Skip to content
Snippets Groups Projects
3c515.c 48.7 KiB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
/*
	Written 1997-1998 by Donald Becker.

	This software may be used and distributed according to the terms
	of the GNU General Public License, incorporated herein by reference.

	This driver is for the 3Com ISA EtherLink XL "Corkscrew" 3c515 ethercard.

	The author may be reached as becker@scyld.com, or C/O
	Scyld Computing Corporation
	410 Severn Ave., Suite 210
	Annapolis MD 21403


	2000/2/2- Added support for kernel-level ISAPnP 
		by Stephen Frost <sfrost@snowman.net> and Alessandro Zummo
	Cleaned up for 2.3.x/softnet by Jeff Garzik and Alan Cox.
	
	2001/11/17 - Added ethtool support (jgarzik)
	
	2002/10/28 - Locking updates for 2.5 (alan@redhat.com)

*/

#define DRV_NAME		"3c515"
#define DRV_VERSION		"0.99t-ac"
#define DRV_RELDATE		"28-Oct-2002"

static char *version =
DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " becker@scyld.com and others\n";

#define CORKSCREW 1

/* "Knobs" that adjust features and parameters. */
/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
   Setting to > 1512 effectively disables this feature. */
static int rx_copybreak = 200;

/* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
static const int mtu = 1500;

/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
static int max_interrupt_work = 20;

/* Enable the automatic media selection code -- usually set. */
#define AUTOMEDIA 1

/* Allow the use of fragment bus master transfers instead of only
   programmed-I/O for Vortex cards.  Full-bus-master transfers are always
   enabled by default on Boomerang cards.  If VORTEX_BUS_MASTER is defined,
   the feature may be turned on using 'options'. */
#define VORTEX_BUS_MASTER

/* A few values that may be tweaked. */
/* Keep the ring sizes a power of two for efficiency. */
#define TX_RING_SIZE	16
#define RX_RING_SIZE	16
#define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer. */

#include <linux/module.h>
#include <linux/isapnp.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/timer.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>

#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/dma.h>

#define NEW_MULTICAST
#include <linux/delay.h>

#define MAX_UNITS 8

MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
MODULE_DESCRIPTION("3Com 3c515 Corkscrew driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

/* "Knobs" for adjusting internal parameters. */
/* Put out somewhat more debugging messages. (0 - no msg, 1 minimal msgs). */
#define DRIVER_DEBUG 1
/* Some values here only for performance evaluation and path-coverage
   debugging. */
static int rx_nocopy, rx_copy, queued_packet;

/* Number of times to check to see if the Tx FIFO has space, used in some
   limited cases. */
#define WAIT_TX_AVAIL 200

/* Operational parameter that usually are not changed. */
#define TX_TIMEOUT  40		/* Time in jiffies before concluding Tx hung */

/* The size here is somewhat misleading: the Corkscrew also uses the ISA
   aliased registers at <base>+0x400.
   */
#define CORKSCREW_TOTAL_SIZE 0x20

#ifdef DRIVER_DEBUG
static int corkscrew_debug = DRIVER_DEBUG;
#else
static int corkscrew_debug = 1;
#endif

#define CORKSCREW_ID 10

/*
				Theory of Operation

I. Board Compatibility

This device driver is designed for the 3Com 3c515 ISA Fast EtherLink XL,
3Com's ISA bus adapter for Fast Ethernet.  Due to the unique I/O port layout,
it's not practical to integrate this driver with the other EtherLink drivers.

II. Board-specific settings

The Corkscrew has an EEPROM for configuration, but no special settings are
needed for Linux.

III. Driver operation

The 3c515 series use an interface that's very similar to the 3c900 "Boomerang"
PCI cards, with the bus master interface extensively modified to work with
the ISA bus.

The card is capable of full-bus-master transfers with separate
lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
DEC Tulip and Intel Speedo3.

This driver uses a "RX_COPYBREAK" scheme rather than a fixed intermediate
receive buffer.  This scheme allocates full-sized skbuffs as receive
buffers.  The value RX_COPYBREAK is used as the copying breakpoint: it is
chosen to trade-off the memory wasted by passing the full-sized skbuff to
the queue layer for all frames vs. the copying cost of copying a frame to a
correctly-sized skbuff.


IIIC. Synchronization
The driver runs as two independent, single-threaded flows of control.  One
is the send-packet routine, which enforces single-threaded use by the netif
layer.  The other thread is the interrupt handler, which is single
threaded by the hardware and other software.

IV. Notes

Thanks to Terry Murphy of 3Com for providing documentation and a development
board.

The names "Vortex", "Boomerang" and "Corkscrew" are the internal 3Com
project names.  I use these names to eliminate confusion -- 3Com product
numbers and names are very similar and often confused.

The new chips support both ethernet (1.5K) and FDDI (4.5K) frame sizes!
This driver only supports ethernet frames because of the recent MTU limit
of 1.5K, but the changes to support 4.5K are minimal.
*/

/* Operational definitions.
   These are not used by other compilation units and thus are not
   exported in a ".h" file.

   First the windows.  There are eight register windows, with the command
   and status registers available in each.
   */
#define EL3WINDOW(win_num) outw(SelectWindow + (win_num), ioaddr + EL3_CMD)
#define EL3_CMD 0x0e
#define EL3_STATUS 0x0e

/* The top five bits written to EL3_CMD are a command, the lower
   11 bits are the parameter, if applicable.
   Note that 11 parameters bits was fine for ethernet, but the new chips
   can handle FDDI length frames (~4500 octets) and now parameters count
   32-bit 'Dwords' rather than octets. */

enum corkscrew_cmd {
	TotalReset = 0 << 11, SelectWindow = 1 << 11, StartCoax = 2 << 11,
	RxDisable = 3 << 11, RxEnable = 4 << 11, RxReset = 5 << 11,
	UpStall = 6 << 11, UpUnstall = (6 << 11) + 1, DownStall = (6 << 11) + 2,
	DownUnstall = (6 << 11) + 3, RxDiscard = 8 << 11, TxEnable = 9 << 11, 
	TxDisable = 10 << 11, TxReset = 11 << 11, FakeIntr = 12 << 11, 
	AckIntr = 13 << 11, SetIntrEnb = 14 << 11, SetStatusEnb = 15 << 11, 
	SetRxFilter = 16 << 11, SetRxThreshold = 17 << 11,
	SetTxThreshold = 18 << 11, SetTxStart = 19 << 11, StartDMAUp = 20 << 11,
	StartDMADown = (20 << 11) + 1, StatsEnable = 21 << 11,
	StatsDisable = 22 << 11, StopCoax = 23 << 11,
};

/* The SetRxFilter command accepts the following classes: */
enum RxFilter {
Linus Torvalds's avatar
Linus Torvalds committed
	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8
};

/* Bits in the general status register. */
enum corkscrew_status {
	IntLatch = 0x0001, AdapterFailure = 0x0002, TxComplete = 0x0004,
	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
	IntReq = 0x0040, StatsFull = 0x0080,
	DMADone = 1 << 8, DownComplete = 1 << 9, UpComplete = 1 << 10,
	DMAInProgress = 1 << 11,	/* DMA controller is still busy. */
	CmdInProgress = 1 << 12,	/* EL3_CMD is still busy. */
};

/* Register window 1 offsets, the window used in normal operation.
   On the Corkscrew this window is always mapped at offsets 0x10-0x1f. */
enum Window1 {
	TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
	RxStatus = 0x18, Timer = 0x1A, TxStatus = 0x1B,
	TxFree = 0x1C,		/* Remaining free bytes in Tx buffer. */
};
enum Window0 {
	Wn0IRQ = 0x08,
#if defined(CORKSCREW)
	Wn0EepromCmd = 0x200A,	/* Corkscrew EEPROM command register. */
	Wn0EepromData = 0x200C,	/* Corkscrew EEPROM results register. */
#else
	Wn0EepromCmd = 10,	/* Window 0: EEPROM command register. */
	Wn0EepromData = 12,	/* Window 0: EEPROM results register. */
#endif
};
enum Win0_EEPROM_bits {
	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
	EEPROM_EWENB = 0x30,	/* Enable erasing/writing for 10 msec. */
	EEPROM_EWDIS = 0x00,	/* Disable EWENB before 10 msec timeout. */
};

/* EEPROM locations. */
enum eeprom_offset {
	PhysAddr01 = 0, PhysAddr23 = 1, PhysAddr45 = 2, ModelID = 3,
	EtherLink3ID = 7,
};

enum Window3 {			/* Window 3: MAC/config bits. */
	Wn3_Config = 0, Wn3_MAC_Ctrl = 6, Wn3_Options = 8,
};
union wn3_config {
	int i;
	struct w3_config_fields {
		unsigned int ram_size:3, ram_width:1, ram_speed:2, rom_size:2;
		int pad8:8;
		unsigned int ram_split:2, pad18:2, xcvr:3, pad21:1, autoselect:1;
		int pad24:7;
	} u;
};

enum Window4 {
	Wn4_NetDiag = 6, Wn4_Media = 10,	/* Window 4: Xcvr/media bits. */
};
enum Win4_Media_bits {
	Media_SQE = 0x0008,	/* Enable SQE error counting for AUI. */
	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
	Media_Lnk = 0x0080,	/* Enable just link beat for 100TX/100FX. */
	Media_LnkBeat = 0x0800,
};
enum Window7 {			/* Window 7: Bus Master control. */
	Wn7_MasterAddr = 0, Wn7_MasterLen = 6, Wn7_MasterStatus = 12,
};

/* Boomerang-style bus master control registers.  Note ISA aliases! */
enum MasterCtrl {
	PktStatus = 0x400, DownListPtr = 0x404, FragAddr = 0x408, FragLen =
	    0x40c,
	TxFreeThreshold = 0x40f, UpPktStatus = 0x410, UpListPtr = 0x418,
};

/* The Rx and Tx descriptor lists.
   Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
   alignment contraint on tx_ring[] and rx_ring[]. */
struct boom_rx_desc {
	u32 next;
	s32 status;
	u32 addr;
	s32 length;
};

/* Values for the Rx status entry. */
enum rx_desc_status {
	RxDComplete = 0x00008000, RxDError = 0x4000,
	/* See boomerang_rx() for actual error bits */
};

struct boom_tx_desc {
	u32 next;
	s32 status;
	u32 addr;
	s32 length;
};

struct corkscrew_private {
	const char *product_name;
	struct list_head list;
	struct net_device *our_dev;
	/* The Rx and Tx rings are here to keep them quad-word-aligned. */
	struct boom_rx_desc rx_ring[RX_RING_SIZE];
	struct boom_tx_desc tx_ring[TX_RING_SIZE];
	/* The addresses of transmit- and receive-in-place skbuffs. */
	struct sk_buff *rx_skbuff[RX_RING_SIZE];
	struct sk_buff *tx_skbuff[TX_RING_SIZE];
	unsigned int cur_rx, cur_tx;	/* The next free ring entry */
	unsigned int dirty_rx, dirty_tx;/* The ring entries to be free()ed. */
	struct net_device_stats stats;
	struct sk_buff *tx_skb;	/* Packet being eaten by bus master ctrl.  */
	struct timer_list timer;	/* Media selection timer. */
	int capabilities	;	/* Adapter capabilities word. */
	int options;			/* User-settable misc. driver options. */
	int last_rx_packets;		/* For media autoselection. */
	unsigned int available_media:8,	/* From Wn3_Options */
		media_override:3,	/* Passed-in media type. */
		default_media:3,	/* Read from the EEPROM. */
		full_duplex:1, autoselect:1, bus_master:1,	/* Vortex can only do a fragment bus-m. */
		full_bus_master_tx:1, full_bus_master_rx:1,	/* Boomerang  */
		tx_full:1;
	spinlock_t lock;
	struct device *dev;
};

/* The action to take with a media selection timer tick.
   Note that we deviate from the 3Com order by checking 10base2 before AUI.
 */
enum xcvr_types {
	XCVR_10baseT = 0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
	XCVR_100baseFx, XCVR_MII = 6, XCVR_Default = 8,
};

static struct media_table {
	char *name;
	unsigned int media_bits:16,	/* Bits to set in Wn4_Media register. */
		mask:8,			/* The transceiver-present bit in Wn3_Config. */
		next:8;			/* The media type to try next. */
	short wait;			/* Time before we check media status. */
} media_tbl[] = {	
	{ "10baseT", Media_10TP, 0x08, XCVR_10base2, (14 * HZ) / 10 }, 
	{ "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1 * HZ) / 10}, 
	{ "undefined", 0, 0x80, XCVR_10baseT, 10000}, 
	{ "10base2", 0, 0x10, XCVR_AUI, (1 * HZ) / 10}, 
	{ "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14 * HZ) / 10}, 
	{ "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14 * HZ) / 10}, 
	{ "MII", 0, 0x40, XCVR_10baseT, 3 * HZ}, 
	{ "undefined", 0, 0x01, XCVR_10baseT, 10000}, 
	{ "Default", 0, 0xFF, XCVR_10baseT, 10000},
};

#ifdef __ISAPNP__
static struct isapnp_device_id corkscrew_isapnp_adapters[] = {
	{	ISAPNP_ANY_ID, ISAPNP_ANY_ID,
		ISAPNP_VENDOR('T', 'C', 'M'), ISAPNP_FUNCTION(0x5051),
		(long) "3Com Fast EtherLink ISA" },
	{ }	/* terminate list */
};

MODULE_DEVICE_TABLE(isapnp, corkscrew_isapnp_adapters);

static int nopnp;
#endif /* __ISAPNP__ */

static struct net_device *corkscrew_scan(int unit);
static int corkscrew_setup(struct net_device *dev, int ioaddr,
Linus Torvalds's avatar
Linus Torvalds committed
			    struct pnp_dev *idev, int card_number);
static int corkscrew_open(struct net_device *dev);
static void corkscrew_timer(unsigned long arg);
static int corkscrew_start_xmit(struct sk_buff *skb,
				struct net_device *dev);
static int corkscrew_rx(struct net_device *dev);
static void corkscrew_timeout(struct net_device *dev);
static int boomerang_rx(struct net_device *dev);
static irqreturn_t corkscrew_interrupt(int irq, void *dev_id,
				    struct pt_regs *regs);
static int corkscrew_close(struct net_device *dev);
static void update_stats(int addr, struct net_device *dev);
static struct net_device_stats *corkscrew_get_stats(struct net_device *dev);
static void set_rx_mode(struct net_device *dev);
static struct ethtool_ops netdev_ethtool_ops;


/* 
   Unfortunately maximizing the shared code between the integrated and
   module version of the driver results in a complicated set of initialization
   procedures.
   init_module() -- modules /  tc59x_init()  -- built-in
		The wrappers for corkscrew_scan()
   corkscrew_scan()  		 The common routine that scans for PCI and EISA cards
   corkscrew_found_device() Allocate a device structure when we find a card.
					Different versions exist for modules and built-in.
   corkscrew_probe1()		Fill in the device structure -- this is separated
					so that the modules code can put it in dev->init.
*/
/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
/* Note: this is the only limit on the number of cards supported!! */
static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1, };

#ifdef MODULE
static int debug = -1;

module_param(debug, int, 0);
module_param_array(options, int, NULL, 0);
module_param(rx_copybreak, int, 0);
module_param(max_interrupt_work, int, 0);
MODULE_PARM_DESC(debug, "3c515 debug level (0-6)");
MODULE_PARM_DESC(options, "3c515: Bits 0-2: media type, bit 3: full duplex, bit 4: bus mastering");
MODULE_PARM_DESC(rx_copybreak, "3c515 copy breakpoint for copy-only-tiny-frames");
MODULE_PARM_DESC(max_interrupt_work, "3c515 maximum events handled per interrupt");

/* A list of all installed Vortex devices, for removing the driver module. */
/* we will need locking (and refcounting) if we ever use it for more */
static LIST_HEAD(root_corkscrew_dev);

int init_module(void)
{
	int found = 0;
	if (debug >= 0)
		corkscrew_debug = debug;
	if (corkscrew_debug)
		printk(version);
	while (corkscrew_scan(-1))
		found++;
	return found ? 0 : -ENODEV;
}

#else
struct net_device *tc515_probe(int unit)
{
	struct net_device *dev = corkscrew_scan(unit);
	static int printed;

	if (!dev)
		return ERR_PTR(-ENODEV);

	if (corkscrew_debug > 0 && !printed) {
		printed = 1;
		printk(version);
	}

	return dev;
}
#endif				/* not MODULE */

static int check_device(unsigned ioaddr)
{
	int timer;

	if (!request_region(ioaddr, CORKSCREW_TOTAL_SIZE, "3c515"))
		return 0;
	/* Check the resource configuration for a matching ioaddr. */
	if ((inw(ioaddr + 0x2002) & 0x1f0) != (ioaddr & 0x1f0)) {
		release_region(ioaddr, CORKSCREW_TOTAL_SIZE);
		return 0;
	}
	/* Verify by reading the device ID from the EEPROM. */
	outw(EEPROM_Read + 7, ioaddr + Wn0EepromCmd);
	/* Pause for at least 162 us. for the read to take place. */
	for (timer = 4; timer >= 0; timer--) {
		udelay(162);
		if ((inw(ioaddr + Wn0EepromCmd) & 0x0200) == 0)
			break;
	}
	if (inw(ioaddr + Wn0EepromData) != 0x6d50) {
		release_region(ioaddr, CORKSCREW_TOTAL_SIZE);
		return 0;
	}
	return 1;
}

static void cleanup_card(struct net_device *dev)
{
	struct corkscrew_private *vp = netdev_priv(dev);
	list_del_init(&vp->list);
	if (dev->dma)
		free_dma(dev->dma);
	outw(TotalReset, dev->base_addr + EL3_CMD);
	release_region(dev->base_addr, CORKSCREW_TOTAL_SIZE);
	if (vp->dev)
		pnp_device_detach(to_pnp_dev(vp->dev));
}

static struct net_device *corkscrew_scan(int unit)
{
	struct net_device *dev;
	static int cards_found = 0;
	static int ioaddr;
	int err;
#ifdef __ISAPNP__
	short i;
	static int pnp_cards;
#endif

	dev = alloc_etherdev(sizeof(struct corkscrew_private));
	if (!dev)
		return ERR_PTR(-ENOMEM);

	if (unit >= 0) {
		sprintf(dev->name, "eth%d", unit);
		netdev_boot_setup_check(dev);
	}

	SET_MODULE_OWNER(dev);

#ifdef __ISAPNP__
	if(nopnp == 1)
		goto no_pnp;
	for(i=0; corkscrew_isapnp_adapters[i].vendor != 0; i++) {
		struct pnp_dev *idev = NULL;
		int irq;
		while((idev = pnp_find_dev(NULL,
					   corkscrew_isapnp_adapters[i].vendor,
					   corkscrew_isapnp_adapters[i].function,
					   idev))) {

			if (pnp_device_attach(idev) < 0)
				continue;
			if (pnp_activate_dev(idev) < 0) {
				printk("pnp activate failed (out of resources?)\n");
				pnp_device_detach(idev);
				continue;
			}
			if (!pnp_port_valid(idev, 0) || !pnp_irq_valid(idev, 0)) {
				pnp_device_detach(idev);
				continue;
			}
			ioaddr = pnp_port_start(idev, 0);
			irq = pnp_irq(idev, 0);
			if (!check_device(ioaddr)) {
				pnp_device_detach(idev);
				continue;
			}
			if(corkscrew_debug)
				printk ("ISAPNP reports %s at i/o 0x%x, irq %d\n",
					(char*) corkscrew_isapnp_adapters[i].driver_data, ioaddr, irq);
			printk(KERN_INFO "3c515 Resource configuration register %#4.4x, DCR %4.4x.\n",
		     		inl(ioaddr + 0x2002), inw(ioaddr + 0x2000));
			/* irq = inw(ioaddr + 0x2002) & 15; */ /* Use the irq from isapnp */
			SET_NETDEV_DEV(dev, &idev->dev);
			pnp_cards++;
			err = corkscrew_setup(dev, ioaddr, idev, cards_found++);
Linus Torvalds's avatar
Linus Torvalds committed
			if (!err)
				return dev;
			cleanup_card(dev);
		}
	}
no_pnp:
#endif /* __ISAPNP__ */

	/* Check all locations on the ISA bus -- evil! */
	for (ioaddr = 0x100; ioaddr < 0x400; ioaddr += 0x20) {
		if (!check_device(ioaddr))
			continue;

		printk(KERN_INFO "3c515 Resource configuration register %#4.4x, DCR %4.4x.\n",
		     inl(ioaddr + 0x2002), inw(ioaddr + 0x2000));
		err = corkscrew_setup(dev, ioaddr, NULL, cards_found++);
Linus Torvalds's avatar
Linus Torvalds committed
		if (!err)
			return dev;
		cleanup_card(dev);
	}
	free_netdev(dev);
	return NULL;
}

static int corkscrew_setup(struct net_device *dev, int ioaddr,
Linus Torvalds's avatar
Linus Torvalds committed
			    struct pnp_dev *idev, int card_number)
{
	struct corkscrew_private *vp = netdev_priv(dev);
	unsigned int eeprom[0x40], checksum = 0;	/* EEPROM contents */
	int i;
	int irq;

	if (idev) {
		irq = pnp_irq(idev, 0);
		vp->dev = &idev->dev;
	} else {
		irq = inw(ioaddr + 0x2002) & 15;
	}

	dev->base_addr = ioaddr;
	dev->irq = irq;
	dev->dma = inw(ioaddr + 0x2000) & 7;
	vp->product_name = "3c515";
	vp->options = dev->mem_start;
	vp->our_dev = dev;

	if (!vp->options) {
		 if (card_number >= MAX_UNITS)
			vp->options = -1;
		else
			vp->options = options[card_number];
	}

	if (vp->options >= 0) {
		vp->media_override = vp->options & 7;
		if (vp->media_override == 2)
			vp->media_override = 0;
		vp->full_duplex = (vp->options & 8) ? 1 : 0;
		vp->bus_master = (vp->options & 16) ? 1 : 0;
	} else {
		vp->media_override = 7;
		vp->full_duplex = 0;
		vp->bus_master = 0;
	}
#ifdef MODULE
	list_add(&vp->list, &root_corkscrew_dev);
#endif

	printk(KERN_INFO "%s: 3Com %s at %#3x,", dev->name, vp->product_name, ioaddr);

	spin_lock_init(&vp->lock);
	
	/* Read the station address from the EEPROM. */
	EL3WINDOW(0);
	for (i = 0; i < 0x18; i++) {
		short *phys_addr = (short *) dev->dev_addr;
		int timer;
		outw(EEPROM_Read + i, ioaddr + Wn0EepromCmd);
		/* Pause for at least 162 us. for the read to take place. */
		for (timer = 4; timer >= 0; timer--) {
			udelay(162);
			if ((inw(ioaddr + Wn0EepromCmd) & 0x0200) == 0)
				break;
		}
		eeprom[i] = inw(ioaddr + Wn0EepromData);
		checksum ^= eeprom[i];
		if (i < 3)
			phys_addr[i] = htons(eeprom[i]);
	}
	checksum = (checksum ^ (checksum >> 8)) & 0xff;
	if (checksum != 0x00)
		printk(" ***INVALID CHECKSUM %4.4x*** ", checksum);
	for (i = 0; i < 6; i++)
		printk("%c%2.2x", i ? ':' : ' ', dev->dev_addr[i]);
	if (eeprom[16] == 0x11c7) {	/* Corkscrew */
		if (request_dma(dev->dma, "3c515")) {
			printk(", DMA %d allocation failed", dev->dma);
			dev->dma = 0;
		} else
			printk(", DMA %d", dev->dma);
	}
	printk(", IRQ %d\n", dev->irq);
	/* Tell them about an invalid IRQ. */
	if (corkscrew_debug && (dev->irq <= 0 || dev->irq > 15))
		printk(KERN_WARNING " *** Warning: this IRQ is unlikely to work! ***\n");

	{
		char *ram_split[] = { "5:3", "3:1", "1:1", "3:5" };
		union wn3_config config;
		EL3WINDOW(3);
		vp->available_media = inw(ioaddr + Wn3_Options);
		config.i = inl(ioaddr + Wn3_Config);
		if (corkscrew_debug > 1)
			printk(KERN_INFO "  Internal config register is %4.4x, transceivers %#x.\n",
				config.i, inw(ioaddr + Wn3_Options));
		printk(KERN_INFO "  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
			8 << config.u.ram_size,
			config.u.ram_width ? "word" : "byte",
			ram_split[config.u.ram_split],
			config.u.autoselect ? "autoselect/" : "",
			media_tbl[config.u.xcvr].name);
		dev->if_port = config.u.xcvr;
		vp->default_media = config.u.xcvr;
		vp->autoselect = config.u.autoselect;
	}
	if (vp->media_override != 7) {
		printk(KERN_INFO "  Media override to transceiver type %d (%s).\n",
		       vp->media_override,
		       media_tbl[vp->media_override].name);
		dev->if_port = vp->media_override;
	}

	vp->capabilities = eeprom[16];
	vp->full_bus_master_tx = (vp->capabilities & 0x20) ? 1 : 0;
	/* Rx is broken at 10mbps, so we always disable it. */
	/* vp->full_bus_master_rx = 0; */
	vp->full_bus_master_rx = (vp->capabilities & 0x20) ? 1 : 0;

	/* The 3c51x-specific entries in the device structure. */
	dev->open = &corkscrew_open;
	dev->hard_start_xmit = &corkscrew_start_xmit;
	dev->tx_timeout = &corkscrew_timeout;
	dev->watchdog_timeo = (400 * HZ) / 1000;
	dev->stop = &corkscrew_close;
	dev->get_stats = &corkscrew_get_stats;
	dev->set_multicast_list = &set_rx_mode;
	dev->ethtool_ops = &netdev_ethtool_ops;
Linus Torvalds's avatar
Linus Torvalds committed
}


static int corkscrew_open(struct net_device *dev)
{
	int ioaddr = dev->base_addr;
	struct corkscrew_private *vp = netdev_priv(dev);
	union wn3_config config;
	int i;

	/* Before initializing select the active media port. */
	EL3WINDOW(3);
	if (vp->full_duplex)
		outb(0x20, ioaddr + Wn3_MAC_Ctrl);	/* Set the full-duplex bit. */
	config.i = inl(ioaddr + Wn3_Config);

	if (vp->media_override != 7) {
		if (corkscrew_debug > 1)
			printk(KERN_INFO "%s: Media override to transceiver %d (%s).\n",
				dev->name, vp->media_override,
				media_tbl[vp->media_override].name);
		dev->if_port = vp->media_override;
	} else if (vp->autoselect) {
		/* Find first available media type, starting with 100baseTx. */
		dev->if_port = 4;
		while (!(vp->available_media & media_tbl[dev->if_port].mask)) 
			dev->if_port = media_tbl[dev->if_port].next;

		if (corkscrew_debug > 1)
			printk("%s: Initial media type %s.\n",
			       dev->name, media_tbl[dev->if_port].name);

		init_timer(&vp->timer);
		vp->timer.expires = jiffies + media_tbl[dev->if_port].wait;
		vp->timer.data = (unsigned long) dev;
		vp->timer.function = &corkscrew_timer;	/* timer handler */
		add_timer(&vp->timer);
	} else
		dev->if_port = vp->default_media;

	config.u.xcvr = dev->if_port;
	outl(config.i, ioaddr + Wn3_Config);

	if (corkscrew_debug > 1) {
		printk("%s: corkscrew_open() InternalConfig %8.8x.\n",
		       dev->name, config.i);
	}

	outw(TxReset, ioaddr + EL3_CMD);
	for (i = 20; i >= 0; i--)
		if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
			break;

	outw(RxReset, ioaddr + EL3_CMD);
	/* Wait a few ticks for the RxReset command to complete. */
	for (i = 20; i >= 0; i--)
		if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
			break;

	outw(SetStatusEnb | 0x00, ioaddr + EL3_CMD);

	/* Use the now-standard shared IRQ implementation. */
	if (vp->capabilities == 0x11c7) {
		/* Corkscrew: Cannot share ISA resources. */
		if (dev->irq == 0
		    || dev->dma == 0
		    || request_irq(dev->irq, &corkscrew_interrupt, 0,
				   vp->product_name, dev)) return -EAGAIN;
		enable_dma(dev->dma);
		set_dma_mode(dev->dma, DMA_MODE_CASCADE);
	} else if (request_irq(dev->irq, &corkscrew_interrupt, IRQF_SHARED,
Linus Torvalds's avatar
Linus Torvalds committed
			       vp->product_name, dev)) {
		return -EAGAIN;
	}

	if (corkscrew_debug > 1) {
		EL3WINDOW(4);
		printk("%s: corkscrew_open() irq %d media status %4.4x.\n",
		       dev->name, dev->irq, inw(ioaddr + Wn4_Media));
	}

	/* Set the station address and mask in window 2 each time opened. */
	EL3WINDOW(2);
	for (i = 0; i < 6; i++)
		outb(dev->dev_addr[i], ioaddr + i);
	for (; i < 12; i += 2)
		outw(0, ioaddr + i);

	if (dev->if_port == 3)
		/* Start the thinnet transceiver. We should really wait 50ms... */
		outw(StartCoax, ioaddr + EL3_CMD);
	EL3WINDOW(4);
	outw((inw(ioaddr + Wn4_Media) & ~(Media_10TP | Media_SQE)) |
	     media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);

	/* Switch to the stats window, and clear all stats by reading. */
	outw(StatsDisable, ioaddr + EL3_CMD);
	EL3WINDOW(6);
	for (i = 0; i < 10; i++)
		inb(ioaddr + i);
	inw(ioaddr + 10);
	inw(ioaddr + 12);
	/* New: On the Vortex we must also clear the BadSSD counter. */
	EL3WINDOW(4);
	inb(ioaddr + 12);
	/* ..and on the Boomerang we enable the extra statistics bits. */
	outw(0x0040, ioaddr + Wn4_NetDiag);

	/* Switch to register set 7 for normal use. */
	EL3WINDOW(7);

	if (vp->full_bus_master_rx) {	/* Boomerang bus master. */
		vp->cur_rx = vp->dirty_rx = 0;
		if (corkscrew_debug > 2)
			printk("%s:  Filling in the Rx ring.\n",
			       dev->name);
		for (i = 0; i < RX_RING_SIZE; i++) {
			struct sk_buff *skb;
			if (i < (RX_RING_SIZE - 1))
				vp->rx_ring[i].next =
				    isa_virt_to_bus(&vp->rx_ring[i + 1]);
			else
				vp->rx_ring[i].next = 0;
			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
			vp->rx_ring[i].length = PKT_BUF_SZ | 0x80000000;
			skb = dev_alloc_skb(PKT_BUF_SZ);
			vp->rx_skbuff[i] = skb;
			if (skb == NULL)
				break;	/* Bad news!  */
			skb->dev = dev;	/* Mark as being used by this device. */
			skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
			vp->rx_ring[i].addr = isa_virt_to_bus(skb->data);
Linus Torvalds's avatar
Linus Torvalds committed
		}
		vp->rx_ring[i - 1].next = isa_virt_to_bus(&vp->rx_ring[0]);	/* Wrap the ring. */
		outl(isa_virt_to_bus(&vp->rx_ring[0]), ioaddr + UpListPtr);
	}
	if (vp->full_bus_master_tx) {	/* Boomerang bus master Tx. */
		vp->cur_tx = vp->dirty_tx = 0;
		outb(PKT_BUF_SZ >> 8, ioaddr + TxFreeThreshold);	/* Room for a packet. */
		/* Clear the Tx ring. */
		for (i = 0; i < TX_RING_SIZE; i++)
			vp->tx_skbuff[i] = NULL;
		outl(0, ioaddr + DownListPtr);
	}
	/* Set receiver mode: presumably accept b-case and phys addr only. */
	set_rx_mode(dev);
	outw(StatsEnable, ioaddr + EL3_CMD);	/* Turn on statistics. */

	netif_start_queue(dev);

	outw(RxEnable, ioaddr + EL3_CMD);	/* Enable the receiver. */
	outw(TxEnable, ioaddr + EL3_CMD);	/* Enable transmitter. */
	/* Allow status bits to be seen. */
	outw(SetStatusEnb | AdapterFailure | IntReq | StatsFull |
	     (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
	     (vp->full_bus_master_rx ? UpComplete : RxComplete) |
	     (vp->bus_master ? DMADone : 0), ioaddr + EL3_CMD);
	/* Ack all pending events, and set active indicator mask. */
	outw(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
	     ioaddr + EL3_CMD);
	outw(SetIntrEnb | IntLatch | TxAvailable | RxComplete | StatsFull
	     | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete,
	     ioaddr + EL3_CMD);

	return 0;
}

static void corkscrew_timer(unsigned long data)
{
#ifdef AUTOMEDIA
	struct net_device *dev = (struct net_device *) data;
	struct corkscrew_private *vp = netdev_priv(dev);
	int ioaddr = dev->base_addr;
	unsigned long flags;
	int ok = 0;

	if (corkscrew_debug > 1)
		printk("%s: Media selection timer tick happened, %s.\n",
		       dev->name, media_tbl[dev->if_port].name);

	spin_lock_irqsave(&vp->lock, flags);
	
	{
		int old_window = inw(ioaddr + EL3_CMD) >> 13;
		int media_status;
		EL3WINDOW(4);
		media_status = inw(ioaddr + Wn4_Media);
		switch (dev->if_port) {
		case 0:
		case 4:
		case 5:	/* 10baseT, 100baseTX, 100baseFX  */
			if (media_status & Media_LnkBeat) {
				ok = 1;
				if (corkscrew_debug > 1)
					printk("%s: Media %s has link beat, %x.\n",
						dev->name,
						media_tbl[dev->if_port].name,
						media_status);
			} else if (corkscrew_debug > 1)
				printk("%s: Media %s is has no link beat, %x.\n",
					dev->name,
					media_tbl[dev->if_port].name,
					media_status);

			break;
		default:	/* Other media types handled by Tx timeouts. */
			if (corkscrew_debug > 1)
				printk("%s: Media %s is has no indication, %x.\n",
					dev->name,
					media_tbl[dev->if_port].name,
					media_status);
			ok = 1;
		}
		if (!ok) {
			union wn3_config config;

			do {
				dev->if_port =
				    media_tbl[dev->if_port].next;
			}
			while (!(vp->available_media & media_tbl[dev->if_port].mask));
			
			if (dev->if_port == 8) {	/* Go back to default. */
				dev->if_port = vp->default_media;
				if (corkscrew_debug > 1)
					printk("%s: Media selection failing, using default %s port.\n",
						dev->name,
						media_tbl[dev->if_port].name);
			} else {
				if (corkscrew_debug > 1)
					printk("%s: Media selection failed, now trying %s port.\n",
						dev->name,
						media_tbl[dev->if_port].name);
				vp->timer.expires = jiffies + media_tbl[dev->if_port].wait;
				add_timer(&vp->timer);
			}
			outw((media_status & ~(Media_10TP | Media_SQE)) |
			     media_tbl[dev->if_port].media_bits,
			     ioaddr + Wn4_Media);

			EL3WINDOW(3);
			config.i = inl(ioaddr + Wn3_Config);
			config.u.xcvr = dev->if_port;
			outl(config.i, ioaddr + Wn3_Config);

			outw(dev->if_port == 3 ? StartCoax : StopCoax,
			     ioaddr + EL3_CMD);
		}
		EL3WINDOW(old_window);
	}
	
	spin_unlock_irqrestore(&vp->lock, flags);
	if (corkscrew_debug > 1)
		printk("%s: Media selection timer finished, %s.\n",
		       dev->name, media_tbl[dev->if_port].name);

#endif				/* AUTOMEDIA */
	return;
}

static void corkscrew_timeout(struct net_device *dev)
{
	int i;
	struct corkscrew_private *vp = netdev_priv(dev);
	int ioaddr = dev->base_addr;

	printk(KERN_WARNING
	       "%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
	       dev->name, inb(ioaddr + TxStatus),
	       inw(ioaddr + EL3_STATUS));
	/* Slight code bloat to be user friendly. */
	if ((inb(ioaddr + TxStatus) & 0x88) == 0x88)
		printk(KERN_WARNING
		       "%s: Transmitter encountered 16 collisions -- network"
		       " network cable problem?\n", dev->name);
#ifndef final_version
	printk("  Flags; bus-master %d, full %d; dirty %d current %d.\n",
	       vp->full_bus_master_tx, vp->tx_full, vp->dirty_tx,
	       vp->cur_tx);
	printk("  Down list %8.8x vs. %p.\n", inl(ioaddr + DownListPtr),
	       &vp->tx_ring[0]);
	for (i = 0; i < TX_RING_SIZE; i++) {
		printk("  %d: %p  length %8.8x status %8.8x\n", i,
		       &vp->tx_ring[i],
		       vp->tx_ring[i].length, vp->tx_ring[i].status);
	}
#endif
	/* Issue TX_RESET and TX_START commands. */
	outw(TxReset, ioaddr + EL3_CMD);
	for (i = 20; i >= 0; i--)
		if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
			break;
	outw(TxEnable, ioaddr + EL3_CMD);
	dev->trans_start = jiffies;
	vp->stats.tx_errors++;
	vp->stats.tx_dropped++;
	netif_wake_queue(dev);
}

static int corkscrew_start_xmit(struct sk_buff *skb,
				struct net_device *dev)
{
	struct corkscrew_private *vp = netdev_priv(dev);
	int ioaddr = dev->base_addr;

	/* Block a timer-based transmit from overlapping. */

	netif_stop_queue(dev);

	if (vp->full_bus_master_tx) {	/* BOOMERANG bus-master */
		/* Calculate the next Tx descriptor entry. */
		int entry = vp->cur_tx % TX_RING_SIZE;
		struct boom_tx_desc *prev_entry;
		unsigned long flags;
		int i;
Linus Torvalds's avatar
Linus Torvalds committed
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

		if (vp->tx_full)	/* No room to transmit with */
			return 1;
		if (vp->cur_tx != 0)
			prev_entry = &vp->tx_ring[(vp->cur_tx - 1) % TX_RING_SIZE];
		else
			prev_entry = NULL;
		if (corkscrew_debug > 3)
			printk("%s: Trying to send a packet, Tx index %d.\n",
				dev->name, vp->cur_tx);
		/* vp->tx_full = 1; */
		vp->tx_skbuff[entry] = skb;
		vp->tx_ring[entry].next = 0;
		vp->tx_ring[entry].addr = isa_virt_to_bus(skb->data);
		vp->tx_ring[entry].length = skb->len | 0x80000000;
		vp->tx_ring[entry].status = skb->len | 0x80000000;

		spin_lock_irqsave(&vp->lock, flags);
		outw(DownStall, ioaddr + EL3_CMD);
		/* Wait for the stall to complete. */
		for (i = 20; i >= 0; i--)
			if ((inw(ioaddr + EL3_STATUS) & CmdInProgress) == 0) 
				break;
		if (prev_entry)
			prev_entry->next = isa_virt_to_bus(&vp->tx_ring[entry]);
		if (inl(ioaddr + DownListPtr) == 0) {
			outl(isa_virt_to_bus(&vp->tx_ring[entry]),
			     ioaddr + DownListPtr);
			queued_packet++;
		}
		outw(DownUnstall, ioaddr + EL3_CMD);
		spin_unlock_irqrestore(&vp->lock, flags);

		vp->cur_tx++;
		if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1)
			vp->tx_full = 1;
		else {		/* Clear previous interrupt enable. */
			if (prev_entry)
				prev_entry->status &= ~0x80000000;
			netif_wake_queue(dev);
		}
		dev->trans_start = jiffies;
		return 0;
	}
	/* Put out the doubleword header... */
	outl(skb->len, ioaddr + TX_FIFO);
	vp->stats.tx_bytes += skb->len;
#ifdef VORTEX_BUS_MASTER
	if (vp->bus_master) {
		/* Set the bus-master controller to transfer the packet. */
		outl((int) (skb->data), ioaddr + Wn7_MasterAddr);
		outw((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
		vp->tx_skb = skb;
		outw(StartDMADown, ioaddr + EL3_CMD);
		/* queue will be woken at the DMADone interrupt. */
	} else {
		/* ... and the packet rounded to a doubleword. */
		outsl(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
		dev_kfree_skb(skb);
		if (inw(ioaddr + TxFree) > 1536) {
			netif_wake_queue(dev);
		} else
			/* Interrupt us when the FIFO has room for max-sized packet. */
			outw(SetTxThreshold + (1536 >> 2),
			     ioaddr + EL3_CMD);
	}
#else
	/* ... and the packet rounded to a doubleword. */
	outsl(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
	dev_kfree_skb(skb);
	if (inw(ioaddr + TxFree) > 1536) {
		netif_wake_queue(dev);
	} else
		/* Interrupt us when the FIFO has room for max-sized packet. */
		outw(SetTxThreshold + (1536 >> 2), ioaddr + EL3_CMD);
#endif				/* bus master */

	dev->trans_start = jiffies;

	/* Clear the Tx status stack. */
	{
		short tx_status;
		int i = 4;

		while (--i > 0 && (tx_status = inb(ioaddr + TxStatus)) > 0) {
			if (tx_status & 0x3C) {	/* A Tx-disabling error occurred.  */
				if (corkscrew_debug > 2)
					printk("%s: Tx error, status %2.2x.\n",
						dev->name, tx_status);
				if (tx_status & 0x04)
					vp->stats.tx_fifo_errors++;
				if (tx_status & 0x38)
					vp->stats.tx_aborted_errors++;
				if (tx_status & 0x30) {
					int j;
					outw(TxReset, ioaddr + EL3_CMD);
					for (j = 20; j >= 0; j--)
						if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress)) 
							break;
				}
				outw(TxEnable, ioaddr + EL3_CMD);
			}
			outb(0x00, ioaddr + TxStatus);	/* Pop the status stack. */
		}
	}
	return 0;
}

/* The interrupt handler does all of the Rx thread work and cleans up
   after the Tx thread. */

static irqreturn_t corkscrew_interrupt(int irq, void *dev_id,
				    struct pt_regs *regs)
{
	/* Use the now-standard shared IRQ implementation. */
	struct net_device *dev = dev_id;
	struct corkscrew_private *lp = netdev_priv(dev);
	int ioaddr, status;
	int latency;
	int i = max_interrupt_work;

	ioaddr = dev->base_addr;
	latency = inb(ioaddr + Timer);

	spin_lock(&lp->lock);
	
	status = inw(ioaddr + EL3_STATUS);

	if (corkscrew_debug > 4)
		printk("%s: interrupt, status %4.4x, timer %d.\n",
			dev->name, status, latency);
	if ((status & 0xE000) != 0xE000) {
		static int donedidthis;
		/* Some interrupt controllers store a bogus interrupt from boot-time.
		   Ignore a single early interrupt, but don't hang the machine for
		   other interrupt problems. */
		if (donedidthis++ > 100) {
			printk(KERN_ERR "%s: Bogus interrupt, bailing. Status %4.4x, start=%d.\n",
				   dev->name, status, netif_running(dev));
			free_irq(dev->irq, dev);
			dev->irq = -1;
		}
	}

	do {
		if (corkscrew_debug > 5)
			printk("%s: In interrupt loop, status %4.4x.\n",
			       dev->name, status);
		if (status & RxComplete)
			corkscrew_rx(dev);

		if (status & TxAvailable) {
			if (corkscrew_debug > 5)
				printk("	TX room bit was handled.\n");
			/* There's room in the FIFO for a full-sized packet. */
			outw(AckIntr | TxAvailable, ioaddr + EL3_CMD);
			netif_wake_queue(dev);
		}
		if (status & DownComplete) {
			unsigned int dirty_tx = lp->dirty_tx;

			while (lp->cur_tx - dirty_tx > 0) {
				int entry = dirty_tx % TX_RING_SIZE;
				if (inl(ioaddr + DownListPtr) == isa_virt_to_bus(&lp->tx_ring[entry]))
					break;	/* It still hasn't been processed. */
				if (lp->tx_skbuff[entry]) {
					dev_kfree_skb_irq(lp->tx_skbuff[entry]);
					lp->tx_skbuff[entry] = NULL;
				}
				dirty_tx++;
			}
			lp->dirty_tx = dirty_tx;
			outw(AckIntr | DownComplete, ioaddr + EL3_CMD);
			if (lp->tx_full && (lp->cur_tx - dirty_tx <= TX_RING_SIZE - 1)) {
				lp->tx_full = 0;
				netif_wake_queue(dev);
			}
		}
#ifdef VORTEX_BUS_MASTER
		if (status & DMADone) {
			outw(0x1000, ioaddr + Wn7_MasterStatus);	/* Ack the event. */
			dev_kfree_skb_irq(lp->tx_skb);	/* Release the transferred buffer */
			netif_wake_queue(dev);
		}
#endif
		if (status & UpComplete) {
			boomerang_rx(dev);
			outw(AckIntr | UpComplete, ioaddr + EL3_CMD);
		}
		if (status & (AdapterFailure | RxEarly | StatsFull)) {
			/* Handle all uncommon interrupts at once. */
			if (status & RxEarly) {	/* Rx early is unused. */
				corkscrew_rx(dev);
				outw(AckIntr | RxEarly, ioaddr + EL3_CMD);
			}
			if (status & StatsFull) {	/* Empty statistics. */
				static int DoneDidThat;
				if (corkscrew_debug > 4)
					printk("%s: Updating stats.\n", dev->name);
				update_stats(ioaddr, dev);
				/* DEBUG HACK: Disable statistics as an interrupt source. */
				/* This occurs when we have the wrong media type! */
				if (DoneDidThat == 0 && inw(ioaddr + EL3_STATUS) & StatsFull) {
					int win, reg;
					printk("%s: Updating stats failed, disabling stats as an"
					     " interrupt source.\n", dev->name);
					for (win = 0; win < 8; win++) {
						EL3WINDOW(win);
						printk("\n Vortex window %d:", win);
						for (reg = 0; reg < 16; reg++)
							printk(" %2.2x", inb(ioaddr + reg));
					}
					EL3WINDOW(7);
					outw(SetIntrEnb | TxAvailable |
					     RxComplete | AdapterFailure |
					     UpComplete | DownComplete |
					     TxComplete, ioaddr + EL3_CMD);
					DoneDidThat++;
				}
			}
			if (status & AdapterFailure) {
				/* Adapter failure requires Rx reset and reinit. */
				outw(RxReset, ioaddr + EL3_CMD);
				/* Set the Rx filter to the current state. */
				set_rx_mode(dev);
				outw(RxEnable, ioaddr + EL3_CMD);	/* Re-enable the receiver. */
				outw(AckIntr | AdapterFailure,
				     ioaddr + EL3_CMD);
			}
		}

		if (--i < 0) {
			printk(KERN_ERR "%s: Too much work in interrupt, status %4.4x.  "
			     "Disabling functions (%4.4x).\n", dev->name,
			     status, SetStatusEnb | ((~status) & 0x7FE));
			/* Disable all pending interrupts. */
			outw(SetStatusEnb | ((~status) & 0x7FE), ioaddr + EL3_CMD);
			outw(AckIntr | 0x7FF, ioaddr + EL3_CMD);
			break;
		}
		/* Acknowledge the IRQ. */
		outw(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);

	} while ((status = inw(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
	
	spin_unlock(&lp->lock);

	if (corkscrew_debug > 4)
		printk("%s: exiting interrupt, status %4.4x.\n", dev->name, status);
	return IRQ_HANDLED;
}

static int corkscrew_rx(struct net_device *dev)
{
	struct corkscrew_private *vp = netdev_priv(dev);
	int ioaddr = dev->base_addr;
	int i;
	short rx_status;

	if (corkscrew_debug > 5)
		printk("   In rx_packet(), status %4.4x, rx_status %4.4x.\n",
		     inw(ioaddr + EL3_STATUS), inw(ioaddr + RxStatus));
	while ((rx_status = inw(ioaddr + RxStatus)) > 0) {
		if (rx_status & 0x4000) {	/* Error, update stats. */
			unsigned char rx_error = inb(ioaddr + RxErrors);
			if (corkscrew_debug > 2)
				printk(" Rx error: status %2.2x.\n",
				       rx_error);
			vp->stats.rx_errors++;
			if (rx_error & 0x01)
				vp->stats.rx_over_errors++;
			if (rx_error & 0x02)
				vp->stats.rx_length_errors++;
			if (rx_error & 0x04)
				vp->stats.rx_frame_errors++;
			if (rx_error & 0x08)
				vp->stats.rx_crc_errors++;
			if (rx_error & 0x10)
				vp->stats.rx_length_errors++;
		} else {
			/* The packet length: up to 4.5K!. */
			short pkt_len = rx_status & 0x1fff;
			struct sk_buff *skb;

			skb = dev_alloc_skb(pkt_len + 5 + 2);
			if (corkscrew_debug > 4)
				printk("Receiving packet size %d status %4.4x.\n",
				     pkt_len, rx_status);
			if (skb != NULL) {
				skb->dev = dev;
				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
				/* 'skb_put()' points to the start of sk_buff data area. */
				insl(ioaddr + RX_FIFO,
				     skb_put(skb, pkt_len),
				     (pkt_len + 3) >> 2);
				outw(RxDiscard, ioaddr + EL3_CMD);	/* Pop top Rx packet. */
				skb->protocol = eth_type_trans(skb, dev);
				netif_rx(skb);
				dev->last_rx = jiffies;
				vp->stats.rx_packets++;
				vp->stats.rx_bytes += pkt_len;
				/* Wait a limited time to go to next packet. */
				for (i = 200; i >= 0; i--)
					if (! (inw(ioaddr + EL3_STATUS) & CmdInProgress)) 
						break;
				continue;
			} else if (corkscrew_debug)
				printk("%s: Couldn't allocate a sk_buff of size %d.\n", dev->name, pkt_len);
		}
		outw(RxDiscard, ioaddr + EL3_CMD);
		vp->stats.rx_dropped++;
		/* Wait a limited time to skip this packet. */
		for (i = 200; i >= 0; i--)
			if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
				break;
	}
	return 0;
}

static int boomerang_rx(struct net_device *dev)
{
	struct corkscrew_private *vp = netdev_priv(dev);
	int entry = vp->cur_rx % RX_RING_SIZE;
	int ioaddr = dev->base_addr;
	int rx_status;

	if (corkscrew_debug > 5)
		printk("   In boomerang_rx(), status %4.4x, rx_status %4.4x.\n",
			inw(ioaddr + EL3_STATUS), inw(ioaddr + RxStatus));
	while ((rx_status = vp->rx_ring[entry].status) & RxDComplete) {
		if (rx_status & RxDError) {	/* Error, update stats. */
			unsigned char rx_error = rx_status >> 16;
			if (corkscrew_debug > 2)
				printk(" Rx error: status %2.2x.\n",
				       rx_error);
			vp->stats.rx_errors++;
			if (rx_error & 0x01)
				vp->stats.rx_over_errors++;
			if (rx_error & 0x02)
				vp->stats.rx_length_errors++;
			if (rx_error & 0x04)
				vp->stats.rx_frame_errors++;
			if (rx_error & 0x08)
				vp->stats.rx_crc_errors++;
			if (rx_error & 0x10)
				vp->stats.rx_length_errors++;
		} else {
			/* The packet length: up to 4.5K!. */
			short pkt_len = rx_status & 0x1fff;
			struct sk_buff *skb;

			vp->stats.rx_bytes += pkt_len;
			if (corkscrew_debug > 4)
				printk("Receiving packet size %d status %4.4x.\n",
				     pkt_len, rx_status);

			/* Check if the packet is long enough to just accept without
			   copying to a properly sized skbuff. */
			if (pkt_len < rx_copybreak
			    && (skb = dev_alloc_skb(pkt_len + 4)) != 0) {
				skb->dev = dev;
				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
				/* 'skb_put()' points to the start of sk_buff data area. */
				memcpy(skb_put(skb, pkt_len),
				       isa_bus_to_virt(vp->rx_ring[entry].
						   addr), pkt_len);
				rx_copy++;
			} else {
				void *temp;
				/* Pass up the skbuff already on the Rx ring. */
				skb = vp->rx_skbuff[entry];
				vp->rx_skbuff[entry] = NULL;
				temp = skb_put(skb, pkt_len);
				/* Remove this checking code for final release. */
				if (isa_bus_to_virt(vp->rx_ring[entry].addr) != temp)
					    printk("%s: Warning -- the skbuff addresses do not match"
					     " in boomerang_rx: %p vs. %p / %p.\n",
					     dev->name,
					     isa_bus_to_virt(vp->
							 rx_ring[entry].
							 addr), skb->head,
					     temp);
				rx_nocopy++;
			}
			skb->protocol = eth_type_trans(skb, dev);
			netif_rx(skb);
			dev->last_rx = jiffies;
			vp->stats.rx_packets++;
		}
		entry = (++vp->cur_rx) % RX_RING_SIZE;
	}
	/* Refill the Rx ring buffers. */
	for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
		struct sk_buff *skb;
		entry = vp->dirty_rx % RX_RING_SIZE;
		if (vp->rx_skbuff[entry] == NULL) {
			skb = dev_alloc_skb(PKT_BUF_SZ);
			if (skb == NULL)
				break;	/* Bad news!  */
			skb->dev = dev;	/* Mark as being used by this device. */
			skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
			vp->rx_ring[entry].addr = isa_virt_to_bus(skb->data);
Linus Torvalds's avatar
Linus Torvalds committed
			vp->rx_skbuff[entry] = skb;
		}
		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
	}
	return 0;
}

static int corkscrew_close(struct net_device *dev)
{
	struct corkscrew_private *vp = netdev_priv(dev);
	int ioaddr = dev->base_addr;
	int i;

	netif_stop_queue(dev);

	if (corkscrew_debug > 1) {
		printk("%s: corkscrew_close() status %4.4x, Tx status %2.2x.\n",
		     dev->name, inw(ioaddr + EL3_STATUS),
		     inb(ioaddr + TxStatus));
		printk("%s: corkscrew close stats: rx_nocopy %d rx_copy %d"
		       " tx_queued %d.\n", dev->name, rx_nocopy, rx_copy,
		       queued_packet);
	}

	del_timer(&vp->timer);

	/* Turn off statistics ASAP.  We update lp->stats below. */
	outw(StatsDisable, ioaddr + EL3_CMD);

	/* Disable the receiver and transmitter. */
	outw(RxDisable, ioaddr + EL3_CMD);
	outw(TxDisable, ioaddr + EL3_CMD);

	if (dev->if_port == XCVR_10base2)
		/* Turn off thinnet power.  Green! */
		outw(StopCoax, ioaddr + EL3_CMD);

	free_irq(dev->irq, dev);

	outw(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);

	update_stats(ioaddr, dev);
	if (vp->full_bus_master_rx) {	/* Free Boomerang bus master Rx buffers. */
		outl(0, ioaddr + UpListPtr);
		for (i = 0; i < RX_RING_SIZE; i++)
			if (vp->rx_skbuff[i]) {
				dev_kfree_skb(vp->rx_skbuff[i]);
				vp->rx_skbuff[i] = NULL;
			}
	}
	if (vp->full_bus_master_tx) {	/* Free Boomerang bus master Tx buffers. */
		outl(0, ioaddr + DownListPtr);
		for (i = 0; i < TX_RING_SIZE; i++)
			if (vp->tx_skbuff[i]) {
				dev_kfree_skb(vp->tx_skbuff[i]);
				vp->tx_skbuff[i] = NULL;
			}
	}

	return 0;
}

static struct net_device_stats *corkscrew_get_stats(struct net_device *dev)
{
	struct corkscrew_private *vp = netdev_priv(dev);
	unsigned long flags;

	if (netif_running(dev)) {
		spin_lock_irqsave(&vp->lock, flags);
		update_stats(dev->base_addr, dev);
		spin_unlock_irqrestore(&vp->lock, flags);
	}
	return &vp->stats;
}

/*  Update statistics.
	Unlike with the EL3 we need not worry about interrupts changing
	the window setting from underneath us, but we must still guard
	against a race condition with a StatsUpdate interrupt updating the
	table.  This is done by checking that the ASM (!) code generated uses
	atomic updates with '+='.
	*/
static void update_stats(int ioaddr, struct net_device *dev)
{
	struct corkscrew_private *vp = netdev_priv(dev);

	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
	/* Switch to the stats window, and read everything. */
	EL3WINDOW(6);
	vp->stats.tx_carrier_errors += inb(ioaddr + 0);
	vp->stats.tx_heartbeat_errors += inb(ioaddr + 1);
	/* Multiple collisions. */ inb(ioaddr + 2);
	vp->stats.collisions += inb(ioaddr + 3);
	vp->stats.tx_window_errors += inb(ioaddr + 4);
	vp->stats.rx_fifo_errors += inb(ioaddr + 5);
	vp->stats.tx_packets += inb(ioaddr + 6);
	vp->stats.tx_packets += (inb(ioaddr + 9) & 0x30) << 4;
						/* Rx packets   */ inb(ioaddr + 7);
						/* Must read to clear */
	/* Tx deferrals */ inb(ioaddr + 8);
	/* Don't bother with register 9, an extension of registers 6&7.
	   If we do use the 6&7 values the atomic update assumption above
	   is invalid. */
	inw(ioaddr + 10);	/* Total Rx and Tx octets. */
	inw(ioaddr + 12);
	/* New: On the Vortex we must also clear the BadSSD counter. */
	EL3WINDOW(4);
	inb(ioaddr + 12);

	/* We change back to window 7 (not 1) with the Vortex. */
	EL3WINDOW(7);
	return;
}

/* This new version of set_rx_mode() supports v1.4 kernels.
   The Vortex chip has no documented multicast filter, so the only
   multicast setting is to receive all multicast frames.  At least
   the chip has a very clean way to set the mode, unlike many others. */
static void set_rx_mode(struct net_device *dev)
{
	int ioaddr = dev->base_addr;
	short new_mode;

	if (dev->flags & IFF_PROMISC) {
		if (corkscrew_debug > 3)
			printk("%s: Setting promiscuous mode.\n",
			       dev->name);
		new_mode = SetRxFilter | RxStation | RxMulticast | RxBroadcast | RxProm;
	} else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) {
		new_mode = SetRxFilter | RxStation | RxMulticast | RxBroadcast;
	} else
		new_mode = SetRxFilter | RxStation | RxBroadcast;

	outw(new_mode, ioaddr + EL3_CMD);
}

static void netdev_get_drvinfo(struct net_device *dev,
			       struct ethtool_drvinfo *info)
{
	strcpy(info->driver, DRV_NAME);
	strcpy(info->version, DRV_VERSION);
	sprintf(info->bus_info, "ISA 0x%lx", dev->base_addr);
}

static u32 netdev_get_msglevel(struct net_device *dev)
{
	return corkscrew_debug;
}

static void netdev_set_msglevel(struct net_device *dev, u32 level)
{
	corkscrew_debug = level;
}

static struct ethtool_ops netdev_ethtool_ops = {
	.get_drvinfo		= netdev_get_drvinfo,
	.get_msglevel		= netdev_get_msglevel,
	.set_msglevel		= netdev_set_msglevel,
};


#ifdef MODULE
void cleanup_module(void)
{
	while (!list_empty(&root_corkscrew_dev)) {
		struct net_device *dev;
		struct corkscrew_private *vp;

		vp = list_entry(root_corkscrew_dev.next,
				struct corkscrew_private, list);
		dev = vp->our_dev;
		unregister_netdev(dev);
		cleanup_card(dev);
		free_netdev(dev);
	}
}
#endif				/* MODULE */

/*
 * Local variables:
 *  compile-command: "gcc -DMODULE -D__KERNEL__ -Wall -Wstrict-prototypes -O6 -c 3c515.c"
 *  c-indent-level: 4
 *  tab-width: 4
 * End:
 */