Newer
Older
Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
Module: rt73usb
Abstract: rt73usb device specific routines.
Supported chipsets: rt2571W & rt2671.
*/
#include <linux/crc-itu-t.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include "rt2x00.h"
#include "rt2x00usb.h"
#include "rt73usb.h"
/*
* Allow hardware encryption to be disabled.
*/
static int modparam_nohwcrypt;
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
/*
* Register access.
* All access to the CSR registers will go through the methods
* rt2x00usb_register_read and rt2x00usb_register_write.
* BBP and RF register require indirect register access,
* and use the CSR registers BBPCSR and RFCSR to achieve this.
* These indirect registers work with busy bits,
* and we will try maximal REGISTER_BUSY_COUNT times to access
* the register while taking a REGISTER_BUSY_DELAY us delay
* between each attampt. When the busy bit is still set at that time,
* the access attempt is considered to have failed,
* and we will print an error.
* The _lock versions must be used if you already hold the csr_mutex
#define WAIT_FOR_BBP(__dev, __reg) \
rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u8 value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
* Wait until the BBP becomes available, afterwards we
* can safely write the new data into the register.
if (WAIT_FOR_BBP(rt2x00dev, ®)) {
reg = 0;
rt2x00_set_field32(®, PHY_CSR3_VALUE, value);
rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0);
rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
mutex_unlock(&rt2x00dev->csr_mutex);
static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
const unsigned int word, u8 *value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
* Wait until the BBP becomes available, afterwards we
* can safely write the read request into the register.
* After the data has been written, we wait until hardware
* returns the correct value, if at any time the register
* doesn't become available in time, reg will be 0xffffffff
* which means we return 0xff to the caller.
if (WAIT_FOR_BBP(rt2x00dev, ®)) {
reg = 0;
rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1);
rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
WAIT_FOR_BBP(rt2x00dev, ®);
}
*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
mutex_unlock(&rt2x00dev->csr_mutex);
static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u32 value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
* Wait until the RF becomes available, afterwards we
* can safely write the new data into the register.
if (WAIT_FOR_RF(rt2x00dev, ®)) {
reg = 0;
rt2x00_set_field32(®, PHY_CSR4_VALUE, value);
/*
* RF5225 and RF2527 contain 21 bits per RF register value,
* all others contain 20 bits.
*/
rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS,
20 + (rt2x00_rf(rt2x00dev, RF5225) ||
rt2x00_rf(rt2x00dev, RF2527)));
rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0);
rt2x00_set_field32(®, PHY_CSR4_BUSY, 1);
rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
rt2x00_rf_write(rt2x00dev, word, value);
}
mutex_unlock(&rt2x00dev->csr_mutex);
}
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
static const struct rt2x00debug rt73usb_rt2x00debug = {
.owner = THIS_MODULE,
.csr = {
.read = rt2x00usb_register_read,
.write = rt2x00usb_register_write,
.flags = RT2X00DEBUGFS_OFFSET,
.word_base = CSR_REG_BASE,
.word_size = sizeof(u32),
.word_count = CSR_REG_SIZE / sizeof(u32),
},
.eeprom = {
.read = rt2x00_eeprom_read,
.write = rt2x00_eeprom_write,
.word_size = sizeof(u16),
.word_count = EEPROM_SIZE / sizeof(u16),
},
.bbp = {
.read = rt73usb_bbp_read,
.write = rt73usb_bbp_write,
.word_size = sizeof(u8),
.word_count = BBP_SIZE / sizeof(u8),
},
.rf = {
.read = rt2x00_rf_read,
.write = rt73usb_rf_write,
.word_size = sizeof(u32),
.word_count = RF_SIZE / sizeof(u32),
},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
rt2x00usb_register_read(rt2x00dev, MAC_CSR13, ®);
return rt2x00_get_field32(reg, MAC_CSR13_BIT7);
}
#ifdef CONFIG_RT2X00_LIB_LEDS
static void rt73usb_brightness_set(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct rt2x00_led *led =
container_of(led_cdev, struct rt2x00_led, led_dev);
unsigned int enabled = brightness != LED_OFF;
unsigned int a_mode =
(enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
unsigned int bg_mode =
(enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
if (led->type == LED_TYPE_RADIO) {
rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
MCU_LEDCS_RADIO_STATUS, enabled);
rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
0, led->rt2x00dev->led_mcu_reg,
REGISTER_TIMEOUT);
} else if (led->type == LED_TYPE_ASSOC) {
rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
MCU_LEDCS_LINK_BG_STATUS, bg_mode);
rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
MCU_LEDCS_LINK_A_STATUS, a_mode);
rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
0, led->rt2x00dev->led_mcu_reg,
REGISTER_TIMEOUT);
} else if (led->type == LED_TYPE_QUALITY) {
/*
* The brightness is divided into 6 levels (0 - 5),
* this means we need to convert the brightness
* argument into the matching level within that range.
*/
rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
brightness / (LED_FULL / 6),
led->rt2x00dev->led_mcu_reg,
REGISTER_TIMEOUT);
static int rt73usb_blink_set(struct led_classdev *led_cdev,
unsigned long *delay_on,
unsigned long *delay_off)
{
struct rt2x00_led *led =
container_of(led_cdev, struct rt2x00_led, led_dev);
u32 reg;
rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, ®);
rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on);
rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off);
rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
struct rt2x00_led *led,
enum led_type type)
{
led->rt2x00dev = rt2x00dev;
led->type = type;
led->led_dev.brightness_set = rt73usb_brightness_set;
led->led_dev.blink_set = rt73usb_blink_set;
led->flags = LED_INITIALIZED;
}
#endif /* CONFIG_RT2X00_LIB_LEDS */
/*
* Configuration handlers.
*/
static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_crypto *crypto,
struct ieee80211_key_conf *key)
{
struct hw_key_entry key_entry;
struct rt2x00_field32 field;
u32 mask;
u32 reg;
if (crypto->cmd == SET_KEY) {
/*
* rt2x00lib can't determine the correct free
* key_idx for shared keys. We have 1 register
* with key valid bits. The goal is simple, read
* the register, if that is full we have no slots
* left.
* Note that each BSS is allowed to have up to 4
* shared keys, so put a mask over the allowed
* entries.
*/
mask = (0xf << crypto->bssidx);
rt2x00usb_register_read(rt2x00dev, SEC_CSR0, ®);
reg &= mask;
if (reg && reg == mask)
return -ENOSPC;
key->hw_key_idx += reg ? ffz(reg) : 0;
/*
* Upload key to hardware
*/
memcpy(key_entry.key, crypto->key,
sizeof(key_entry.key));
memcpy(key_entry.tx_mic, crypto->tx_mic,
sizeof(key_entry.tx_mic));
memcpy(key_entry.rx_mic, crypto->rx_mic,
sizeof(key_entry.rx_mic));
reg = SHARED_KEY_ENTRY(key->hw_key_idx);
rt2x00usb_register_multiwrite(rt2x00dev, reg,
&key_entry, sizeof(key_entry));
/*
* The cipher types are stored over 2 registers.
* bssidx 0 and 1 keys are stored in SEC_CSR1 and
* bssidx 1 and 2 keys are stored in SEC_CSR5.
* Using the correct defines correctly will cause overhead,
* so just calculate the correct offset.
*/
if (key->hw_key_idx < 8) {
field.bit_offset = (3 * key->hw_key_idx);
field.bit_mask = 0x7 << field.bit_offset;
rt2x00usb_register_read(rt2x00dev, SEC_CSR1, ®);
rt2x00_set_field32(®, field, crypto->cipher);
rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
} else {
field.bit_offset = (3 * (key->hw_key_idx - 8));
field.bit_mask = 0x7 << field.bit_offset;
rt2x00usb_register_read(rt2x00dev, SEC_CSR5, ®);
rt2x00_set_field32(®, field, crypto->cipher);
rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
}
/*
* The driver does not support the IV/EIV generation
* in hardware. However it doesn't support the IV/EIV
* inside the ieee80211 frame either, but requires it
* to be provided separately for the descriptor.
* rt2x00lib will cut the IV/EIV data out of all frames
* given to us by mac80211, but we must tell mac80211
* to generate the IV/EIV data.
*/
key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
}
/*
* SEC_CSR0 contains only single-bit fields to indicate
* a particular key is valid. Because using the FIELD32()
* defines directly will cause a lot of overhead we use
* a calculation to determine the correct bit directly.
*/
mask = 1 << key->hw_key_idx;
rt2x00usb_register_read(rt2x00dev, SEC_CSR0, ®);
if (crypto->cmd == SET_KEY)
reg |= mask;
else if (crypto->cmd == DISABLE_KEY)
reg &= ~mask;
rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
return 0;
}
static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_crypto *crypto,
struct ieee80211_key_conf *key)
{
struct hw_pairwise_ta_entry addr_entry;
struct hw_key_entry key_entry;
u32 mask;
u32 reg;
if (crypto->cmd == SET_KEY) {
/*
* rt2x00lib can't determine the correct free
* key_idx for pairwise keys. We have 2 registers
* with key valid bits. The goal is simple, read
* the first register, if that is full move to
* the next register.
* When both registers are full, we drop the key,
* otherwise we use the first invalid entry.
*/
rt2x00usb_register_read(rt2x00dev, SEC_CSR2, ®);
if (reg && reg == ~0) {
key->hw_key_idx = 32;
rt2x00usb_register_read(rt2x00dev, SEC_CSR3, ®);
if (reg && reg == ~0)
return -ENOSPC;
}
key->hw_key_idx += reg ? ffz(reg) : 0;
/*
* Upload key to hardware
*/
memcpy(key_entry.key, crypto->key,
sizeof(key_entry.key));
memcpy(key_entry.tx_mic, crypto->tx_mic,
sizeof(key_entry.tx_mic));
memcpy(key_entry.rx_mic, crypto->rx_mic,
sizeof(key_entry.rx_mic));
reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
rt2x00usb_register_multiwrite(rt2x00dev, reg,
&key_entry, sizeof(key_entry));
/*
* Send the address and cipher type to the hardware register.
*/
memset(&addr_entry, 0, sizeof(addr_entry));
memcpy(&addr_entry, crypto->address, ETH_ALEN);
addr_entry.cipher = crypto->cipher;
reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
rt2x00usb_register_multiwrite(rt2x00dev, reg,
&addr_entry, sizeof(addr_entry));
/*
* Enable pairwise lookup table for given BSS idx,
* without this received frames will not be decrypted
* by the hardware.
*/
rt2x00usb_register_read(rt2x00dev, SEC_CSR4, ®);
rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
/*
* The driver does not support the IV/EIV generation
* in hardware. However it doesn't support the IV/EIV
* inside the ieee80211 frame either, but requires it
* to be provided separately for the descriptor.
* rt2x00lib will cut the IV/EIV data out of all frames
* given to us by mac80211, but we must tell mac80211
* to generate the IV/EIV data.
*/
key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
}
/*
* SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
* a particular key is valid. Because using the FIELD32()
* defines directly will cause a lot of overhead we use
* a calculation to determine the correct bit directly.
*/
if (key->hw_key_idx < 32) {
mask = 1 << key->hw_key_idx;
rt2x00usb_register_read(rt2x00dev, SEC_CSR2, ®);
if (crypto->cmd == SET_KEY)
reg |= mask;
else if (crypto->cmd == DISABLE_KEY)
reg &= ~mask;
rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
} else {
mask = 1 << (key->hw_key_idx - 32);
rt2x00usb_register_read(rt2x00dev, SEC_CSR3, ®);
if (crypto->cmd == SET_KEY)
reg |= mask;
else if (crypto->cmd == DISABLE_KEY)
reg &= ~mask;
rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
const unsigned int filter_flags)
{
u32 reg;
/*
* Start configuration steps.
* Note that the version error will always be dropped
* and broadcast frames will always be accepted since
* there is no filter for it at this time.
*/
rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®);
rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC,
!(filter_flags & FIF_FCSFAIL));
rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL,
!(filter_flags & FIF_PLCPFAIL));
rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL,
!(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME,
!(filter_flags & FIF_PROMISC_IN_BSS));
rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS,
!(filter_flags & FIF_PROMISC_IN_BSS) &&
!rt2x00dev->intf_ap_count);
rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1);
rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST,
!(filter_flags & FIF_ALLMULTI));
rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0);
rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS,
!(filter_flags & FIF_CONTROL));
rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
struct rt2x00_intf *intf,
struct rt2x00intf_conf *conf,
const unsigned int flags)
if (flags & CONFIG_UPDATE_TYPE) {
/*
* Enable synchronisation.
*/
rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®);
rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync);
rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
if (flags & CONFIG_UPDATE_MAC) {
reg = le32_to_cpu(conf->mac[1]);
rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
conf->mac[1] = cpu_to_le32(reg);
rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
conf->mac, sizeof(conf->mac));
}
if (flags & CONFIG_UPDATE_BSSID) {
reg = le32_to_cpu(conf->bssid[1]);
rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3);
conf->bssid[1] = cpu_to_le32(reg);
rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
conf->bssid, sizeof(conf->bssid));
}
static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_erp *erp,
u32 changed)
rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®);
rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, ®);
rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE,
!!erp->short_preamble);
rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
}
if (changed & BSS_CHANGED_BASIC_RATES)
rt2x00usb_register_write(rt2x00dev, TXRX_CSR5,
erp->basic_rates);
if (changed & BSS_CHANGED_BEACON_INT) {
rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®);
rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL,
erp->beacon_int * 16);
rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
}
if (changed & BSS_CHANGED_ERP_SLOT) {
rt2x00usb_register_read(rt2x00dev, MAC_CSR9, ®);
rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, erp->slot_time);
rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
rt2x00usb_register_read(rt2x00dev, MAC_CSR8, ®);
rt2x00_set_field32(®, MAC_CSR8_SIFS, erp->sifs);
rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
rt2x00_set_field32(®, MAC_CSR8_EIFS, erp->eifs);
rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
}
}
static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
struct antenna_setup *ant)
{
u8 r3;
u8 r4;
u8 r77;
rt73usb_bbp_read(rt2x00dev, 3, &r3);
rt73usb_bbp_read(rt2x00dev, 4, &r4);
rt73usb_bbp_read(rt2x00dev, 77, &r77);
rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
/*
* Configure the RX antenna.
*/
switch (ant->rx) {
case ANTENNA_HW_DIVERSITY:
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
temp = !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags)
&& (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
break;
case ANTENNA_A:
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
else
rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
break;
case ANTENNA_B:
default:
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
else
rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
break;
}
rt73usb_bbp_write(rt2x00dev, 77, r77);
rt73usb_bbp_write(rt2x00dev, 3, r3);
rt73usb_bbp_write(rt2x00dev, 4, r4);
}
static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
struct antenna_setup *ant)
{
u8 r3;
u8 r4;
u8 r77;
rt73usb_bbp_read(rt2x00dev, 3, &r3);
rt73usb_bbp_read(rt2x00dev, 4, &r4);
rt73usb_bbp_read(rt2x00dev, 77, &r77);
rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
!test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags));
/*
* Configure the RX antenna.
*/
switch (ant->rx) {
case ANTENNA_HW_DIVERSITY:
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
break;
case ANTENNA_A:
rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
break;
case ANTENNA_B:
default:
rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
break;
}
rt73usb_bbp_write(rt2x00dev, 77, r77);
rt73usb_bbp_write(rt2x00dev, 3, r3);
rt73usb_bbp_write(rt2x00dev, 4, r4);
}
struct antenna_sel {
u8 word;
/*
* value[0] -> non-LNA
* value[1] -> LNA
*/
u8 value[2];
};
static const struct antenna_sel antenna_sel_a[] = {
{ 96, { 0x58, 0x78 } },
{ 104, { 0x38, 0x48 } },
{ 75, { 0xfe, 0x80 } },
{ 86, { 0xfe, 0x80 } },
{ 88, { 0xfe, 0x80 } },
{ 35, { 0x60, 0x60 } },
{ 97, { 0x58, 0x58 } },
{ 98, { 0x58, 0x58 } },
};
static const struct antenna_sel antenna_sel_bg[] = {
{ 96, { 0x48, 0x68 } },
{ 104, { 0x2c, 0x3c } },
{ 75, { 0xfe, 0x80 } },
{ 86, { 0xfe, 0x80 } },
{ 88, { 0xfe, 0x80 } },
{ 35, { 0x50, 0x50 } },
{ 97, { 0x48, 0x48 } },
{ 98, { 0x48, 0x48 } },
};
static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
struct antenna_setup *ant)
{
const struct antenna_sel *sel;
unsigned int lna;
unsigned int i;
u32 reg;
/*
* We should never come here because rt2x00lib is supposed
* to catch this and send us the correct antenna explicitely.
*/
BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
ant->tx == ANTENNA_SW_DIVERSITY);
if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
lna = test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
} else {
sel = antenna_sel_bg;
lna = test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
rt2x00usb_register_read(rt2x00dev, PHY_CSR0, ®);
rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG,
(rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
rt2x00_set_field32(®, PHY_CSR0_PA_PE_A,
(rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225))
rt73usb_config_antenna_5x(rt2x00dev, ant);
else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527))
rt73usb_config_antenna_2x(rt2x00dev, ant);
static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf)
{
u16 eeprom;
short lna_gain = 0;
if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags))
lna_gain += 14;
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
} else {
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
}
rt2x00dev->lna_gain = lna_gain;
}
static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
struct rf_channel *rf, const int txpower)
{
u8 r3;
u8 r94;
u8 smart;
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
rt73usb_bbp_read(rt2x00dev, 3, &r3);
rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
rt73usb_bbp_write(rt2x00dev, 3, r3);
r94 = 6;
if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
r94 += txpower - MAX_TXPOWER;
else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
r94 += txpower;
rt73usb_bbp_write(rt2x00dev, 94, r94);
rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
udelay(10);
}
static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
const int txpower)
{
struct rf_channel rf;
rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
rt73usb_config_channel(rt2x00dev, &rf, txpower);
}
static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf)
rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, ®);
rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT,
libconf->conf->long_frame_max_tx_count);
rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT,
libconf->conf->short_frame_max_tx_count);
rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf)
{
enum dev_state state =
(libconf->conf->flags & IEEE80211_CONF_PS) ?
STATE_SLEEP : STATE_AWAKE;
u32 reg;
if (state == STATE_SLEEP) {
rt2x00usb_register_read(rt2x00dev, MAC_CSR11, ®);
rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN,
rt2x00dev->beacon_int - 10);
rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP,
libconf->conf->listen_interval - 1);
rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 5);
/* We must first disable autowake before it can be enabled */
rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0);
rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 1);
rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
USB_MODE_SLEEP, REGISTER_TIMEOUT);
} else {
rt2x00usb_register_read(rt2x00dev, MAC_CSR11, ®);
rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 0);
rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0);
rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 0);
rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
USB_MODE_WAKEUP, REGISTER_TIMEOUT);
static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf,
const unsigned int flags)
/* Always recalculate LNA gain before changing configuration */
rt73usb_config_lna_gain(rt2x00dev, libconf);
if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
rt73usb_config_channel(rt2x00dev, &libconf->rf,
libconf->conf->power_level);
if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
!(flags & IEEE80211_CONF_CHANGE_CHANNEL))
rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
rt73usb_config_retry_limit(rt2x00dev, libconf);
if (flags & IEEE80211_CONF_CHANGE_PS)
rt73usb_config_ps(rt2x00dev, libconf);
}
/*
* Link tuning
*/
static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
struct link_qual *qual)
{
u32 reg;
/*
* Update FCS error count from register.
*/
rt2x00usb_register_read(rt2x00dev, STA_CSR0, ®);
qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
/*
* Update False CCA count from register.
*/
rt2x00usb_register_read(rt2x00dev, STA_CSR1, ®);
qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
struct link_qual *qual, u8 vgc_level)
if (qual->vgc_level != vgc_level) {
rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
qual->vgc_level = vgc_level;
qual->vgc_level_reg = vgc_level;
static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
struct link_qual *qual)
rt73usb_set_vgc(rt2x00dev, qual, 0x20);
static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
struct link_qual *qual, const u32 count)
{
u8 up_bound;
u8 low_bound;
/*
* Determine r17 bounds.
*/
if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
low_bound = 0x28;
up_bound = 0x48;
if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) {
low_bound += 0x10;
up_bound += 0x10;
}
} else {
if (qual->rssi > -82) {
low_bound = 0x1c;
up_bound = 0x40;
} else if (qual->rssi > -84) {
low_bound = 0x1c;
up_bound = 0x20;
} else {
low_bound = 0x1c;
up_bound = 0x1c;
}
if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) {
low_bound += 0x14;
up_bound += 0x10;
}
}
/*
* If we are not associated, we should go straight to the
* dynamic CCA tuning.
*/
if (!rt2x00dev->intf_associated)
goto dynamic_cca_tune;
/*
* Special big-R17 for very short distance
*/
if (qual->rssi > -35) {
rt73usb_set_vgc(rt2x00dev, qual, 0x60);
return;
}
/*
* Special big-R17 for short distance
*/
if (qual->rssi >= -58) {
rt73usb_set_vgc(rt2x00dev, qual, up_bound);
return;
}
/*
* Special big-R17 for middle-short distance
*/
if (qual->rssi >= -66) {
rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
return;
}
/*
* Special mid-R17 for middle distance
*/
if (qual->rssi >= -74) {
rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
return;
}
/*
* Special case: Change up_bound based on the rssi.
* Lower up_bound when rssi is weaker then -74 dBm.
*/
up_bound -= 2 * (-74 - qual->rssi);
if (low_bound > up_bound)
up_bound = low_bound;