Newer
Older
/* This function recalculate the interrupt coalescing mode on every interrupt
according to the datarate and the packet rate.
*/
static int amd8111e_calc_coalesce(struct net_device *dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
struct amd8111e_coalesce_conf * coal_conf = &lp->coal_conf;
int tx_pkt_rate;
int rx_pkt_rate;
int tx_data_rate;
int rx_data_rate;
int rx_pkt_size;
int tx_pkt_size;
tx_pkt_rate = coal_conf->tx_packets - coal_conf->tx_prev_packets;
coal_conf->tx_prev_packets = coal_conf->tx_packets;
tx_data_rate = coal_conf->tx_bytes - coal_conf->tx_prev_bytes;
coal_conf->tx_prev_bytes = coal_conf->tx_bytes;
rx_pkt_rate = coal_conf->rx_packets - coal_conf->rx_prev_packets;
coal_conf->rx_prev_packets = coal_conf->rx_packets;
rx_data_rate = coal_conf->rx_bytes - coal_conf->rx_prev_bytes;
coal_conf->rx_prev_bytes = coal_conf->rx_bytes;
if(rx_pkt_rate < 800){
if(coal_conf->rx_coal_type != NO_COALESCE){
coal_conf->rx_timeout = 0x0;
coal_conf->rx_event_count = 0;
amd8111e_set_coalesce(dev,RX_INTR_COAL);
coal_conf->rx_coal_type = NO_COALESCE;
}
}
else{
rx_pkt_size = rx_data_rate/rx_pkt_rate;
if (rx_pkt_size < 128){
if(coal_conf->rx_coal_type != NO_COALESCE){
coal_conf->rx_timeout = 0;
coal_conf->rx_event_count = 0;
amd8111e_set_coalesce(dev,RX_INTR_COAL);
coal_conf->rx_coal_type = NO_COALESCE;
}
}
else if ( (rx_pkt_size >= 128) && (rx_pkt_size < 512) ){
if(coal_conf->rx_coal_type != LOW_COALESCE){
coal_conf->rx_timeout = 1;
coal_conf->rx_event_count = 4;
amd8111e_set_coalesce(dev,RX_INTR_COAL);
coal_conf->rx_coal_type = LOW_COALESCE;
}
}
else if ((rx_pkt_size >= 512) && (rx_pkt_size < 1024)){
if(coal_conf->rx_coal_type != MEDIUM_COALESCE){
coal_conf->rx_timeout = 1;
coal_conf->rx_event_count = 4;
amd8111e_set_coalesce(dev,RX_INTR_COAL);
coal_conf->rx_coal_type = MEDIUM_COALESCE;
}
else if(rx_pkt_size >= 1024){
if(coal_conf->rx_coal_type != HIGH_COALESCE){
coal_conf->rx_timeout = 2;
coal_conf->rx_event_count = 3;
amd8111e_set_coalesce(dev,RX_INTR_COAL);
coal_conf->rx_coal_type = HIGH_COALESCE;
}
}
/* NOW FOR TX INTR COALESC */
if(tx_pkt_rate < 800){
if(coal_conf->tx_coal_type != NO_COALESCE){
coal_conf->tx_timeout = 0x0;
coal_conf->tx_event_count = 0;
amd8111e_set_coalesce(dev,TX_INTR_COAL);
coal_conf->tx_coal_type = NO_COALESCE;
}
}
else{
tx_pkt_size = tx_data_rate/tx_pkt_rate;
if (tx_pkt_size < 128){
coal_conf->tx_timeout = 0;
coal_conf->tx_event_count = 0;
amd8111e_set_coalesce(dev,TX_INTR_COAL);
coal_conf->tx_coal_type = NO_COALESCE;
}
}
else if ( (tx_pkt_size >= 128) && (tx_pkt_size < 512) ){
if(coal_conf->tx_coal_type != LOW_COALESCE){
coal_conf->tx_timeout = 1;
coal_conf->tx_event_count = 2;
amd8111e_set_coalesce(dev,TX_INTR_COAL);
coal_conf->tx_coal_type = LOW_COALESCE;
}
}
else if ((tx_pkt_size >= 512) && (tx_pkt_size < 1024)){
if(coal_conf->tx_coal_type != MEDIUM_COALESCE){
coal_conf->tx_timeout = 2;
coal_conf->tx_event_count = 5;
amd8111e_set_coalesce(dev,TX_INTR_COAL);
coal_conf->tx_coal_type = MEDIUM_COALESCE;
}
else if(tx_pkt_size >= 1024){
if (tx_pkt_size >= 1024){
if(coal_conf->tx_coal_type != HIGH_COALESCE){
coal_conf->tx_timeout = 4;
coal_conf->tx_event_count = 8;
amd8111e_set_coalesce(dev,TX_INTR_COAL);
coal_conf->tx_coal_type = HIGH_COALESCE;
}
}
}
return 0;
}
/*
This is device interrupt function. It handles transmit, receive,link change and hardware timer interrupts.
*/
static irqreturn_t amd8111e_interrupt(int irq, void *dev_id)
{
struct net_device * dev = (struct net_device *) dev_id;
struct amd8111e_priv *lp = netdev_priv(dev);
void __iomem *mmio = lp->mmio;
unsigned int intr0, intren0;
if(unlikely(dev == NULL))
spin_lock(&lp->lock);
/* disabling interrupt */
writel(INTREN, mmio + CMD0);
/* Read interrupt status */
intr0 = readl(mmio + INT0);
intren0 = readl(mmio + INTEN0);
/* Process all the INT event until INTR bit is clear. */
if (!(intr0 & INTR)){
handled = 0;
goto err_no_interrupt;
}
/* Current driver processes 4 interrupts : RINT,TINT,LCINT,STINT */
writel(intr0, mmio + INT0);
/* Check if Receive Interrupt has occurred. */
if (napi_schedule_prep(&lp->napi)) {
/* Disable receive interupts */
writel(RINTEN0, mmio + INTEN0);
/* Schedule a polling routine */
} else if (intren0 & RINTEN0) {
printk("************Driver bug! interrupt while in poll\n");
/* Fix by disable receive interrupts */
writel(RINTEN0, mmio + INTEN0);
/* Check if Link Change Interrupt has occurred. */
if (intr0 & LCINT)
amd8111e_link_change(dev);
/* Check if Hardware Timer Interrupt has occurred. */
if (intr0 & STINT)
amd8111e_calc_coalesce(dev);
err_no_interrupt:
writel( VAL0 | INTREN,mmio + CMD0);
spin_unlock(&lp->lock);
return IRQ_RETVAL(handled);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void amd8111e_poll(struct net_device *dev)
local_irq_save(flags);
amd8111e_interrupt(0, dev);
#endif
/*
This function closes the network interface and updates the statistics so that most recent statistics will be available after the interface is down.
*/
static int amd8111e_close(struct net_device * dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
netif_stop_queue(dev);
napi_disable(&lp->napi);
amd8111e_disable_interrupt(lp);
amd8111e_stop_chip(lp);
/* Free transmit and receive skbs */
amd8111e_free_skbs(lp->amd8111e_net_dev);
netif_carrier_off(lp->amd8111e_net_dev);
/* Delete ipg timer */
if(lp->options & OPTION_DYN_IPG_ENABLE)
del_timer_sync(&lp->ipg_data.ipg_timer);
spin_unlock_irq(&lp->lock);
free_irq(dev->irq, dev);
/* Update the statistics before closing */
amd8111e_get_stats(dev);
lp->opened = 0;
return 0;
}
/* This function opens new interface.It requests irq for the device, initializes the device,buffers and descriptors, and starts the device.
*/
static int amd8111e_open(struct net_device * dev )
{
struct amd8111e_priv *lp = netdev_priv(dev);
if(dev->irq ==0 || request_irq(dev->irq, amd8111e_interrupt, IRQF_SHARED,
napi_enable(&lp->napi);
spin_lock_irq(&lp->lock);
amd8111e_init_hw_default(lp);
if(amd8111e_restart(dev)){
spin_unlock_irq(&lp->lock);
napi_disable(&lp->napi);
if (dev->irq)
free_irq(dev->irq, dev);
return -ENOMEM;
}
/* Start ipg timer */
if(lp->options & OPTION_DYN_IPG_ENABLE){
add_timer(&lp->ipg_data.ipg_timer);
printk(KERN_INFO "%s: Dynamic IPG Enabled.\n",dev->name);
}
lp->opened = 1;
spin_unlock_irq(&lp->lock);
netif_start_queue(dev);
This function checks if there is any transmit descriptors available to queue more packet.
*/
static int amd8111e_tx_queue_avail(struct amd8111e_priv* lp )
if (lp->tx_skbuff[tx_index])
This function will queue the transmit packets to the descriptors and will trigger the send operation. It also initializes the transmit descriptors with buffer physical address, byte count, ownership to hardware etc.
*/
static netdev_tx_t amd8111e_start_xmit(struct sk_buff *skb,
struct net_device * dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
int tx_index;
unsigned long flags;
spin_lock_irqsave(&lp->lock, flags);
tx_index = lp->tx_idx & TX_RING_DR_MOD_MASK;
lp->tx_ring[tx_index].buff_count = cpu_to_le16(skb->len);
lp->tx_skbuff[tx_index] = skb;
lp->tx_ring[tx_index].tx_flags = 0;
#if AMD8111E_VLAN_TAG_USED
if((lp->vlgrp != NULL) && vlan_tx_tag_present(skb)){
lp->tx_ring[tx_index].tag_ctrl_cmd |=
cpu_to_le16(TCC_VLAN_INSERT);
lp->tx_ring[tx_index].tag_ctrl_info =
cpu_to_le16(vlan_tx_tag_get(skb));
}
#endif
lp->tx_dma_addr[tx_index] =
pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
lp->tx_ring[tx_index].buff_phy_addr =
cpu_to_le32(lp->tx_dma_addr[tx_index]);
/* Set FCS and LTINT bits */
wmb();
lp->tx_ring[tx_index].tx_flags |=
cpu_to_le16(OWN_BIT | STP_BIT | ENP_BIT|ADD_FCS_BIT|LTINT_BIT);
lp->tx_idx++;
/* Trigger an immediate send poll. */
writel( VAL1 | TDMD0, lp->mmio + CMD0);
writel( VAL2 | RDMD0,lp->mmio + CMD0);
if(amd8111e_tx_queue_avail(lp) < 0){
netif_stop_queue(dev);
}
spin_unlock_irqrestore(&lp->lock, flags);
return NETDEV_TX_OK;
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
}
/*
This function returns all the memory mapped registers of the device.
*/
static void amd8111e_read_regs(struct amd8111e_priv *lp, u32 *buf)
{
void __iomem *mmio = lp->mmio;
/* Read only necessary registers */
buf[0] = readl(mmio + XMT_RING_BASE_ADDR0);
buf[1] = readl(mmio + XMT_RING_LEN0);
buf[2] = readl(mmio + RCV_RING_BASE_ADDR0);
buf[3] = readl(mmio + RCV_RING_LEN0);
buf[4] = readl(mmio + CMD0);
buf[5] = readl(mmio + CMD2);
buf[6] = readl(mmio + CMD3);
buf[7] = readl(mmio + CMD7);
buf[8] = readl(mmio + INT0);
buf[9] = readl(mmio + INTEN0);
buf[10] = readl(mmio + LADRF);
buf[11] = readl(mmio + LADRF+4);
buf[12] = readl(mmio + STAT0);
}
This function sets promiscuos mode, all-multi mode or the multicast address
list to the device.
*/
static void amd8111e_set_multicast_list(struct net_device *dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
u32 mc_filter[2] ;
int bit_num;
if(dev->flags & IFF_PROMISC){
writel( VAL2 | PROM, lp->mmio + CMD2);
return;
}
else
writel( PROM, lp->mmio + CMD2);
if (dev->flags & IFF_ALLMULTI ||
netdev_mc_count(dev) > MAX_FILTER_SIZE) {
/* get all multicast packet */
mc_filter[1] = mc_filter[0] = 0xffffffff;
lp->options |= OPTION_MULTICAST_ENABLE;
amd8111e_writeq(*(u64*)mc_filter,lp->mmio + LADRF);
return;
}
if (netdev_mc_empty(dev)) {
/* get only own packets */
mc_filter[1] = mc_filter[0] = 0;
lp->options &= ~OPTION_MULTICAST_ENABLE;
amd8111e_writeq(*(u64*)mc_filter,lp->mmio + LADRF);
/* disable promiscous mode */
writel(PROM, lp->mmio + CMD2);
return;
}
/* load all the multicast addresses in the logic filter */
lp->options |= OPTION_MULTICAST_ENABLE;
mc_filter[1] = mc_filter[0] = 0;
netdev_for_each_mc_addr(ha, dev) {
bit_num = (ether_crc_le(ETH_ALEN, ha->addr) >> 26) & 0x3f;
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
amd8111e_writeq(*(u64*)mc_filter,lp->mmio+ LADRF);
/* To eliminate PCI posting bug */
readl(lp->mmio + CMD2);
}
static void amd8111e_get_drvinfo(struct net_device* dev, struct ethtool_drvinfo *info)
{
struct amd8111e_priv *lp = netdev_priv(dev);
struct pci_dev *pci_dev = lp->pci_dev;
strcpy (info->driver, MODULE_NAME);
strcpy (info->version, MODULE_VERS);
sprintf(info->fw_version,"%u",chip_version);
strcpy (info->bus_info, pci_name(pci_dev));
}
static int amd8111e_get_regs_len(struct net_device *dev)
{
return AMD8111E_REG_DUMP_LEN;
}
static void amd8111e_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
{
struct amd8111e_priv *lp = netdev_priv(dev);
regs->version = 0;
amd8111e_read_regs(lp, buf);
}
static int amd8111e_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct amd8111e_priv *lp = netdev_priv(dev);
spin_lock_irq(&lp->lock);
mii_ethtool_gset(&lp->mii_if, ecmd);
spin_unlock_irq(&lp->lock);
return 0;
}
static int amd8111e_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct amd8111e_priv *lp = netdev_priv(dev);
int res;
spin_lock_irq(&lp->lock);
res = mii_ethtool_sset(&lp->mii_if, ecmd);
spin_unlock_irq(&lp->lock);
return res;
}
static int amd8111e_nway_reset(struct net_device *dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
return mii_nway_restart(&lp->mii_if);
}
static u32 amd8111e_get_link(struct net_device *dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
return mii_link_ok(&lp->mii_if);
}
static void amd8111e_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol_info)
{
struct amd8111e_priv *lp = netdev_priv(dev);
wol_info->supported = WAKE_MAGIC|WAKE_PHY;
if (lp->options & OPTION_WOL_ENABLE)
wol_info->wolopts = WAKE_MAGIC;
}
static int amd8111e_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol_info)
{
struct amd8111e_priv *lp = netdev_priv(dev);
if (wol_info->wolopts & ~(WAKE_MAGIC|WAKE_PHY))
return -EINVAL;
spin_lock_irq(&lp->lock);
if (wol_info->wolopts & WAKE_MAGIC)
(OPTION_WOL_ENABLE | OPTION_WAKE_MAGIC_ENABLE);
else if(wol_info->wolopts & WAKE_PHY)
(OPTION_WOL_ENABLE | OPTION_WAKE_PHY_ENABLE);
else
spin_unlock_irq(&lp->lock);
return 0;
}
static const struct ethtool_ops ops = {
.get_drvinfo = amd8111e_get_drvinfo,
.get_regs_len = amd8111e_get_regs_len,
.get_regs = amd8111e_get_regs,
.get_settings = amd8111e_get_settings,
.set_settings = amd8111e_set_settings,
.nway_reset = amd8111e_nway_reset,
.get_link = amd8111e_get_link,
.get_wol = amd8111e_get_wol,
.set_wol = amd8111e_set_wol,
};
/*
This function handles all the ethtool ioctls. It gives driver info, gets/sets driver speed, gets memory mapped register values, forces auto negotiation, sets/gets WOL options for ethtool application.
static int amd8111e_ioctl(struct net_device * dev , struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *data = if_mii(ifr);
struct amd8111e_priv *lp = netdev_priv(dev);
int err;
u32 mii_regval;
switch(cmd) {
case SIOCGMIIPHY:
data->phy_id = lp->ext_phy_addr;
/* fallthru */
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
spin_lock_irq(&lp->lock);
err = amd8111e_read_phy(lp, data->phy_id,
data->reg_num & PHY_REG_ADDR_MASK, &mii_regval);
spin_unlock_irq(&lp->lock);
data->val_out = mii_regval;
return err;
case SIOCSMIIREG:
spin_lock_irq(&lp->lock);
err = amd8111e_write_phy(lp, data->phy_id,
data->reg_num & PHY_REG_ADDR_MASK, data->val_in);
spin_unlock_irq(&lp->lock);
return err;
default:
/* do nothing */
break;
}
return -EOPNOTSUPP;
}
static int amd8111e_set_mac_address(struct net_device *dev, void *p)
{
struct amd8111e_priv *lp = netdev_priv(dev);
int i;
struct sockaddr *addr = p;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
spin_lock_irq(&lp->lock);
/* Setting the MAC address to the device */
for(i = 0; i < ETH_ADDR_LEN; i++)
writeb( dev->dev_addr[i], lp->mmio + PADR + i );
spin_unlock_irq(&lp->lock);
return 0;
}
This function changes the mtu of the device. It restarts the device to initialize the descriptor with new receive buffers.
static int amd8111e_change_mtu(struct net_device *dev, int new_mtu)
{
struct amd8111e_priv *lp = netdev_priv(dev);
int err;
if ((new_mtu < AMD8111E_MIN_MTU) || (new_mtu > AMD8111E_MAX_MTU))
return -EINVAL;
if (!netif_running(dev)) {
/* new_mtu will be used
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
dev->mtu = new_mtu;
return 0;
}
spin_lock_irq(&lp->lock);
/* stop the chip */
writel(RUN, lp->mmio + CMD0);
dev->mtu = new_mtu;
err = amd8111e_restart(dev);
spin_unlock_irq(&lp->lock);
if(!err)
netif_start_queue(dev);
return err;
}
#if AMD8111E_VLAN_TAG_USED
static void amd8111e_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
{
struct amd8111e_priv *lp = netdev_priv(dev);
spin_lock_irq(&lp->lock);
lp->vlgrp = grp;
spin_unlock_irq(&lp->lock);
}
#endif
static int amd8111e_enable_magicpkt(struct amd8111e_priv* lp)
{
writel( VAL1|MPPLBA, lp->mmio + CMD3);
writel( VAL0|MPEN_SW, lp->mmio + CMD7);
/* To eliminate PCI posting bug */
readl(lp->mmio + CMD7);
return 0;
}
static int amd8111e_enable_link_change(struct amd8111e_priv* lp)
{
/* Adapter is already stoped/suspended/interrupt-disabled */
writel(VAL0|LCMODE_SW,lp->mmio + CMD7);
/* To eliminate PCI posting bug */
readl(lp->mmio + CMD7);
return 0;
/*
* This function is called when a packet transmission fails to complete
* within a reasonable period, on the assumption that an interrupt have
* failed or the interface is locked up. This function will reinitialize
* the hardware.
*/
static void amd8111e_tx_timeout(struct net_device *dev)
{
struct amd8111e_priv* lp = netdev_priv(dev);
int err;
printk(KERN_ERR "%s: transmit timed out, resetting\n",
dev->name);
spin_lock_irq(&lp->lock);
err = amd8111e_restart(dev);
spin_unlock_irq(&lp->lock);
if(!err)
netif_wake_queue(dev);
}
static int amd8111e_suspend(struct pci_dev *pci_dev, pm_message_t state)
struct net_device *dev = pci_get_drvdata(pci_dev);
struct amd8111e_priv *lp = netdev_priv(dev);
if (!netif_running(dev))
return 0;
/* disable the interrupt */
spin_lock_irq(&lp->lock);
amd8111e_disable_interrupt(lp);
spin_unlock_irq(&lp->lock);
netif_device_detach(dev);
if(lp->options & OPTION_DYN_IPG_ENABLE)
del_timer_sync(&lp->ipg_data.ipg_timer);
amd8111e_stop_chip(lp);
spin_unlock_irq(&lp->lock);
if(lp->options & OPTION_WOL_ENABLE){
/* enable wol */
if(lp->options & OPTION_WAKE_MAGIC_ENABLE)
amd8111e_enable_link_change(lp);
pci_enable_wake(pci_dev, PCI_D3hot, 1);
pci_enable_wake(pci_dev, PCI_D3cold, 1);
}
pci_enable_wake(pci_dev, PCI_D3hot, 0);
pci_enable_wake(pci_dev, PCI_D3cold, 0);
}
pci_save_state(pci_dev);
pci_set_power_state(pci_dev, PCI_D3hot);
return 0;
}
static int amd8111e_resume(struct pci_dev *pci_dev)
{
struct net_device *dev = pci_get_drvdata(pci_dev);
struct amd8111e_priv *lp = netdev_priv(dev);
if (!netif_running(dev))
return 0;
pci_set_power_state(pci_dev, PCI_D0);
pci_restore_state(pci_dev);
pci_enable_wake(pci_dev, PCI_D3hot, 0);
pci_enable_wake(pci_dev, PCI_D3cold, 0); /* D3 cold */
netif_device_attach(dev);
spin_lock_irq(&lp->lock);
amd8111e_restart(dev);
/* Restart ipg timer */
if(lp->options & OPTION_DYN_IPG_ENABLE)
mod_timer(&lp->ipg_data.ipg_timer,
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
jiffies + IPG_CONVERGE_JIFFIES);
spin_unlock_irq(&lp->lock);
return 0;
}
static void __devexit amd8111e_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
if (dev) {
unregister_netdev(dev);
iounmap(((struct amd8111e_priv *)netdev_priv(dev))->mmio);
free_netdev(dev);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
}
static void amd8111e_config_ipg(struct net_device* dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
struct ipg_info* ipg_data = &lp->ipg_data;
void __iomem *mmio = lp->mmio;
unsigned int prev_col_cnt = ipg_data->col_cnt;
unsigned int total_col_cnt;
unsigned int tmp_ipg;
if(lp->link_config.duplex == DUPLEX_FULL){
ipg_data->ipg = DEFAULT_IPG;
return;
}
if(ipg_data->ipg_state == SSTATE){
ipg_data->timer_tick = 0;
ipg_data->ipg = MIN_IPG - IPG_STEP;
ipg_data->current_ipg = MIN_IPG;
ipg_data->diff_col_cnt = 0xFFFFFFFF;
ipg_data->ipg_state = CSTATE;
}
else
ipg_data->timer_tick++;
}
if(ipg_data->ipg_state == CSTATE){
total_col_cnt = ipg_data->col_cnt =
if ((total_col_cnt - prev_col_cnt) <
ipg_data->diff_col_cnt =
total_col_cnt - prev_col_cnt ;
ipg_data->ipg = ipg_data->current_ipg;
}
ipg_data->current_ipg += IPG_STEP;
if (ipg_data->current_ipg <= MAX_IPG)
tmp_ipg = ipg_data->current_ipg;
else{
tmp_ipg = ipg_data->ipg;
ipg_data->ipg_state = SSTATE;
}
writew((u32)tmp_ipg, mmio + IPG);
writew((u32)(tmp_ipg - IFS1_DELTA), mmio + IFS1);
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
}
mod_timer(&lp->ipg_data.ipg_timer, jiffies + IPG_CONVERGE_JIFFIES);
return;
}
static void __devinit amd8111e_probe_ext_phy(struct net_device* dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
int i;
for (i = 0x1e; i >= 0; i--) {
u32 id1, id2;
if (amd8111e_read_phy(lp, i, MII_PHYSID1, &id1))
continue;
if (amd8111e_read_phy(lp, i, MII_PHYSID2, &id2))
continue;
lp->ext_phy_id = (id1 << 16) | id2;
lp->ext_phy_addr = i;
return;
}
lp->ext_phy_id = 0;
lp->ext_phy_addr = 1;
}
static const struct net_device_ops amd8111e_netdev_ops = {
.ndo_open = amd8111e_open,
.ndo_stop = amd8111e_close,
.ndo_start_xmit = amd8111e_start_xmit,
.ndo_tx_timeout = amd8111e_tx_timeout,
.ndo_get_stats = amd8111e_get_stats,
.ndo_set_multicast_list = amd8111e_set_multicast_list,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = amd8111e_set_mac_address,
.ndo_do_ioctl = amd8111e_ioctl,
.ndo_change_mtu = amd8111e_change_mtu,
#if AMD8111E_VLAN_TAG_USED
.ndo_vlan_rx_register = amd8111e_vlan_rx_register,
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = amd8111e_poll,
#endif
};
static int __devinit amd8111e_probe_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int err,i,pm_cap;
unsigned long reg_addr,reg_len;
struct amd8111e_priv* lp;
struct net_device* dev;
err = pci_enable_device(pdev);
if(err){
printk(KERN_ERR "amd8111e: Cannot enable new PCI device, "
"exiting.\n");
return err;
}
if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)){
printk(KERN_ERR "amd8111e: Cannot find PCI base address, "
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
"exiting.\n");
err = -ENODEV;
goto err_disable_pdev;
}
err = pci_request_regions(pdev, MODULE_NAME);
if(err){
printk(KERN_ERR "amd8111e: Cannot obtain PCI resources, "
"exiting.\n");
goto err_disable_pdev;
}
pci_set_master(pdev);
/* Find power-management capability. */
if((pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM))==0){
printk(KERN_ERR "amd8111e: No Power Management capability, "
"exiting.\n");
goto err_free_reg;
}
/* Initialize DMA */
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) < 0) {
printk(KERN_ERR "amd8111e: DMA not supported,"
"exiting.\n");
goto err_free_reg;
}
reg_addr = pci_resource_start(pdev, 0);
reg_len = pci_resource_len(pdev, 0);
dev = alloc_etherdev(sizeof(struct amd8111e_priv));
if (!dev) {
printk(KERN_ERR "amd8111e: Etherdev alloc failed, exiting.\n");
err = -ENOMEM;
goto err_free_reg;
}
SET_NETDEV_DEV(dev, &pdev->dev);
#if AMD8111E_VLAN_TAG_USED
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX ;
lp = netdev_priv(dev);
lp->pci_dev = pdev;
lp->amd8111e_net_dev = dev;
lp->pm_cap = pm_cap;
spin_lock_init(&lp->lock);
lp->mmio = ioremap(reg_addr, reg_len);
if (!lp->mmio) {
printk(KERN_ERR "amd8111e: Cannot map device registers, "
"exiting\n");
err = -ENOMEM;
goto err_free_dev;
}
/* Initializing MAC address */
for(i = 0; i < ETH_ADDR_LEN; i++)
dev->dev_addr[i] = readb(lp->mmio + PADR + i);
/* Setting user defined parametrs */
lp->ext_phy_option = speed_duplex[card_idx];
if(coalesce[card_idx])
lp->options |= OPTION_INTR_COAL_ENABLE;
lp->options |= OPTION_DYN_IPG_ENABLE;
dev->netdev_ops = &amd8111e_netdev_ops;
SET_ETHTOOL_OPS(dev, &ops);
dev->irq =pdev->irq;
dev->watchdog_timeo = AMD8111E_TX_TIMEOUT;
netif_napi_add(dev, &lp->napi, amd8111e_rx_poll, 32);
#if AMD8111E_VLAN_TAG_USED
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
/* Probe the external PHY */
amd8111e_probe_ext_phy(dev);
/* setting mii default values */
lp->mii_if.dev = dev;
lp->mii_if.mdio_read = amd8111e_mdio_read;
lp->mii_if.mdio_write = amd8111e_mdio_write;
lp->mii_if.phy_id = lp->ext_phy_addr;
/* Set receive buffer length and set jumbo option*/
amd8111e_set_rx_buff_len(dev);
err = register_netdev(dev);
if (err) {
printk(KERN_ERR "amd8111e: Cannot register net device, "
"exiting.\n");
goto err_iounmap;
}
pci_set_drvdata(pdev, dev);
if(lp->options & OPTION_DYN_IPG_ENABLE){
init_timer(&lp->ipg_data.ipg_timer);
lp->ipg_data.ipg_timer.data = (unsigned long) dev;
lp->ipg_data.ipg_timer.function = (void *)&amd8111e_config_ipg;
lp->ipg_data.ipg_timer.expires = jiffies +
IPG_CONVERGE_JIFFIES;
lp->ipg_data.ipg = DEFAULT_IPG;
lp->ipg_data.ipg_state = CSTATE;
};
/* display driver and device information */
chip_version = (readl(lp->mmio + CHIPID) & 0xf0000000)>>28;
printk(KERN_INFO "%s: AMD-8111e Driver Version: %s\n",
dev->name,MODULE_VERS);
printk(KERN_INFO "%s: [ Rev %x ] PCI 10/100BaseT Ethernet %pM\n",
dev->name, chip_version, dev->dev_addr);
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
if (lp->ext_phy_id)
printk(KERN_INFO "%s: Found MII PHY ID 0x%08x at address 0x%02x\n",
dev->name, lp->ext_phy_id, lp->ext_phy_addr);
else
printk(KERN_INFO "%s: Couldn't detect MII PHY, assuming address 0x01\n",
dev->name);
return 0;
err_iounmap:
iounmap(lp->mmio);
err_free_dev:
free_netdev(dev);
err_free_reg:
pci_release_regions(pdev);
err_disable_pdev:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
return err;
}
static struct pci_driver amd8111e_driver = {
.name = MODULE_NAME,
.id_table = amd8111e_pci_tbl,
.probe = amd8111e_probe_one,
.remove = __devexit_p(amd8111e_remove_one),
.suspend = amd8111e_suspend,
.resume = amd8111e_resume
};