Newer
Older
Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
Module: rt2x00usb
Abstract: rt2x00 generic usb device routines.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/usb.h>
#include "rt2x00.h"
#include "rt2x00usb.h"
/*
* Interfacing with the HW.
*/
int rt2x00usb_vendor_request(struct rt2x00_dev *rt2x00dev,
const u8 request, const u8 requesttype,
const u16 offset, const u16 value,
void *buffer, const u16 buffer_length,
const int timeout)
struct usb_device *usb_dev = rt2x00dev_usb_dev(rt2x00dev);
int status;
unsigned int i;
unsigned int pipe =
(requesttype == USB_VENDOR_REQUEST_IN) ?
usb_rcvctrlpipe(usb_dev, 0) : usb_sndctrlpipe(usb_dev, 0);
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
status = usb_control_msg(usb_dev, pipe, request, requesttype,
value, offset, buffer, buffer_length,
timeout);
if (status >= 0)
return 0;
/*
* Check for errors
* -ENODEV: Device has disappeared, no point continuing.
* All other errors: Try again.
*/
else if (status == -ENODEV)
break;
}
ERROR(rt2x00dev,
"Vendor Request 0x%02x failed for offset 0x%04x with error %d.\n",
request, offset, status);
return status;
}
EXPORT_SYMBOL_GPL(rt2x00usb_vendor_request);
int rt2x00usb_vendor_req_buff_lock(struct rt2x00_dev *rt2x00dev,
const u8 request, const u8 requesttype,
const u16 offset, void *buffer,
const u16 buffer_length, const int timeout)
BUG_ON(!mutex_is_locked(&rt2x00dev->usb_cache_mutex));
/*
* Check for Cache availability.
*/
if (unlikely(!rt2x00dev->csr.cache || buffer_length > CSR_CACHE_SIZE)) {
ERROR(rt2x00dev, "CSR cache not available.\n");
return -ENOMEM;
}
if (requesttype == USB_VENDOR_REQUEST_OUT)
memcpy(rt2x00dev->csr.cache, buffer, buffer_length);
status = rt2x00usb_vendor_request(rt2x00dev, request, requesttype,
offset, 0, rt2x00dev->csr.cache,
buffer_length, timeout);
if (!status && requesttype == USB_VENDOR_REQUEST_IN)
memcpy(buffer, rt2x00dev->csr.cache, buffer_length);
return status;
}
EXPORT_SYMBOL_GPL(rt2x00usb_vendor_req_buff_lock);
int rt2x00usb_vendor_request_buff(struct rt2x00_dev *rt2x00dev,
const u8 request, const u8 requesttype,
const u16 offset, void *buffer,
const u16 buffer_length, const int timeout)
{
int status;
mutex_lock(&rt2x00dev->usb_cache_mutex);
status = rt2x00usb_vendor_req_buff_lock(rt2x00dev, request,
requesttype, offset, buffer,
buffer_length, timeout);
mutex_unlock(&rt2x00dev->usb_cache_mutex);
return status;
}
EXPORT_SYMBOL_GPL(rt2x00usb_vendor_request_buff);
/*
* TX data handlers.
*/
static void rt2x00usb_interrupt_txdone(struct urb *urb)
{
struct queue_entry *entry = (struct queue_entry *)urb->context;
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct txdone_entry_desc txdesc;
enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
!__test_and_clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags))
return;
/*
* Remove the descriptor data from the buffer.
*/
skb_pull(entry->skb, entry->queue->desc_size);
/*
* Obtain the status about this packet.
* Note that when the status is 0 it does not mean the
* frame was send out correctly. It only means the frame
* was succesfully pushed to the hardware, we have no
* way to determine the transmission status right now.
* (Only indirectly by looking at the failed TX counters
* in the register).
if (!urb->status)
__set_bit(TXDONE_UNKNOWN, &txdesc.flags);
else
__set_bit(TXDONE_FAILURE, &txdesc.flags);
/*
* Make this entry available for reuse.
*/
entry->flags = 0;
rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
* If the data queue was below the threshold before the txdone
* handler we must make sure the packet queue in the mac80211 stack
* is reenabled when the txdone handler has finished.
*/
if (!rt2x00queue_threshold(entry->queue))
ieee80211_wake_queue(rt2x00dev->hw, qid);
int rt2x00usb_write_tx_data(struct queue_entry *entry)
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct usb_device *usb_dev = rt2x00dev_usb_dev(rt2x00dev);
struct queue_entry_priv_usb *entry_priv = entry->priv_data;
/*
* Add the descriptor in front of the skb.
*/
skb_push(entry->skb, entry->queue->desc_size);
memset(entry->skb->data, 0, entry->queue->desc_size);
skbdesc = get_skb_frame_desc(entry->skb);
memset(skbdesc, 0, sizeof(*skbdesc));
skbdesc->desc = entry->skb->data;
skbdesc->desc_len = entry->queue->desc_size;
* USB devices cannot blindly pass the skb->len as the
* length of the data to usb_fill_bulk_urb. Pass the skb
* to the driver to determine what the length should be.
length = rt2x00dev->ops->lib->get_tx_data_len(rt2x00dev, entry->skb);
usb_fill_bulk_urb(entry_priv->urb, usb_dev,
usb_sndbulkpipe(usb_dev, 1),
entry->skb->data, length,
rt2x00usb_interrupt_txdone, entry);
return 0;
}
EXPORT_SYMBOL_GPL(rt2x00usb_write_tx_data);
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
static inline void rt2x00usb_kick_tx_entry(struct queue_entry *entry)
{
struct queue_entry_priv_usb *entry_priv = entry->priv_data;
if (__test_and_clear_bit(ENTRY_DATA_PENDING, &entry->flags))
usb_submit_urb(entry_priv->urb, GFP_ATOMIC);
}
void rt2x00usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
const enum data_queue_qid qid)
{
struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, qid);
unsigned long irqflags;
unsigned int index;
unsigned int index_done;
unsigned int i;
/*
* Only protect the range we are going to loop over,
* if during our loop a extra entry is set to pending
* it should not be kicked during this run, since it
* is part of another TX operation.
*/
spin_lock_irqsave(&queue->lock, irqflags);
index = queue->index[Q_INDEX];
index_done = queue->index[Q_INDEX_DONE];
spin_unlock_irqrestore(&queue->lock, irqflags);
/*
* Start from the TX done pointer, this guarentees that we will
* send out all frames in the correct order.
*/
if (index_done < index) {
for (i = index_done; i < index; i++)
rt2x00usb_kick_tx_entry(&queue->entries[i]);
} else {
for (i = index_done; i < queue->limit; i++)
rt2x00usb_kick_tx_entry(&queue->entries[i]);
for (i = 0; i < index; i++)
rt2x00usb_kick_tx_entry(&queue->entries[i]);
}
}
EXPORT_SYMBOL_GPL(rt2x00usb_kick_tx_queue);
/*
* RX data handlers.
*/
static void rt2x00usb_interrupt_rxdone(struct urb *urb)
{
struct queue_entry *entry = (struct queue_entry *)urb->context;
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct skb_frame_desc *skbdesc;
struct rxdone_entry_desc rxdesc;
if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
!test_and_clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags))
return;
/*
* Check if the received data is simply too small
* to be actually valid, or if the urb is signaling
* a problem.
*/
if (urb->actual_length < entry->queue->desc_size || urb->status)
/*
* Fill in skb descriptor
*/
skbdesc = get_skb_frame_desc(entry->skb);
memset(skbdesc, 0, sizeof(*skbdesc));
skbdesc->desc = rxd;
skbdesc->desc_len = entry->queue->desc_size;
memset(&rxdesc, 0, sizeof(rxdesc));
rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
/*
* Allocate a new sk buffer to replace the current one.
* If allocation fails, we should drop the current frame
* so we can recycle the existing sk buffer for the new frame.
*/
skb = rt2x00queue_alloc_rxskb(entry->queue);
if (!skb)
goto skip_entry;
/*
* Send the frame to rt2x00lib for further processing.
*/
/*
* Replace current entry's skb with the newly allocated one,
* and reinitialize the urb.
*/
entry->skb = skb;
urb->transfer_buffer = entry->skb->data;
urb->transfer_buffer_length = entry->skb->len;
skip_entry:
if (test_bit(DEVICE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags)) {
__set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
usb_submit_urb(urb, GFP_ATOMIC);
}
rt2x00queue_index_inc(entry->queue, Q_INDEX);
}
/*
* Radio handlers
*/
void rt2x00usb_disable_radio(struct rt2x00_dev *rt2x00dev)
{
struct queue_entry_priv_usb *entry_priv;
struct queue_entry_priv_usb_bcn *bcn_priv;
rt2x00usb_vendor_request_sw(rt2x00dev, USB_RX_CONTROL, 0, 0,
REGISTER_TIMEOUT);
/*
for (i = 0; i < rt2x00dev->rx->limit; i++) {
entry_priv = rt2x00dev->rx->entries[i].priv_data;
usb_kill_urb(entry_priv->urb);
* Kill guardian urb (if required by driver).
if (!test_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags))
return;
for (i = 0; i < rt2x00dev->bcn->limit; i++) {
bcn_priv = rt2x00dev->bcn->entries[i].priv_data;
if (bcn_priv->guardian_urb)
usb_kill_urb(bcn_priv->guardian_urb);
}
EXPORT_SYMBOL_GPL(rt2x00usb_disable_radio);
/*
* Device initialization handlers.
*/
void rt2x00usb_init_rxentry(struct rt2x00_dev *rt2x00dev,
struct usb_device *usb_dev = rt2x00dev_usb_dev(rt2x00dev);
struct queue_entry_priv_usb *entry_priv = entry->priv_data;
usb_fill_bulk_urb(entry_priv->urb, usb_dev,
usb_rcvbulkpipe(usb_dev, 1),
entry->skb->data, entry->skb->len,
rt2x00usb_interrupt_rxdone, entry);
__set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
usb_submit_urb(entry_priv->urb, GFP_ATOMIC);
}
EXPORT_SYMBOL_GPL(rt2x00usb_init_rxentry);
void rt2x00usb_init_txentry(struct rt2x00_dev *rt2x00dev,
{
entry->flags = 0;
}
EXPORT_SYMBOL_GPL(rt2x00usb_init_txentry);
static int rt2x00usb_alloc_urb(struct rt2x00_dev *rt2x00dev,
struct queue_entry_priv_usb *entry_priv;
struct queue_entry_priv_usb_bcn *bcn_priv;
for (i = 0; i < queue->limit; i++) {
entry_priv = queue->entries[i].priv_data;
entry_priv->urb = usb_alloc_urb(0, GFP_KERNEL);
if (!entry_priv->urb)
return -ENOMEM;
}
* If this is not the beacon queue or
* no guardian byte was required for the beacon,
* then we are done.
if (rt2x00dev->bcn != queue ||
!test_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags))
return 0;
bcn_priv = queue->entries[i].priv_data;
bcn_priv->guardian_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!bcn_priv->guardian_urb)
return -ENOMEM;
}
return 0;
}
static void rt2x00usb_free_urb(struct rt2x00_dev *rt2x00dev,
struct queue_entry_priv_usb *entry_priv;
struct queue_entry_priv_usb_bcn *bcn_priv;
entry_priv = queue->entries[i].priv_data;
usb_kill_urb(entry_priv->urb);
usb_free_urb(entry_priv->urb);
if (queue->entries[i].skb)
kfree_skb(queue->entries[i].skb);
/*
* If this is not the beacon queue or
* no guardian byte was required for the beacon,
* then we are done.
*/
if (rt2x00dev->bcn != queue ||
!test_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags))
return;
for (i = 0; i < queue->limit; i++) {
bcn_priv = queue->entries[i].priv_data;
usb_kill_urb(bcn_priv->guardian_urb);
usb_free_urb(bcn_priv->guardian_urb);
}
}
int rt2x00usb_initialize(struct rt2x00_dev *rt2x00dev)
{
struct sk_buff *skb;
unsigned int entry_size;
unsigned int i;
int uninitialized_var(status);
/*
* Allocate DMA
*/
queue_for_each(rt2x00dev, queue) {
status = rt2x00usb_alloc_urb(rt2x00dev, queue);
if (status)
goto exit;
}
/*
* For the RX queue, skb's should be allocated.
*/
entry_size = rt2x00dev->rx->data_size + rt2x00dev->rx->desc_size;
for (i = 0; i < rt2x00dev->rx->limit; i++) {
skb = rt2x00queue_alloc_rxskb(rt2x00dev->rx);
if (!skb)
goto exit;
}
return 0;
exit:
rt2x00usb_uninitialize(rt2x00dev);
return status;
}
EXPORT_SYMBOL_GPL(rt2x00usb_initialize);
void rt2x00usb_uninitialize(struct rt2x00_dev *rt2x00dev)
{
queue_for_each(rt2x00dev, queue)
rt2x00usb_free_urb(rt2x00dev, queue);
}
EXPORT_SYMBOL_GPL(rt2x00usb_uninitialize);
/*
* USB driver handlers.
*/
static void rt2x00usb_free_reg(struct rt2x00_dev *rt2x00dev)
{
kfree(rt2x00dev->rf);
rt2x00dev->rf = NULL;
kfree(rt2x00dev->eeprom);
rt2x00dev->eeprom = NULL;
kfree(rt2x00dev->csr.cache);
rt2x00dev->csr.cache = NULL;
}
static int rt2x00usb_alloc_reg(struct rt2x00_dev *rt2x00dev)
{
rt2x00dev->csr.cache = kzalloc(CSR_CACHE_SIZE, GFP_KERNEL);
if (!rt2x00dev->csr.cache)
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
goto exit;
rt2x00dev->eeprom = kzalloc(rt2x00dev->ops->eeprom_size, GFP_KERNEL);
if (!rt2x00dev->eeprom)
goto exit;
rt2x00dev->rf = kzalloc(rt2x00dev->ops->rf_size, GFP_KERNEL);
if (!rt2x00dev->rf)
goto exit;
return 0;
exit:
ERROR_PROBE("Failed to allocate registers.\n");
rt2x00usb_free_reg(rt2x00dev);
return -ENOMEM;
}
int rt2x00usb_probe(struct usb_interface *usb_intf,
const struct usb_device_id *id)
{
struct usb_device *usb_dev = interface_to_usbdev(usb_intf);
struct rt2x00_ops *ops = (struct rt2x00_ops *)id->driver_info;
struct ieee80211_hw *hw;
struct rt2x00_dev *rt2x00dev;
int retval;
usb_dev = usb_get_dev(usb_dev);
hw = ieee80211_alloc_hw(sizeof(struct rt2x00_dev), ops->hw);
if (!hw) {
ERROR_PROBE("Failed to allocate hardware.\n");
retval = -ENOMEM;
goto exit_put_device;
}
usb_set_intfdata(usb_intf, hw);
rt2x00dev = hw->priv;
rt2x00dev->dev = usb_intf;
rt2x00dev->ops = ops;
rt2x00dev->hw = hw;
mutex_init(&rt2x00dev->usb_cache_mutex);
rt2x00dev->usb_maxpacket =
usb_maxpacket(usb_dev, usb_sndbulkpipe(usb_dev, 1), 1);
if (!rt2x00dev->usb_maxpacket)
rt2x00dev->usb_maxpacket = 1;
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
retval = rt2x00usb_alloc_reg(rt2x00dev);
if (retval)
goto exit_free_device;
retval = rt2x00lib_probe_dev(rt2x00dev);
if (retval)
goto exit_free_reg;
return 0;
exit_free_reg:
rt2x00usb_free_reg(rt2x00dev);
exit_free_device:
ieee80211_free_hw(hw);
exit_put_device:
usb_put_dev(usb_dev);
usb_set_intfdata(usb_intf, NULL);
return retval;
}
EXPORT_SYMBOL_GPL(rt2x00usb_probe);
void rt2x00usb_disconnect(struct usb_interface *usb_intf)
{
struct ieee80211_hw *hw = usb_get_intfdata(usb_intf);
struct rt2x00_dev *rt2x00dev = hw->priv;
/*
* Free all allocated data.
*/
rt2x00lib_remove_dev(rt2x00dev);
rt2x00usb_free_reg(rt2x00dev);
ieee80211_free_hw(hw);
/*
* Free the USB device data.
*/
usb_set_intfdata(usb_intf, NULL);
usb_put_dev(interface_to_usbdev(usb_intf));
}
EXPORT_SYMBOL_GPL(rt2x00usb_disconnect);
#ifdef CONFIG_PM
int rt2x00usb_suspend(struct usb_interface *usb_intf, pm_message_t state)
{
struct ieee80211_hw *hw = usb_get_intfdata(usb_intf);
struct rt2x00_dev *rt2x00dev = hw->priv;
int retval;
retval = rt2x00lib_suspend(rt2x00dev, state);
if (retval)
return retval;
rt2x00usb_free_reg(rt2x00dev);
/*
* Decrease usbdev refcount.
*/
usb_put_dev(interface_to_usbdev(usb_intf));
return 0;
}
EXPORT_SYMBOL_GPL(rt2x00usb_suspend);
int rt2x00usb_resume(struct usb_interface *usb_intf)
{
struct ieee80211_hw *hw = usb_get_intfdata(usb_intf);
struct rt2x00_dev *rt2x00dev = hw->priv;
int retval;
usb_get_dev(interface_to_usbdev(usb_intf));
retval = rt2x00usb_alloc_reg(rt2x00dev);
if (retval)
return retval;
retval = rt2x00lib_resume(rt2x00dev);
if (retval)
goto exit_free_reg;
return 0;
exit_free_reg:
rt2x00usb_free_reg(rt2x00dev);
return retval;
}
EXPORT_SYMBOL_GPL(rt2x00usb_resume);
#endif /* CONFIG_PM */
/*
*/
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("rt2x00 usb library");
MODULE_LICENSE("GPL");