Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* IPv4 over IEEE 1394, per RFC 2734
*
* Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
*
* based on eth1394 by Ben Collins et al
*/
#include <linux/device.h>
#include <linux/ethtool.h>
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
#include <linux/highmem.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <asm/unaligned.h>
#include <net/arp.h>
/* Things to potentially make runtime cofigurable */
/* must be at least as large as our maximum receive size */
#define FIFO_SIZE 4096
/* Network timeout in glibbles */
#define IPV4_TIMEOUT 100000
/* Runitme configurable paramaters */
static int ipv4_mpd = 25;
static int ipv4_max_xmt = 0;
/* 16k for receiving arp and broadcast packets. Enough? */
static int ipv4_iso_page_count = 4;
MODULE_AUTHOR("Jay Fenlason (fenlason@redhat.com)");
MODULE_DESCRIPTION("Firewire IPv4 Driver (IPv4-over-IEEE1394 as per RFC 2734)");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, ipv4_id_table);
module_param_named(max_partial_datagrams, ipv4_mpd, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(max_partial_datagrams, "Maximum number of received"
" incomplete fragmented datagrams (default = 25).");
/* Max xmt is useful for forcing fragmentation, which makes testing easier. */
module_param_named(max_transmit, ipv4_max_xmt, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(max_transmit, "Maximum datagram size to transmit"
" (larger datagrams will be fragmented) (default = 0 (use hardware defaults).");
/* iso page count controls how many pages will be used for receiving broadcast packets. */
module_param_named(iso_pages, ipv4_iso_page_count, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(iso_pages, "Number of pages to use for receiving broadcast packets"
" (default = 4).");
/* uncomment this line to do debugging */
#define fw_debug(s, args...) printk(KERN_DEBUG KBUILD_MODNAME ": " s, ## args)
/* comment out these lines to do debugging. */
/* #undef fw_debug */
/* #define fw_debug(s...) */
/* #define print_hex_dump(l...) */
/* Define a fake hardware header format for the networking core. Note that
* header size cannot exceed 16 bytes as that is the size of the header cache.
* Also, we do not need the source address in the header so we omit it and
* keep the header to under 16 bytes */
#define IPV4_ALEN (8)
/* This must equal sizeof(struct ipv4_ether_hdr) */
#define IPV4_HLEN (10)
/* FIXME: what's a good size for this? */
#define INVALID_FIFO_ADDR (u64)~0ULL
/* Things specified by standards */
#define BROADCAST_CHANNEL 31
#define S100_BUFFER_SIZE 512
#define MAX_BUFFER_SIZE 4096
#define IPV4_GASP_SPECIFIER_ID 0x00005EU
#define IPV4_GASP_VERSION 0x00000001U
#define IPV4_GASP_OVERHEAD (2 * sizeof(u32)) /* for GASP header */
#define IPV4_UNFRAG_HDR_SIZE sizeof(u32)
#define IPV4_FRAG_HDR_SIZE (2 * sizeof(u32))
#define IPV4_FRAG_OVERHEAD sizeof(u32)
#define ALL_NODES (0xffc0 | 0x003f)
#define IPV4_HDR_UNFRAG 0 /* unfragmented */
#define IPV4_HDR_FIRSTFRAG 1 /* first fragment */
#define IPV4_HDR_LASTFRAG 2 /* last fragment */
#define IPV4_HDR_INTFRAG 3 /* interior fragment */
/* Our arp packet (ARPHRD_IEEE1394) */
/* FIXME: note that this is probably bogus on weird-endian machines */
struct ipv4_arp {
u16 hw_type; /* 0x0018 */
u16 proto_type; /* 0x0806 */
u8 hw_addr_len; /* 16 */
u8 ip_addr_len; /* 4 */
u16 opcode; /* ARP Opcode */
/* Above is exactly the same format as struct arphdr */
u64 s_uniq_id; /* Sender's 64bit EUI */
u8 max_rec; /* Sender's max packet size */
u8 sspd; /* Sender's max speed */
u16 fifo_hi; /* hi 16bits of sender's FIFO addr */
u32 fifo_lo; /* lo 32bits of sender's FIFO addr */
u32 sip; /* Sender's IP Address */
u32 tip; /* IP Address of requested hw addr */
} __attribute__((packed));
struct ipv4_ether_hdr {
unsigned char h_dest[IPV4_ALEN]; /* destination address */
unsigned short h_proto; /* packet type ID field */
} __attribute__((packed));
static inline struct ipv4_ether_hdr *ipv4_ether_hdr(const struct sk_buff *skb)
{
return (struct ipv4_ether_hdr *)skb_mac_header(skb);
}
enum ipv4_tx_type {
IPV4_UNKNOWN = 0,
IPV4_GASP = 1,
IPV4_WRREQ = 2,
};
enum ipv4_broadcast_state {
IPV4_BROADCAST_ERROR,
IPV4_BROADCAST_RUNNING,
IPV4_BROADCAST_STOPPED,
};
#define ipv4_get_hdr_lf(h) (((h)->w0&0xC0000000)>>30)
#define ipv4_get_hdr_ether_type(h) (((h)->w0&0x0000FFFF) )
#define ipv4_get_hdr_dg_size(h) (((h)->w0&0x0FFF0000)>>16)
#define ipv4_get_hdr_fg_off(h) (((h)->w0&0x00000FFF) )
#define ipv4_get_hdr_dgl(h) (((h)->w1&0xFFFF0000)>>16)
#define ipv4_set_hdr_lf(lf) (( lf)<<30)
#define ipv4_set_hdr_ether_type(et) (( et) )
#define ipv4_set_hdr_dg_size(dgs) ((dgs)<<16)
#define ipv4_set_hdr_fg_off(fgo) ((fgo) )
#define ipv4_set_hdr_dgl(dgl) ((dgl)<<16)
struct ipv4_hdr {
u32 w0;
u32 w1;
};
static inline void ipv4_make_uf_hdr( struct ipv4_hdr *hdr, unsigned ether_type) {
hdr->w0 = ipv4_set_hdr_lf(IPV4_HDR_UNFRAG)
|ipv4_set_hdr_ether_type(ether_type);
fw_debug ( "Setting unfragmented header %p to %x\n", hdr, hdr->w0 );
}
static inline void ipv4_make_ff_hdr ( struct ipv4_hdr *hdr, unsigned ether_type, unsigned dg_size, unsigned dgl ) {
hdr->w0 = ipv4_set_hdr_lf(IPV4_HDR_FIRSTFRAG)
|ipv4_set_hdr_dg_size(dg_size)
|ipv4_set_hdr_ether_type(ether_type);
hdr->w1 = ipv4_set_hdr_dgl(dgl);
fw_debug ( "Setting fragmented header %p to first_frag %x,%x (et %x, dgs %x, dgl %x)\n", hdr, hdr->w0, hdr->w1,
ether_type, dg_size, dgl );
}
static inline void ipv4_make_sf_hdr ( struct ipv4_hdr *hdr, unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl) {
hdr->w0 = ipv4_set_hdr_lf(lf)
|ipv4_set_hdr_dg_size(dg_size)
|ipv4_set_hdr_fg_off(fg_off);
hdr->w1 = ipv4_set_hdr_dgl(dgl);
fw_debug ( "Setting fragmented header %p to %x,%x (lf %x, dgs %x, fo %x dgl %x)\n",
hdr, hdr->w0, hdr->w1,
lf, dg_size, fg_off, dgl );
}
/* End of IP1394 headers */
/* Fragment types */
#define ETH1394_HDR_LF_UF 0 /* unfragmented */
#define ETH1394_HDR_LF_FF 1 /* first fragment */
#define ETH1394_HDR_LF_LF 2 /* last fragment */
#define ETH1394_HDR_LF_IF 3 /* interior fragment */
#define IP1394_HW_ADDR_LEN 16 /* As per RFC */
/* This list keeps track of what parts of the datagram have been filled in */
struct ipv4_fragment_info {
struct list_head fragment_info;
u16 offset;
u16 len;
};
struct ipv4_partial_datagram {
struct list_head pdg_list;
struct list_head fragment_info;
struct sk_buff *skb;
/* FIXME Why not use skb->data? */
char *pbuf;
u16 datagram_label;
u16 ether_type;
u16 datagram_size;
};
/*
* We keep one of these for each IPv4 capable device attached to a fw_card.
* The list of them is stored in the fw_card structure rather than in the
* ipv4_priv because the remote IPv4 nodes may be probed before the card is,
* so we need a place to store them before the ipv4_priv structure is
* allocated.
*/
struct ipv4_node {
struct list_head ipv4_nodes;
/* guid of the remote node */
u64 guid;
/* FIFO address to transmit datagrams to, or INVALID_FIFO_ADDR */
u64 fifo;
spinlock_t pdg_lock; /* partial datagram lock */
/* List of partial datagrams received from this node */
struct list_head pdg_list;
/* Number of entries in pdg_list at the moment */
unsigned pdg_size;
/* max payload to transmit to this remote node */
/* This already includes the IPV4_FRAG_HDR_SIZE overhead */
u16 max_payload;
/* outgoing datagram label */
u16 datagram_label;
/* Current node_id of the remote node */
u16 nodeid;
/* current generation of the remote node */
u8 generation;
/* max speed that this node can receive at */
u8 xmt_speed;
};
struct ipv4_priv {
spinlock_t lock;
enum ipv4_broadcast_state broadcast_state;
struct fw_iso_context *broadcast_rcv_context;
struct fw_iso_buffer broadcast_rcv_buffer;
void **broadcast_rcv_buffer_ptrs;
unsigned broadcast_rcv_next_ptr;
unsigned num_broadcast_rcv_ptrs;
unsigned rcv_buffer_size;
/*
* This value is the maximum unfragmented datagram size that can be
* sent by the hardware. It already has the GASP overhead and the
* unfragmented datagram header overhead calculated into it.
*/
unsigned broadcast_xmt_max_payload;
u16 broadcast_xmt_datagramlabel;
/*
* The csr address that remote nodes must send datagrams to for us to
* receive them.
*/
struct fw_address_handler handler;
u64 local_fifo;
/* Wake up to xmt */
/* struct work_struct wake;*/
/* List of packets to be sent */
struct list_head packet_list;
/*
* List of packets that were broadcasted. When we get an ISO interrupt
* one of them has been sent
*/
struct list_head broadcasted_list;
/* List of packets that have been sent but not yet acked */
struct list_head sent_list;
struct fw_card *card;
};
/* This is our task struct. It's used for the packet complete callback. */
struct ipv4_packet_task {
/*
* ptask can actually be on priv->packet_list, priv->broadcasted_list,
* or priv->sent_list depending on its current state.
*/
struct list_head packet_list;
struct fw_transaction transaction;
struct ipv4_hdr hdr;
struct sk_buff *skb;
struct ipv4_priv *priv;
enum ipv4_tx_type tx_type;
int outstanding_pkts;
unsigned max_payload;
u64 fifo_addr;
u16 dest_node;
u8 generation;
u8 speed;
};
static struct kmem_cache *ipv4_packet_task_cache;
static const char ipv4_driver_name[] = "firewire-ipv4";
static const struct ieee1394_device_id ipv4_id_table[] = {
{
.match_flags = IEEE1394_MATCH_SPECIFIER_ID |
IEEE1394_MATCH_VERSION,
.specifier_id = IPV4_GASP_SPECIFIER_ID,
.version = IPV4_GASP_VERSION,
},
{ }
};
static u32 ipv4_unit_directory_data[] = {
0x00040000, /* unit directory */
0x12000000 | IPV4_GASP_SPECIFIER_ID, /* specifier ID */
0x81000003, /* text descriptor */
0x13000000 | IPV4_GASP_VERSION, /* version */
0x81000005, /* text descriptor */
0x00030000, /* Three quadlets */
0x00000000, /* Text */
0x00000000, /* Language 0 */
0x49414e41, /* I A N A */
0x00030000, /* Three quadlets */
0x00000000, /* Text */
0x00000000, /* Language 0 */
0x49507634, /* I P v 4 */
};
static struct fw_descriptor ipv4_unit_directory = {
.length = ARRAY_SIZE(ipv4_unit_directory_data),
.key = 0xd1000000,
.data = ipv4_unit_directory_data
};
static int ipv4_send_packet(struct ipv4_packet_task *ptask );
/* ------------------------------------------------------------------ */
/******************************************
* HW Header net device functions
******************************************/
/* These functions have been adapted from net/ethernet/eth.c */
/* Create a fake MAC header for an arbitrary protocol layer.
* saddr=NULL means use device source address
* daddr=NULL means leave destination address (eg unresolved arp). */
static int ipv4_header ( struct sk_buff *skb, struct net_device *dev,
unsigned short type, const void *daddr,
const void *saddr, unsigned len) {
struct ipv4_ether_hdr *eth;
eth = (struct ipv4_ether_hdr *)skb_push(skb, sizeof(*eth));
eth->h_proto = htons(type);
if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
memset(eth->h_dest, 0, dev->addr_len);
return dev->hard_header_len;
}
if (daddr) {
memcpy(eth->h_dest, daddr, dev->addr_len);
return dev->hard_header_len;
}
return -dev->hard_header_len;
}
/* Rebuild the faked MAC header. This is called after an ARP
* (or in future other address resolution) has completed on this
* sk_buff. We now let ARP fill in the other fields.
*
* This routine CANNOT use cached dst->neigh!
* Really, it is used only when dst->neigh is wrong.
*/
static int ipv4_rebuild_header(struct sk_buff *skb)
{
struct ipv4_ether_hdr *eth;
eth = (struct ipv4_ether_hdr *)skb->data;
if (eth->h_proto == htons(ETH_P_IP))
return arp_find((unsigned char *)ð->h_dest, skb);
fw_notify ( "%s: unable to resolve type %04x addresses\n",
skb->dev->name,ntohs(eth->h_proto) );
return 0;
}
static int ipv4_header_cache(const struct neighbour *neigh, struct hh_cache *hh) {
unsigned short type = hh->hh_type;
struct net_device *dev;
struct ipv4_ether_hdr *eth;
if (type == htons(ETH_P_802_3))
return -1;
dev = neigh->dev;
eth = (struct ipv4_ether_hdr *)((u8 *)hh->hh_data + 16 - sizeof(*eth));
eth->h_proto = type;
memcpy(eth->h_dest, neigh->ha, dev->addr_len);
hh->hh_len = IPV4_HLEN;
return 0;
}
/* Called by Address Resolution module to notify changes in address. */
static void ipv4_header_cache_update(struct hh_cache *hh, const struct net_device *dev, const unsigned char * haddr ) {
memcpy((u8 *)hh->hh_data + 16 - IPV4_HLEN, haddr, dev->addr_len);
}
static int ipv4_header_parse(const struct sk_buff *skb, unsigned char *haddr) {
memcpy(haddr, skb->dev->dev_addr, IPV4_ALEN);
return IPV4_ALEN;
}
static const struct header_ops ipv4_header_ops = {
.create = ipv4_header,
.rebuild = ipv4_rebuild_header,
.cache = ipv4_header_cache,
.cache_update = ipv4_header_cache_update,
.parse = ipv4_header_parse,
};
/* ------------------------------------------------------------------ */
/* FIXME: is this correct for all cases? */
static bool ipv4_frag_overlap(struct ipv4_partial_datagram *pd, unsigned offset, unsigned len)
{
struct ipv4_fragment_info *fi;
unsigned end = offset + len;
list_for_each_entry(fi, &pd->fragment_info, fragment_info) {
if (offset < fi->offset + fi->len && end > fi->offset) {
fw_debug ( "frag_overlap pd %p fi %p (%x@%x) with %x@%x\n", pd, fi, fi->len, fi->offset, len, offset );
return true;
}
}
fw_debug ( "frag_overlap %p does not overlap with %x@%x\n", pd, len, offset );
return false;
}
/* Assumes that new fragment does not overlap any existing fragments */
static struct ipv4_fragment_info *ipv4_frag_new ( struct ipv4_partial_datagram *pd, unsigned offset, unsigned len ) {
struct ipv4_fragment_info *fi, *fi2, *new;
struct list_head *list;
fw_debug ( "frag_new pd %p %x@%x\n", pd, len, offset );
list = &pd->fragment_info;
list_for_each_entry(fi, &pd->fragment_info, fragment_info) {
if (fi->offset + fi->len == offset) {
/* The new fragment can be tacked on to the end */
/* Did the new fragment plug a hole? */
fi2 = list_entry(fi->fragment_info.next, struct ipv4_fragment_info, fragment_info);
if (fi->offset + fi->len == fi2->offset) {
fw_debug ( "pd %p: hole filling %p (%x@%x) and %p(%x@%x): now %x@%x\n", pd, fi, fi->len, fi->offset,
fi2, fi2->len, fi2->offset, fi->len + len + fi2->len, fi->offset );
/* glue fragments together */
fi->len += len + fi2->len;
list_del(&fi2->fragment_info);
kfree(fi2);
} else {
fw_debug ( "pd %p: extending %p from %x@%x to %x@%x\n", pd, fi, fi->len, fi->offset, fi->len+len, fi->offset );
fi->len += len;
}
return fi;
}
if (offset + len == fi->offset) {
/* The new fragment can be tacked on to the beginning */
/* Did the new fragment plug a hole? */
fi2 = list_entry(fi->fragment_info.prev, struct ipv4_fragment_info, fragment_info);
if (fi2->offset + fi2->len == fi->offset) {
/* glue fragments together */
fw_debug ( "pd %p: extending %p and merging with %p from %x@%x to %x@%x\n",
pd, fi2, fi, fi2->len, fi2->offset, fi2->len + fi->len + len, fi2->offset );
fi2->len += fi->len + len;
list_del(&fi->fragment_info);
kfree(fi);
return fi2;
}
fw_debug ( "pd %p: extending %p from %x@%x to %x@%x\n", pd, fi, fi->len, fi->offset, offset, fi->len + len );
fi->offset = offset;
fi->len += len;
return fi;
}
if (offset > fi->offset + fi->len) {
list = &fi->fragment_info;
break;
}
if (offset + len < fi->offset) {
list = fi->fragment_info.prev;
break;
}
}
new = kmalloc(sizeof(*new), GFP_ATOMIC);
if (!new) {
fw_error ( "out of memory in fragment handling!\n" );
return NULL;
}
new->offset = offset;
new->len = len;
list_add(&new->fragment_info, list);
fw_debug ( "pd %p: new frag %p %x@%x\n", pd, new, new->len, new->offset );
list_for_each_entry( fi, &pd->fragment_info, fragment_info )
fw_debug ( "fi %p %x@%x\n", fi, fi->len, fi->offset );
return new;
}
/* ------------------------------------------------------------------ */
static struct ipv4_partial_datagram *ipv4_pd_new(struct net_device *netdev,
struct ipv4_node *node, u16 datagram_label, unsigned dg_size, u32 *frag_buf,
unsigned frag_off, unsigned frag_len) {
struct ipv4_partial_datagram *new;
struct ipv4_fragment_info *fi;
new = kmalloc(sizeof(*new), GFP_ATOMIC);
if (!new)
goto fail;
INIT_LIST_HEAD(&new->fragment_info);
fi = ipv4_frag_new ( new, frag_off, frag_len);
if ( fi == NULL )
goto fail_w_new;
new->datagram_label = datagram_label;
new->datagram_size = dg_size;
new->skb = dev_alloc_skb(dg_size + netdev->hard_header_len + 15);
if ( new->skb == NULL )
goto fail_w_fi;
skb_reserve(new->skb, (netdev->hard_header_len + 15) & ~15);
new->pbuf = skb_put(new->skb, dg_size);
memcpy(new->pbuf + frag_off, frag_buf, frag_len);
list_add_tail(&new->pdg_list, &node->pdg_list);
fw_debug ( "pd_new: new pd %p { dgl %u, dg_size %u, skb %p, pbuf %p } on node %p\n",
new, new->datagram_label, new->datagram_size, new->skb, new->pbuf, node );
return new;
fail_w_fi:
kfree(fi);
fail_w_new:
kfree(new);
fail:
fw_error("ipv4_pd_new: no memory\n");
return NULL;
}
static struct ipv4_partial_datagram *ipv4_pd_find(struct ipv4_node *node, u16 datagram_label) {
struct ipv4_partial_datagram *pd;
list_for_each_entry(pd, &node->pdg_list, pdg_list) {
if ( pd->datagram_label == datagram_label ) {
fw_debug ( "pd_find(node %p, label %u): pd %p\n", node, datagram_label, pd );
return pd;
}
}
fw_debug ( "pd_find(node %p, label %u) no entry\n", node, datagram_label );
return NULL;
}
static void ipv4_pd_delete ( struct ipv4_partial_datagram *old ) {
struct ipv4_fragment_info *fi, *n;
fw_debug ( "pd_delete %p\n", old );
list_for_each_entry_safe(fi, n, &old->fragment_info, fragment_info) {
fw_debug ( "Freeing fi %p\n", fi );
kfree(fi);
}
list_del(&old->pdg_list);
dev_kfree_skb_any(old->skb);
kfree(old);
}
static bool ipv4_pd_update ( struct ipv4_node *node, struct ipv4_partial_datagram *pd,
u32 *frag_buf, unsigned frag_off, unsigned frag_len) {
fw_debug ( "pd_update node %p, pd %p, frag_buf %p, %x@%x\n", node, pd, frag_buf, frag_len, frag_off );
if ( ipv4_frag_new ( pd, frag_off, frag_len ) == NULL)
return false;
memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
/*
* Move list entry to beginnig of list so that oldest partial
* datagrams percolate to the end of the list
*/
list_move_tail(&pd->pdg_list, &node->pdg_list);
fw_debug ( "New pd list:\n" );
list_for_each_entry ( pd, &node->pdg_list, pdg_list ) {
fw_debug ( "pd %p\n", pd );
}
return true;
}
static bool ipv4_pd_is_complete ( struct ipv4_partial_datagram *pd ) {
struct ipv4_fragment_info *fi;
bool ret;
fi = list_entry(pd->fragment_info.next, struct ipv4_fragment_info, fragment_info);
ret = (fi->len == pd->datagram_size);
fw_debug ( "pd_is_complete (pd %p, dgs %x): fi %p (%x@%x) %s\n", pd, pd->datagram_size, fi, fi->len, fi->offset, ret ? "yes" : "no" );
return ret;
}
/* ------------------------------------------------------------------ */
static int ipv4_node_new ( struct fw_card *card, struct fw_device *device ) {
struct ipv4_node *node;
node = kmalloc ( sizeof(*node), GFP_KERNEL );
if ( ! node ) {
fw_error ( "allocate new node failed\n" );
return -ENOMEM;
}
node->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
node->fifo = INVALID_FIFO_ADDR;
INIT_LIST_HEAD(&node->pdg_list);
spin_lock_init(&node->pdg_lock);
node->pdg_size = 0;
node->generation = device->generation;
rmb();
node->nodeid = device->node_id;
/* FIXME what should it really be? */
node->max_payload = S100_BUFFER_SIZE - IPV4_UNFRAG_HDR_SIZE;
node->datagram_label = 0U;
node->xmt_speed = device->max_speed;
list_add_tail ( &node->ipv4_nodes, &card->ipv4_nodes );
fw_debug ( "node_new: %p { guid %016llx, generation %u, nodeid %x, max_payload %x, xmt_speed %x } added\n",
node, (unsigned long long)node->guid, node->generation, node->nodeid, node->max_payload, node->xmt_speed );
return 0;
}
static struct ipv4_node *ipv4_node_find_by_guid(struct ipv4_priv *priv, u64 guid) {
struct ipv4_node *node;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
list_for_each_entry(node, &priv->card->ipv4_nodes, ipv4_nodes)
if (node->guid == guid) {
/* FIXME: lock the node first? */
spin_unlock_irqrestore ( &priv->lock, flags );
fw_debug ( "node_find_by_guid (%016llx) found %p\n", (unsigned long long)guid, node );
return node;
}
spin_unlock_irqrestore ( &priv->lock, flags );
fw_debug ( "node_find_by_guid (%016llx) not found\n", (unsigned long long)guid );
return NULL;
}
static struct ipv4_node *ipv4_node_find_by_nodeid(struct ipv4_priv *priv, u16 nodeid) {
struct ipv4_node *node;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
list_for_each_entry(node, &priv->card->ipv4_nodes, ipv4_nodes)
if (node->nodeid == nodeid) {
/* FIXME: lock the node first? */
spin_unlock_irqrestore ( &priv->lock, flags );
fw_debug ( "node_find_by_nodeid (%x) found %p\n", nodeid, node );
return node;
}
fw_debug ( "node_find_by_nodeid (%x) not found\n", nodeid );
spin_unlock_irqrestore ( &priv->lock, flags );
return NULL;
}
/* This is only complicated because we can't assume priv exists */
static void ipv4_node_delete ( struct fw_card *card, struct fw_device *device ) {
struct net_device *netdev;
struct ipv4_priv *priv;
struct ipv4_node *node;
u64 guid;
unsigned long flags;
struct ipv4_partial_datagram *pd, *pd_next;
guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
netdev = card->netdev;
if ( netdev )
priv = netdev_priv ( netdev );
else
priv = NULL;
if ( priv )
spin_lock_irqsave ( &priv->lock, flags );
list_for_each_entry( node, &card->ipv4_nodes, ipv4_nodes ) {
if ( node->guid == guid ) {
list_del ( &node->ipv4_nodes );
list_for_each_entry_safe( pd, pd_next, &node->pdg_list, pdg_list )
ipv4_pd_delete ( pd );
break;
}
}
if ( priv )
spin_unlock_irqrestore ( &priv->lock, flags );
}
/* ------------------------------------------------------------------ */
static int ipv4_finish_incoming_packet ( struct net_device *netdev,
struct sk_buff *skb, u16 source_node_id, bool is_broadcast, u16 ether_type ) {
struct ipv4_priv *priv;
static u64 broadcast_hw = ~0ULL;
int status;
u64 guid;
fw_debug ( "ipv4_finish_incoming_packet(%p, %p, %x, %s, %x\n",
netdev, skb, source_node_id, is_broadcast ? "true" : "false", ether_type );
priv = netdev_priv(netdev);
/* Write metadata, and then pass to the receive level */
skb->dev = netdev;
skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
/*
* Parse the encapsulation header. This actually does the job of
* converting to an ethernet frame header, as well as arp
* conversion if needed. ARP conversion is easier in this
* direction, since we are using ethernet as our backend.
*/
/*
* If this is an ARP packet, convert it. First, we want to make
* use of some of the fields, since they tell us a little bit
* about the sending machine.
*/
if (ether_type == ETH_P_ARP) {
struct ipv4_arp *arp1394;
struct arphdr *arp;
unsigned char *arp_ptr;
u64 fifo_addr;
u8 max_rec;
u8 sspd;
u16 max_payload;
struct ipv4_node *node;
static const u16 ipv4_speed_to_max_payload[] = {
/* S100, S200, S400, S800, S1600, S3200 */
512, 1024, 2048, 4096, 4096, 4096
};
/* fw_debug ( "ARP packet\n" ); */
arp1394 = (struct ipv4_arp *)skb->data;
arp = (struct arphdr *)skb->data;
arp_ptr = (unsigned char *)(arp + 1);
fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
ntohl(arp1394->fifo_lo);
max_rec = priv->card->max_receive;
if ( arp1394->max_rec < max_rec )
max_rec = arp1394->max_rec;
sspd = arp1394->sspd;
/*
* Sanity check. MacOSX seems to be sending us 131 in this
* field (atleast on my Panther G5). Not sure why.
*/
if (sspd > 5 ) {
fw_notify ( "sspd %x out of range\n", sspd );
sspd = 0;
}
max_payload = min(ipv4_speed_to_max_payload[sspd],
(u16)(1 << (max_rec + 1))) - IPV4_UNFRAG_HDR_SIZE;
guid = be64_to_cpu(get_unaligned(&arp1394->s_uniq_id));
node = ipv4_node_find_by_guid(priv, guid);
if (!node) {
fw_notify ( "No node for ARP packet from %llx\n", guid );
goto failed_proto;
}
if ( node->nodeid != source_node_id || node->generation != priv->card->generation ) {
fw_notify ( "Internal error: node->nodeid (%x) != soucre_node_id (%x) or node->generation (%x) != priv->card->generation(%x)\n",
node->nodeid, source_node_id, node->generation, priv->card->generation );
node->nodeid = source_node_id;
node->generation = priv->card->generation;
}
/* FIXME: for debugging */
if ( sspd > SCODE_400 )
sspd = SCODE_400;
/* Update our speed/payload/fifo_offset table */
/*
* FIXME: this does not handle cases where two high-speed endpoints must use a slower speed because of
* a lower speed hub between them. We need to look at the actual topology map here.
*/
fw_debug ( "Setting node %p fifo %llx (was %llx), max_payload %x (was %x), speed %x (was %x)\n",
node, fifo_addr, node->fifo, max_payload, node->max_payload, sspd, node->xmt_speed );
node->fifo = fifo_addr;
node->max_payload = max_payload;
/*
* Only allow speeds to go down from their initial value.
* Otherwise a local node that can only do S400 or slower may
* be told to transmit at S800 to a faster remote node.
*/
if ( node->xmt_speed > sspd )
node->xmt_speed = sspd;
/*
* Now that we're done with the 1394 specific stuff, we'll
* need to alter some of the data. Believe it or not, all
* that needs to be done is sender_IP_address needs to be
* moved, the destination hardware address get stuffed
* in and the hardware address length set to 8.
*
* IMPORTANT: The code below overwrites 1394 specific data
* needed above so keep the munging of the data for the
* higher level IP stack last.
*/
arp->ar_hln = 8;
arp_ptr += arp->ar_hln; /* skip over sender unique id */
*(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
arp_ptr += arp->ar_pln; /* skip over sender IP addr */
if (arp->ar_op == htons(ARPOP_REQUEST))
memset(arp_ptr, 0, sizeof(u64));
else
memcpy(arp_ptr, netdev->dev_addr, sizeof(u64));
}
/* Now add the ethernet header. */
guid = cpu_to_be64(priv->card->guid);
if (dev_hard_header(skb, netdev, ether_type, is_broadcast ? &broadcast_hw : &guid, NULL,
skb->len) >= 0) {
struct ipv4_ether_hdr *eth;
u16 *rawp;
__be16 protocol;
skb_reset_mac_header(skb);
skb_pull(skb, sizeof(*eth));
eth = ipv4_ether_hdr(skb);
if (*eth->h_dest & 1) {
if (memcmp(eth->h_dest, netdev->broadcast, netdev->addr_len) == 0) {
fw_debug ( "Broadcast\n" );
skb->pkt_type = PACKET_BROADCAST;
}
#if 0
else
skb->pkt_type = PACKET_MULTICAST;
#endif
} else {
if (memcmp(eth->h_dest, netdev->dev_addr, netdev->addr_len)) {
u64 a1, a2;
memcpy ( &a1, eth->h_dest, sizeof(u64));
memcpy ( &a2, netdev->dev_addr, sizeof(u64));
fw_debug ( "Otherhost %llx %llx %x\n", a1, a2, netdev->addr_len );
skb->pkt_type = PACKET_OTHERHOST;
}
}
if (ntohs(eth->h_proto) >= 1536) {
fw_debug ( " proto %x %x\n", eth->h_proto, ntohs(eth->h_proto) );
protocol = eth->h_proto;
} else {
rawp = (u16 *)skb->data;
if (*rawp == 0xFFFF) {
fw_debug ( "proto 802_3\n" );
protocol = htons(ETH_P_802_3);
} else {
fw_debug ( "proto 802_2\n" );
protocol = htons(ETH_P_802_2);
}
}
skb->protocol = protocol;
}
status = netif_rx(skb);
if ( status == NET_RX_DROP) {
netdev->stats.rx_errors++;
netdev->stats.rx_dropped++;
} else {
netdev->stats.rx_packets++;
netdev->stats.rx_bytes += skb->len;
}
if (netif_queue_stopped(netdev))
netif_wake_queue(netdev);
return 0;
failed_proto:
netdev->stats.rx_errors++;
netdev->stats.rx_dropped++;
dev_kfree_skb_any(skb);
if (netif_queue_stopped(netdev))
netif_wake_queue(netdev);
netdev->last_rx = jiffies;
return 0;
}
/* ------------------------------------------------------------------ */
static int ipv4_incoming_packet ( struct ipv4_priv *priv, u32 *buf, int len, u16 source_node_id, bool is_broadcast ) {
struct sk_buff *skb;
struct net_device *netdev;
struct ipv4_hdr hdr;
unsigned lf;
unsigned long flags;
struct ipv4_node *node;
struct ipv4_partial_datagram *pd;
int fg_off;
int dg_size;
u16 datagram_label;
int retval;
u16 ether_type;
fw_debug ( "ipv4_incoming_packet(%p, %p, %d, %x, %s)\n", priv, buf, len, source_node_id, is_broadcast ? "true" : "false" );
netdev = priv->card->netdev;
hdr.w0 = ntohl(buf[0]);
lf = ipv4_get_hdr_lf(&hdr);
if ( lf == IPV4_HDR_UNFRAG ) {
/*
* An unfragmented datagram has been received by the ieee1394
* bus. Build an skbuff around it so we can pass it to the
* high level network layer.
*/
ether_type = ipv4_get_hdr_ether_type(&hdr);
fw_debug ( "header w0 = %x, lf = %x, ether_type = %x\n", hdr.w0, lf, ether_type );
buf++;
len -= IPV4_UNFRAG_HDR_SIZE;
skb = dev_alloc_skb(len + netdev->hard_header_len + 15);
if (unlikely(!skb)) {
fw_error ( "Out of memory for incoming packet\n");
netdev->stats.rx_dropped++;
return -1;
}
skb_reserve(skb, (netdev->hard_header_len + 15) & ~15);
memcpy(skb_put(skb, len), buf, len );
return ipv4_finish_incoming_packet(netdev, skb, source_node_id, is_broadcast, ether_type );
}
/* A datagram fragment has been received, now the fun begins. */
hdr.w1 = ntohl(buf[1]);
buf +=2;
len -= IPV4_FRAG_HDR_SIZE;
if ( lf ==IPV4_HDR_FIRSTFRAG ) {
ether_type = ipv4_get_hdr_ether_type(&hdr);
fg_off = 0;
} else {
fg_off = ipv4_get_hdr_fg_off(&hdr);
ether_type = 0; /* Shut up compiler! */
}
datagram_label = ipv4_get_hdr_dgl(&hdr);
dg_size = ipv4_get_hdr_dg_size(&hdr); /* ??? + 1 */
fw_debug ( "fragmented: %x.%x = lf %x, ether_type %x, fg_off %x, dgl %x, dg_size %x\n", hdr.w0, hdr.w1, lf, ether_type, fg_off, datagram_label, dg_size );
node = ipv4_node_find_by_nodeid ( priv, source_node_id);
spin_lock_irqsave(&node->pdg_lock, flags);
pd = ipv4_pd_find( node, datagram_label );
if (pd == NULL) {
while ( node->pdg_size >= ipv4_mpd ) {
/* remove the oldest */
ipv4_pd_delete ( list_first_entry(&node->pdg_list, struct ipv4_partial_datagram, pdg_list) );
node->pdg_size--;
}
pd = ipv4_pd_new ( netdev, node, datagram_label, dg_size,
buf, fg_off, len);
if ( pd == NULL) {
retval = -ENOMEM;
goto bad_proto;
}
node->pdg_size++;
} else {
if (ipv4_frag_overlap(pd, fg_off, len) || pd->datagram_size != dg_size) {
/*
* Differing datagram sizes or overlapping fragments,
* Either way the remote machine is playing silly buggers
* with us: obliterate the old datagram and start a new one.
*/
ipv4_pd_delete ( pd );
pd = ipv4_pd_new ( netdev, node, datagram_label,
dg_size, buf, fg_off, len);
if ( pd == NULL ) {
retval = -ENOMEM;
node->pdg_size--;
goto bad_proto;
}
} else {
bool worked;
worked = ipv4_pd_update ( node, pd,
buf, fg_off, len );
if ( ! worked ) {
/*
* Couldn't save off fragment anyway
* so might as well obliterate the
* datagram now.
*/
ipv4_pd_delete ( pd );
node->pdg_size--;
goto bad_proto;
}
}
} /* new datagram or add to existing one */
if ( lf == IPV4_HDR_FIRSTFRAG )
pd->ether_type = ether_type;
if ( ipv4_pd_is_complete ( pd ) ) {
ether_type = pd->ether_type;
node->pdg_size--;
skb = skb_get(pd->skb);
ipv4_pd_delete ( pd );
spin_unlock_irqrestore(&node->pdg_lock, flags);
return ipv4_finish_incoming_packet ( netdev, skb, source_node_id, false, ether_type );
}
/*