->respQ.entries)
		goto err_no_mem;
	return 0;

err_no_mem:
	free_rx_resources(sge);
	return -ENOMEM;
}

/*
 * Reclaims n TX descriptors and frees the buffers associated with them.
static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
	struct cmdQ_ce *ce;
	struct pci_dev *pdev = sge->adapter->pdev;
	unsigned int cidx = q->cidx;
	q->in_use -= n;
	ce = &q->centries[cidx];
	while (n--) {
		if (likely(dma_unmap_len(ce, dma_len))) {
			pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
					 dma_unmap_len(ce, dma_len),
					 PCI_DMA_TODEVICE);
			if (q->sop)
		if (ce->skb) {
			dev_kfree_skb_any(ce->skb);
			q->sop = 1;
		}
		if (++cidx == q->size) {
			ce = q->centries;
	q->cidx = cidx;
}

/*
 * Free TX resources.
 *
 * Assumes that SGE is stopped and all interrupts are disabled.
 */
static void free_tx_resources(struct sge *sge)
{
	struct pci_dev *pdev = sge->adapter->pdev;
	unsigned int size, i;

	for (i = 0; i < SGE_CMDQ_N; i++) {
		struct cmdQ *q = &sge->cmdQ[i];
		if (q->centries) {
			if (q->in_use)
				free_cmdQ_buffers(sge, q, q->in_use);
			kfree(q->centries);
		if (q->entries) {
			size = sizeof(struct cmdQ_e) * q->size;
			pci_free_consistent(pdev, size, q->entries,
					    q->dma_addr);
		}
	}
}

/*
 * Allocates basic TX resources, consisting of memory mapped command Qs.
 */
static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
{
	struct pci_dev *pdev = sge->adapter->pdev;
	unsigned int size, i;

	for (i = 0; i < SGE_CMDQ_N; i++) {
		struct cmdQ *q = &sge->cmdQ[i];

		q->genbit = 1;
		q->sop = 1;
		q->size = p->cmdQ_size[i];
		q->in_use = 0;
		q->status = 0;
		q->processed = q->cleaned = 0;
		q->stop_thres = 0;
		spin_lock_init(&q->lock);
		size = sizeof(struct cmdQ_e) * q->size;
		q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
		if (!q->entries)
		size = sizeof(struct cmdQ_ce) * q->size;
		q->centries = kzalloc(size, GFP_KERNEL);
		if (!q->centries)
	/*
	 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
	 * only.  For queue 0 set the stop threshold so we can handle one more
	 * packet from each port, plus reserve an additional 24 entries for
	 * Ethernet packets only.  Queue 1 never suspends nor do we reserve
	 * space for Ethernet packets.
	 */
	sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
		(MAX_SKB_FRAGS + 1);
	return 0;

err_no_mem:
	free_tx_resources(sge);
	return -ENOMEM;
}

static inline void setup_ring_params(struct adapter *adapter, u64 addr,
				     u32 size, int base_reg_lo,
				     int base_reg_hi, int size_reg)
{
	writel((u32)addr, adapter->regs + base_reg_lo);
	writel(addr >> 32, adapter->regs + base_reg_hi);
	writel(size, adapter->regs + size_reg);
Jiri Pirko's avatar
Jiri Pirko committed
void t1_vlan_mode(struct adapter *adapter, u32 features)
Jiri Pirko's avatar
Jiri Pirko committed
	if (features & NETIF_F_HW_VLAN_RX)
		sge->sge_control |= F_VLAN_XTRACT;
Jiri Pirko's avatar
Jiri Pirko committed
	else
		sge->sge_control &= ~F_VLAN_XTRACT;
	if (adapter->open_device_map) {
		writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
		readl(adapter->regs + A_SG_CONTROL);   /* flush */
	}
}

/*
 * Programs the various SGE registers. However, the engine is not yet enabled,
 * but sge->sge_control is setup and ready to go.
 */
static void configure_sge(struct sge *sge, struct sge_params *p)
{
	struct adapter *ap = sge->adapter;
	writel(0, ap->regs + A_SG_CONTROL);
	setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
			  A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
	setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
			  A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
	setup_ring_params(ap, sge->freelQ[0].dma_addr,
			  sge->freelQ[0].size, A_SG_FL0BASELWR,
			  A_SG_FL0BASEUPR, A_SG_FL0SIZE);
	setup_ring_params(ap, sge->freelQ[1].dma_addr,
			  sge->freelQ[1].size, A_SG_FL1BASELWR,
			  A_SG_FL1BASEUPR, A_SG_FL1SIZE);

	/* The threshold comparison uses <. */
	writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
	setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
			  A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
	writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);

	sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
		F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
		V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
		V_RX_PKT_OFFSET(sge->rx_pkt_pad);

#if defined(__BIG_ENDIAN_BITFIELD)
	sge->sge_control |= F_ENABLE_BIG_ENDIAN;
#endif

	/* Initialize no-resource timer */
	sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);

	t1_sge_set_coalesce_params(sge, p);
}

/*
 * Return the payload capacity of the jumbo free-list buffers.
 */
static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
{
	return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
		sge->freelQ[sge->jumbo_fl].dma_offset -
		sizeof(struct cpl_rx_data);
}

/*
 * Frees all SGE related resources and the sge structure itself
 */
void t1_sge_destroy(struct sge *sge)
{
	int i;

	for_each_port(sge->adapter, i)
		free_percpu(sge->port_stats[i]);

	free_tx_resources(sge);
	free_rx_resources(sge);
	kfree(sge);
}

/*
 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
 * context Q) until the Q is full or alloc_skb fails.
 *
 * It is possible that the generation bits already match, indicating that the
 * buffer is already valid and nothing needs to be done. This happens when we
 * copied a received buffer into a new sk_buff during the interrupt processing.
 *
 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
 * aligned.
 */
static void refill_free_list(struct sge *sge, struct freelQ *q)
{
	struct pci_dev *pdev = sge->adapter->pdev;
	struct freelQ_ce *ce = &q->centries[q->pidx];
	struct freelQ_e *e = &q->entries[q->pidx];
	unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
	while (q->credits < q->size) {
		struct sk_buff *skb;
		dma_addr_t mapping;
		skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
		if (!skb)
			break;

		skb_reserve(skb, q->dma_offset);
		mapping = pci_map_single(pdev, skb->data, dma_len,
					 PCI_DMA_FROMDEVICE);
		skb_reserve(skb, sge->rx_pkt_pad);

		ce->skb = skb;
		dma_unmap_addr_set(ce, dma_addr, mapping);
		dma_unmap_len_set(ce, dma_len, dma_len);
		e->addr_lo = (u32)mapping;
		e->addr_hi = (u64)mapping >> 32;
		e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
		wmb();
		e->gen2 = V_CMD_GEN2(q->genbit);
		if (++q->pidx == q->size) {
			q->pidx = 0;
			q->genbit ^= 1;
			ce = q->centries;
			e = q->entries;
		q->credits++;
 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
 * of both rings, we go into 'few interrupt mode' in order to give the system
 * time to free up resources.
 */
static void freelQs_empty(struct sge *sge)
{
	struct adapter *adapter = sge->adapter;
	u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
	u32 irqholdoff_reg;

	refill_free_list(sge, &sge->freelQ[0]);
	refill_free_list(sge, &sge->freelQ[1]);

	if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
	    sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
		irqholdoff_reg = sge->fixed_intrtimer;
	} else {
		/* Clear the F_FL_EXHAUSTED interrupts for now */
		irq_reg &= ~F_FL_EXHAUSTED;
		irqholdoff_reg = sge->intrtimer_nres;
	}
	writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
	writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);

	/* We reenable the Qs to force a freelist GTS interrupt later */
	doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
}

#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
			F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)

/*
 * Disable SGE Interrupts
 */
void t1_sge_intr_disable(struct sge *sge)
{
	u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
	writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
	writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
}

/*
 * Enable SGE interrupts.
 */
void t1_sge_intr_enable(struct sge *sge)
{
	u32 en = SGE_INT_ENABLE;
	u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
	if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO)
	writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
	writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
}

/*
 * Clear SGE interrupts.
 */
void t1_sge_intr_clear(struct sge *sge)
{
	writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
	writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
}

/*
 * SGE 'Error' interrupt handler
 */
int t1_sge_intr_error_handler(struct sge *sge)
{
	struct adapter *adapter = sge->adapter;
	u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
	if (adapter->port[0].dev->hw_features & NETIF_F_TSO)
		cause &= ~F_PACKET_TOO_BIG;
	if (cause & F_RESPQ_EXHAUSTED)
		sge->stats.respQ_empty++;
	if (cause & F_RESPQ_OVERFLOW) {
		sge->stats.respQ_overflow++;
		pr_alert("%s: SGE response queue overflow\n",
			 adapter->name);
	}
	if (cause & F_FL_EXHAUSTED) {
		sge->stats.freelistQ_empty++;
		freelQs_empty(sge);
	}
	if (cause & F_PACKET_TOO_BIG) {
		sge->stats.pkt_too_big++;
		pr_alert("%s: SGE max packet size exceeded\n",
			 adapter->name);
	}
	if (cause & F_PACKET_MISMATCH) {
		sge->stats.pkt_mismatch++;
		pr_alert("%s: SGE packet mismatch\n", adapter->name);
	}
	if (cause & SGE_INT_FATAL)
		t1_fatal_err(adapter);

	writel(cause, adapter->regs + A_SG_INT_CAUSE);
const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
{
	return &sge->stats;
}

void t1_sge_get_port_stats(const struct sge *sge, int port,
			   struct sge_port_stats *ss)
	int cpu;

	memset(ss, 0, sizeof(*ss));
	for_each_possible_cpu(cpu) {
		struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);

		ss->rx_cso_good += st->rx_cso_good;