Newer
Older
* Copyright 2001-2003, 2006 MontaVista Software Inc.
* Copyright 2002 TimeSys Corp.
* Added ethtool/mii-tool support,
* Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
* Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
* or riemer@riemer-nt.de: fixed the link beat detection with
* ioctls (SIOCGMIIPHY)
* Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
* converted to use linux-2.6.x's PHY framework
*
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
* Author: MontaVista Software, Inc.
* ppopov@mvista.com or source@mvista.com
*
* ########################################################################
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
*
* ########################################################################
*
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/ioport.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/crc32.h>
#include <linux/phy.h>
#include <asm/mipsregs.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mach-au1x00/au1000.h>
#include <asm/cpu.h>
#include "au1000_eth.h"
#ifdef AU1000_ETH_DEBUG
static int au1000_debug = 5;
#else
static int au1000_debug = 3;
#endif
#define DRV_NAME "au1000_eth"
#define DRV_VERSION "1.6"
#define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
#define DRV_DESC "Au1xxx on-chip Ethernet driver"
MODULE_AUTHOR(DRV_AUTHOR);
MODULE_DESCRIPTION(DRV_DESC);
MODULE_LICENSE("GPL");
// prototypes
static void hard_stop(struct net_device *);
static void enable_rx_tx(struct net_device *dev);
static struct net_device * au1000_probe(int port_num);
static int au1000_init(struct net_device *);
static int au1000_open(struct net_device *);
static int au1000_close(struct net_device *);
static int au1000_tx(struct sk_buff *, struct net_device *);
static int au1000_rx(struct net_device *);
static irqreturn_t au1000_interrupt(int, void *, struct pt_regs *);
static void au1000_tx_timeout(struct net_device *);
static void set_rx_mode(struct net_device *);
static struct net_device_stats *au1000_get_stats(struct net_device *);
static int au1000_ioctl(struct net_device *, struct ifreq *, int);
static int mdio_read(struct net_device *, int, int);
static void mdio_write(struct net_device *, int, int, u16);
static void au1000_adjust_link(struct net_device *);
static void enable_mac(struct net_device *, int);
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
// externs
extern int get_ethernet_addr(char *ethernet_addr);
extern void str2eaddr(unsigned char *ea, unsigned char *str);
extern char * __init prom_getcmdline(void);
/*
* Theory of operation
*
* The Au1000 MACs use a simple rx and tx descriptor ring scheme.
* There are four receive and four transmit descriptors. These
* descriptors are not in memory; rather, they are just a set of
* hardware registers.
*
* Since the Au1000 has a coherent data cache, the receive and
* transmit buffers are allocated from the KSEG0 segment. The
* hardware registers, however, are still mapped at KSEG1 to
* make sure there's no out-of-order writes, and that all writes
* complete immediately.
*/
/* These addresses are only used if yamon doesn't tell us what
* the mac address is, and the mac address is not passed on the
* command line.
*/
static unsigned char au1000_mac_addr[6] __devinitdata = {
0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
};
struct au1000_private *au_macs[NUM_ETH_INTERFACES];
/*
* board-specific configurations
*
* PHY detection algorithm
*
* If AU1XXX_PHY_STATIC_CONFIG is undefined, the PHY setup is
* autodetected:
*
* mii_probe() first searches the current MAC's MII bus for a PHY,
* selecting the first (or last, if AU1XXX_PHY_SEARCH_HIGHEST_ADDR is
* defined) PHY address not already claimed by another netdev.
*
* If nothing was found that way when searching for the 2nd ethernet
* controller's PHY and AU1XXX_PHY1_SEARCH_ON_MAC0 is defined, then
* the first MII bus is searched as well for an unclaimed PHY; this is
* needed in case of a dual-PHY accessible only through the MAC0's MII
* bus.
*
* Finally, if no PHY is found, then the corresponding ethernet
* controller is not registered to the network subsystem.
/* autodetection defaults */
#undef AU1XXX_PHY_SEARCH_HIGHEST_ADDR
#define AU1XXX_PHY1_SEARCH_ON_MAC0
/* static PHY setup
*
* most boards PHY setup should be detectable properly with the
* autodetection algorithm in mii_probe(), but in some cases (e.g. if
* you have a switch attached, or want to use the PHY's interrupt
* notification capabilities) you can provide a static PHY
* configuration here
*
* IRQs may only be set, if a PHY address was configured
* If a PHY address is given, also a bus id is required to be set
*
* ps: make sure the used irqs are configured properly in the board
* specific irq-map
*/
#if defined(CONFIG_MIPS_BOSPORUS)
/*
* Micrel/Kendin 5 port switch attached to MAC0,
* MAC0 is associated with PHY address 5 (== WAN port)
* MAC1 is not associated with any PHY, since it's connected directly
* to the switch.
* no interrupts are used
*/
# define AU1XXX_PHY_STATIC_CONFIG
# define AU1XXX_PHY0_ADDR 5
# define AU1XXX_PHY0_BUSID 0
# undef AU1XXX_PHY0_IRQ
# undef AU1XXX_PHY1_ADDR
# undef AU1XXX_PHY1_BUSID
# undef AU1XXX_PHY1_IRQ
#if defined(AU1XXX_PHY0_BUSID) && (AU1XXX_PHY0_BUSID > 0)
# error MAC0-associated PHY attached 2nd MACs MII bus not supported yet
/*
* MII operations
*/
static int mdio_read(struct net_device *dev, int phy_addr, int reg)
{
struct au1000_private *aup = (struct au1000_private *) dev->priv;
volatile u32 *const mii_control_reg = &aup->mac->mii_control;
volatile u32 *const mii_data_reg = &aup->mac->mii_data;
u32 timedout = 20;
u32 mii_control;
while (*mii_control_reg & MAC_MII_BUSY) {
mdelay(1);
if (--timedout == 0) {
printk(KERN_ERR "%s: read_MII busy timeout!!\n",
dev->name);
return -1;
}
}
mii_control = MAC_SET_MII_SELECT_REG(reg) |
MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
*mii_control_reg = mii_control;
timedout = 20;
while (*mii_control_reg & MAC_MII_BUSY) {
mdelay(1);
if (--timedout == 0) {
printk(KERN_ERR "%s: mdio_read busy timeout!!\n",
dev->name);
return -1;
}
}
return (int)*mii_data_reg;
}
static void mdio_write(struct net_device *dev, int phy_addr, int reg, u16 value)
{
struct au1000_private *aup = (struct au1000_private *) dev->priv;
volatile u32 *const mii_control_reg = &aup->mac->mii_control;
volatile u32 *const mii_data_reg = &aup->mac->mii_data;
u32 timedout = 20;
u32 mii_control;
while (*mii_control_reg & MAC_MII_BUSY) {
mdelay(1);
if (--timedout == 0) {
printk(KERN_ERR "%s: mdio_write busy timeout!!\n",
dev->name);
return;
}
}
mii_control = MAC_SET_MII_SELECT_REG(reg) |
MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
*mii_data_reg = value;
*mii_control_reg = mii_control;
}
static int mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
{
/* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
* _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */
struct net_device *const dev = bus->priv;
enable_mac(dev, 0); /* make sure the MAC associated with this
* mii_bus is enabled */
return mdio_read(dev, phy_addr, regnum);
}
static int mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
u16 value)
struct net_device *const dev = bus->priv;
enable_mac(dev, 0); /* make sure the MAC associated with this
* mii_bus is enabled */
mdio_write(dev, phy_addr, regnum, value);
return 0;
static int mdiobus_reset(struct mii_bus *bus)
struct net_device *const dev = bus->priv;
enable_mac(dev, 0); /* make sure the MAC associated with this
* mii_bus is enabled */
return 0;
}
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
static int mii_probe (struct net_device *dev)
{
struct au1000_private *const aup = (struct au1000_private *) dev->priv;
struct phy_device *phydev = NULL;
#if defined(AU1XXX_PHY_STATIC_CONFIG)
BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
if(aup->mac_id == 0) { /* get PHY0 */
# if defined(AU1XXX_PHY0_ADDR)
phydev = au_macs[AU1XXX_PHY0_BUSID]->mii_bus.phy_map[AU1XXX_PHY0_ADDR];
# else
printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
dev->name);
return 0;
# endif /* defined(AU1XXX_PHY0_ADDR) */
} else if (aup->mac_id == 1) { /* get PHY1 */
# if defined(AU1XXX_PHY1_ADDR)
phydev = au_macs[AU1XXX_PHY1_BUSID]->mii_bus.phy_map[AU1XXX_PHY1_ADDR];
# else
printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
dev->name);
return 0;
# endif /* defined(AU1XXX_PHY1_ADDR) */
}
#else /* defined(AU1XXX_PHY_STATIC_CONFIG) */
int phy_addr;
/* find the first (lowest address) PHY on the current MAC's MII bus */
for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
if (aup->mii_bus.phy_map[phy_addr]) {
phydev = aup->mii_bus.phy_map[phy_addr];
# if !defined(AU1XXX_PHY_SEARCH_HIGHEST_ADDR)
break; /* break out with first one found */
# endif
# if defined(AU1XXX_PHY1_SEARCH_ON_MAC0)
/* try harder to find a PHY */
if (!phydev && (aup->mac_id == 1)) {
/* no PHY found, maybe we have a dual PHY? */
printk (KERN_INFO DRV_NAME ": no PHY found on MAC1, "
"let's see if it's attached to MAC0...\n");
BUG_ON(!au_macs[0]);
/* find the first (lowest address) non-attached PHY on
* the MAC0 MII bus */
for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
struct phy_device *const tmp_phydev =
au_macs[0]->mii_bus.phy_map[phy_addr];
if (!tmp_phydev)
continue; /* no PHY here... */
if (tmp_phydev->attached_dev)
continue; /* already claimed by MAC0 */
phydev = tmp_phydev;
break; /* found it */
# endif /* defined(AU1XXX_PHY1_SEARCH_OTHER_BUS) */
#endif /* defined(AU1XXX_PHY_STATIC_CONFIG) */
if (!phydev) {
printk (KERN_ERR DRV_NAME ":%s: no PHY found\n", dev->name);
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
/* now we are supposed to have a proper phydev, to attach to... */
BUG_ON(!phydev);
BUG_ON(phydev->attached_dev);
phydev = phy_connect(dev, phydev->dev.bus_id, &au1000_adjust_link, 0);
if (IS_ERR(phydev)) {
printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
return PTR_ERR(phydev);
}
/* mask with MAC supported features */
phydev->supported &= (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
| SUPPORTED_Autoneg
/* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
| SUPPORTED_MII
| SUPPORTED_TP);
phydev->advertising = phydev->supported;
aup->old_link = 0;
aup->old_speed = 0;
aup->old_duplex = -1;
aup->phy_dev = phydev;
printk(KERN_INFO "%s: attached PHY driver [%s] "
"(mii_bus:phy_addr=%s, irq=%d)\n",
dev->name, phydev->drv->name, phydev->dev.bus_id, phydev->irq);
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
return 0;
}
/*
* Buffer allocation/deallocation routines. The buffer descriptor returned
* has the virtual and dma address of a buffer suitable for
* both, receive and transmit operations.
*/
static db_dest_t *GetFreeDB(struct au1000_private *aup)
{
db_dest_t *pDB;
pDB = aup->pDBfree;
if (pDB) {
aup->pDBfree = pDB->pnext;
}
return pDB;
}
void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB)
{
db_dest_t *pDBfree = aup->pDBfree;
if (pDBfree)
pDBfree->pnext = pDB;
aup->pDBfree = pDB;
}
static void enable_rx_tx(struct net_device *dev)
{
struct au1000_private *aup = (struct au1000_private *) dev->priv;
if (au1000_debug > 4)
printk(KERN_INFO "%s: enable_rx_tx\n", dev->name);
aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
au_sync_delay(10);
}
static void hard_stop(struct net_device *dev)
{
struct au1000_private *aup = (struct au1000_private *) dev->priv;
if (au1000_debug > 4)
printk(KERN_INFO "%s: hard stop\n", dev->name);
aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
au_sync_delay(10);
}
static void enable_mac(struct net_device *dev, int force_reset)
unsigned long flags;
struct au1000_private *aup = (struct au1000_private *) dev->priv;
spin_lock_irqsave(&aup->lock, flags);
if(force_reset || (!aup->mac_enabled)) {
*aup->enable = MAC_EN_CLOCK_ENABLE;
au_sync_delay(2);
*aup->enable = (MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
| MAC_EN_CLOCK_ENABLE);
aup->mac_enabled = 1;
spin_unlock_irqrestore(&aup->lock, flags);
}
static void reset_mac_unlocked(struct net_device *dev)
{
struct au1000_private *const aup = (struct au1000_private *) dev->priv;
int i;
hard_stop(dev);
*aup->enable = MAC_EN_CLOCK_ENABLE;
au_sync_delay(2);
*aup->enable = 0;
au_sync_delay(2);
aup->tx_full = 0;
for (i = 0; i < NUM_RX_DMA; i++) {
/* reset control bits */
aup->rx_dma_ring[i]->buff_stat &= ~0xf;
}
for (i = 0; i < NUM_TX_DMA; i++) {
/* reset control bits */
aup->tx_dma_ring[i]->buff_stat &= ~0xf;
}
aup->mac_enabled = 0;
static void reset_mac(struct net_device *dev)
{
struct au1000_private *const aup = (struct au1000_private *) dev->priv;
unsigned long flags;
if (au1000_debug > 4)
printk(KERN_INFO "%s: reset mac, aup %x\n",
dev->name, (unsigned)aup);
spin_lock_irqsave(&aup->lock, flags);
reset_mac_unlocked (dev);
spin_unlock_irqrestore(&aup->lock, flags);
}
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
/*
* Setup the receive and transmit "rings". These pointers are the addresses
* of the rx and tx MAC DMA registers so they are fixed by the hardware --
* these are not descriptors sitting in memory.
*/
static void
setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
{
int i;
for (i = 0; i < NUM_RX_DMA; i++) {
aup->rx_dma_ring[i] =
(volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i);
}
for (i = 0; i < NUM_TX_DMA; i++) {
aup->tx_dma_ring[i] =
(volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i);
}
}
static struct {
u32 base_addr;
u32 macen_addr;
int irq;
struct net_device *dev;
} iflist[2] = {
#ifdef CONFIG_SOC_AU1000
{AU1000_ETH0_BASE, AU1000_MAC0_ENABLE, AU1000_MAC0_DMA_INT},
{AU1000_ETH1_BASE, AU1000_MAC1_ENABLE, AU1000_MAC1_DMA_INT}
#endif
#ifdef CONFIG_SOC_AU1100
{AU1100_ETH0_BASE, AU1100_MAC0_ENABLE, AU1100_MAC0_DMA_INT}
#endif
#ifdef CONFIG_SOC_AU1500
{AU1500_ETH0_BASE, AU1500_MAC0_ENABLE, AU1500_MAC0_DMA_INT},
{AU1500_ETH1_BASE, AU1500_MAC1_ENABLE, AU1500_MAC1_DMA_INT}
#endif
#ifdef CONFIG_SOC_AU1550
{AU1550_ETH0_BASE, AU1550_MAC0_ENABLE, AU1550_MAC0_DMA_INT},
{AU1550_ETH1_BASE, AU1550_MAC1_ENABLE, AU1550_MAC1_DMA_INT}
#endif
};
static int num_ifs;
/*
* Setup the base address and interupt of the Au1xxx ethernet macs
* based on cpu type and whether the interface is enabled in sys_pinfunc
* register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0.
*/
static int __init au1000_init_module(void)
{
int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4);
struct net_device *dev;
int i, found_one = 0;
num_ifs = NUM_ETH_INTERFACES - ni;
dev = au1000_probe(i);
iflist[i].dev = dev;
if (dev)
found_one++;
}
if (!found_one)
return -ENODEV;
return 0;
}
/*
* ethtool operations
*/
static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct au1000_private *aup = (struct au1000_private *)dev->priv;
if (aup->phy_dev)
return phy_ethtool_gset(aup->phy_dev, cmd);
return -EINVAL;
static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct au1000_private *aup = (struct au1000_private *)dev->priv;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (aup->phy_dev)
return phy_ethtool_sset(aup->phy_dev, cmd);
return -EINVAL;
}
static void
au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct au1000_private *aup = (struct au1000_private *)dev->priv;
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
info->fw_version[0] = '\0';
sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id);
info->regdump_len = 0;
}
static struct ethtool_ops au1000_ethtool_ops = {
.get_settings = au1000_get_settings,
.set_settings = au1000_set_settings,
.get_drvinfo = au1000_get_drvinfo,
.get_link = ethtool_op_get_link,
static struct net_device * au1000_probe(int port_num)
{
static unsigned version_printed = 0;
struct au1000_private *aup = NULL;
struct net_device *dev = NULL;
db_dest_t *pDB, *pDBfree;
char *pmac, *argptr;
char ethaddr[6];
int irq, i, err;
u32 base, macen;
if (port_num >= NUM_ETH_INTERFACES)
return NULL;
base = CPHYSADDR(iflist[port_num].base_addr );
macen = CPHYSADDR(iflist[port_num].macen_addr);
irq = iflist[port_num].irq;
if (!request_mem_region( base, MAC_IOSIZE, "Au1x00 ENET") ||
!request_mem_region(macen, 4, "Au1x00 ENET"))
if (version_printed++ == 0)
printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
dev = alloc_etherdev(sizeof(struct au1000_private));
if (!dev) {
printk(KERN_ERR "%s: alloc_etherdev failed\n", DRV_NAME);
if ((err = register_netdev(dev)) != 0) {
printk(KERN_ERR "%s: Cannot register net device, error %d\n",
DRV_NAME, err);
printk("%s: Au1xx0 Ethernet found at 0x%x, irq %d\n",
dev->name, base, irq);
aup = dev->priv;
/* Allocate the data buffers */
/* Snooping works fine with eth on all au1xxx */
aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
(NUM_TX_BUFFS + NUM_RX_BUFFS),
&aup->dma_addr, 0);
release_mem_region( base, MAC_IOSIZE);
release_mem_region(macen, 4);
return NULL;
}
/* aup->mac is the base address of the MAC's registers */
aup->mac = (volatile mac_reg_t *)iflist[port_num].base_addr;
/* Setup some variables for quick register address access */
aup->enable = (volatile u32 *)iflist[port_num].macen_addr;
aup->mac_id = port_num;
au_macs[port_num] = aup;
if (port_num == 0) {
/* Check the environment variables first */
if (get_ethernet_addr(ethaddr) == 0)
memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr));
/* Check command line */
argptr = prom_getcmdline();
if ((pmac = strstr(argptr, "ethaddr=")) == NULL)
printk(KERN_INFO "%s: No MAC address found\n",
dev->name);
/* Use the hard coded MAC addresses */
else {
str2eaddr(ethaddr, pmac + strlen("ethaddr="));
memcpy(au1000_mac_addr, ethaddr,
sizeof(au1000_mac_addr));
setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
} else if (port_num == 1)
setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);
/*
* Assign to the Ethernet ports two consecutive MAC addresses
* to match those that are printed on their stickers
*/
memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
dev->dev_addr[5] += port_num;
*aup->enable = 0;
aup->mac_enabled = 0;
aup->mii_bus.priv = dev;
aup->mii_bus.read = mdiobus_read;
aup->mii_bus.write = mdiobus_write;
aup->mii_bus.reset = mdiobus_reset;
aup->mii_bus.name = "au1000_eth_mii";
aup->mii_bus.id = aup->mac_id;
aup->mii_bus.irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
for(i = 0; i < PHY_MAX_ADDR; ++i)
aup->mii_bus.irq[i] = PHY_POLL;
/* if known, set corresponding PHY IRQs */
#if defined(AU1XXX_PHY_STATIC_CONFIG)
# if defined(AU1XXX_PHY0_IRQ)
if (AU1XXX_PHY0_BUSID == aup->mii_bus.id)
aup->mii_bus.irq[AU1XXX_PHY0_ADDR] = AU1XXX_PHY0_IRQ;
# endif
# if defined(AU1XXX_PHY1_IRQ)
if (AU1XXX_PHY1_BUSID == aup->mii_bus.id)
aup->mii_bus.irq[AU1XXX_PHY1_ADDR] = AU1XXX_PHY1_IRQ;
# endif
#endif
mdiobus_register(&aup->mii_bus);
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
if (mii_probe(dev) != 0) {
goto err_out;
}
pDBfree = NULL;
/* setup the data buffer descriptors and attach a buffer to each one */
pDB = aup->db;
for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
pDB->pnext = pDBfree;
pDBfree = pDB;
pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
pDB++;
}
aup->pDBfree = pDBfree;
for (i = 0; i < NUM_RX_DMA; i++) {
pDB = GetFreeDB(aup);
if (!pDB) {
goto err_out;
}
aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
aup->rx_db_inuse[i] = pDB;
}
for (i = 0; i < NUM_TX_DMA; i++) {
pDB = GetFreeDB(aup);
if (!pDB) {
goto err_out;
}
aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
aup->tx_dma_ring[i]->len = 0;
aup->tx_db_inuse[i] = pDB;
}
spin_lock_init(&aup->lock);
dev->base_addr = base;
dev->irq = irq;
dev->open = au1000_open;
dev->hard_start_xmit = au1000_tx;
dev->stop = au1000_close;
dev->get_stats = au1000_get_stats;
dev->set_multicast_list = &set_rx_mode;
dev->do_ioctl = &au1000_ioctl;
SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
dev->tx_timeout = au1000_tx_timeout;
dev->watchdog_timeo = ETH_TX_TIMEOUT;
/*
* The boot code uses the ethernet controller, so reset it to start
* fresh. au1000_init() expects that the device is in reset state.
*/
reset_mac(dev);
return dev;
err_out:
/* here we should have a valid dev plus aup-> register addresses
* so we can reset the mac properly.*/
reset_mac(dev);
for (i = 0; i < NUM_RX_DMA; i++) {
if (aup->rx_db_inuse[i])
ReleaseDB(aup, aup->rx_db_inuse[i]);
}
for (i = 0; i < NUM_TX_DMA; i++) {
if (aup->tx_db_inuse[i])
ReleaseDB(aup, aup->tx_db_inuse[i]);
}
dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
(void *)aup->vaddr, aup->dma_addr);
release_mem_region( base, MAC_IOSIZE);
release_mem_region(macen, 4);
return NULL;
}
/*
* Initialize the interface.
*
* When the device powers up, the clocks are disabled and the
* mac is in reset state. When the interface is closed, we
* do the same -- reset the device and disable the clocks to
* conserve power. Thus, whenever au1000_init() is called,
* the device should already be in reset state.
*/
static int au1000_init(struct net_device *dev)
{
struct au1000_private *aup = (struct au1000_private *) dev->priv;
u32 flags;
int i;
u32 control;
if (au1000_debug > 4)
printk("%s: au1000_init\n", dev->name);
/* bring the device out of reset */
enable_mac(dev, 1);
spin_lock_irqsave(&aup->lock, flags);
aup->mac->control = 0;
aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
aup->tx_tail = aup->tx_head;
aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4];
aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
dev->dev_addr[1]<<8 | dev->dev_addr[0];
for (i = 0; i < NUM_RX_DMA; i++) {
aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
}
au_sync();
control = MAC_RX_ENABLE | MAC_TX_ENABLE;
#ifndef CONFIG_CPU_LITTLE_ENDIAN
control |= MAC_BIG_ENDIAN;
#endif
if (aup->phy_dev) {
if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
control |= MAC_FULL_DUPLEX;
else
control |= MAC_DISABLE_RX_OWN;
} else { /* PHY-less op, assume full-duplex */
control |= MAC_FULL_DUPLEX;
}
aup->mac->control = control;
aup->mac->vlan1_tag = 0x8100; /* activate vlan support */
au_sync();
spin_unlock_irqrestore(&aup->lock, flags);
return 0;
}
static void
au1000_adjust_link(struct net_device *dev)
{
struct au1000_private *aup = (struct au1000_private *) dev->priv;
struct phy_device *phydev = aup->phy_dev;
unsigned long flags;
int status_change = 0;
BUG_ON(!aup->phy_dev);
spin_lock_irqsave(&aup->lock, flags);
if (phydev->link && (aup->old_speed != phydev->speed)) {
// speed changed
switch(phydev->speed) {
case SPEED_10:
case SPEED_100:
break;
default:
printk(KERN_WARNING
"%s: Speed (%d) is not 10/100 ???\n",
dev->name, phydev->speed);
break;
aup->old_speed = phydev->speed;
status_change = 1;
if (phydev->link && (aup->old_duplex != phydev->duplex)) {
// duplex mode changed
/* switching duplex mode requires to disable rx and tx! */
if (DUPLEX_FULL == phydev->duplex)
aup->mac->control = ((aup->mac->control
| MAC_FULL_DUPLEX)
& ~MAC_DISABLE_RX_OWN);
else
aup->mac->control = ((aup->mac->control
& ~MAC_FULL_DUPLEX)
| MAC_DISABLE_RX_OWN);
au_sync_delay(1);
aup->old_duplex = phydev->duplex;
status_change = 1;
}
if(phydev->link != aup->old_link) {
// link state changed
if (phydev->link) // link went up
netif_schedule(dev);
else { // link went down
aup->old_speed = 0;
aup->old_duplex = -1;
}
aup->old_link = phydev->link;
status_change = 1;
spin_unlock_irqrestore(&aup->lock, flags);
if (status_change) {
if (phydev->link)
printk(KERN_INFO "%s: link up (%d/%s)\n",
dev->name, phydev->speed,
DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
else
printk(KERN_INFO "%s: link down\n", dev->name);
}
}
static int au1000_open(struct net_device *dev)
{
int retval;
struct au1000_private *aup = (struct au1000_private *) dev->priv;
if (au1000_debug > 4)
printk("%s: open: dev=%p\n", dev->name, dev);
if ((retval = request_irq(dev->irq, &au1000_interrupt, 0,
dev->name, dev))) {
printk(KERN_ERR "%s: unable to get IRQ %d\n",
dev->name, dev->irq);
return retval;
}
if ((retval = au1000_init(dev))) {
printk(KERN_ERR "%s: error in au1000_init\n", dev->name);
free_irq(dev->irq, dev);
return retval;
}
if (aup->phy_dev) {
/* cause the PHY state machine to schedule a link state check */
aup->phy_dev->state = PHY_CHANGELINK;
phy_start(aup->phy_dev);
netif_start_queue(dev);
if (au1000_debug > 4)
printk("%s: open: Initialization done.\n", dev->name);
return 0;
}
static int au1000_close(struct net_device *dev)
{
unsigned long flags;
struct au1000_private *const aup = (struct au1000_private *) dev->priv;
if (au1000_debug > 4)
printk("%s: close: dev=%p\n", dev->name, dev);
if (aup->phy_dev)
phy_stop(aup->phy_dev);
reset_mac_unlocked (dev);