Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
/*
* linux/mm/memory.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*/
/*
* demand-loading started 01.12.91 - seems it is high on the list of
* things wanted, and it should be easy to implement. - Linus
*/
/*
* Ok, demand-loading was easy, shared pages a little bit tricker. Shared
* pages started 02.12.91, seems to work. - Linus.
*
* Tested sharing by executing about 30 /bin/sh: under the old kernel it
* would have taken more than the 6M I have free, but it worked well as
* far as I could see.
*
* Also corrected some "invalidate()"s - I wasn't doing enough of them.
*/
/*
* Real VM (paging to/from disk) started 18.12.91. Much more work and
* thought has to go into this. Oh, well..
* 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
* Found it. Everything seems to work now.
* 20.12.91 - Ok, making the swap-device changeable like the root.
*/
/*
* 05.04.94 - Multi-page memory management added for v1.1.
* Idea by Alex Bligh (alex@cconcepts.co.uk)
*
* 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
* (Gerhard.Wichert@pdb.siemens.de)
*
* Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
*/
#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/module.h>
Shailabh Nagar
committed
#include <linux/delayacct.h>
#include <asm/pgalloc.h>
#include <asm/uaccess.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>
#include <linux/swapops.h>
#include <linux/elf.h>
/* use the per-pgdat data instead for discontigmem - mbligh */
unsigned long max_mapnr;
struct page *mem_map;
EXPORT_SYMBOL(max_mapnr);
EXPORT_SYMBOL(mem_map);
#endif
unsigned long num_physpages;
/*
* A number of key systems in x86 including ioremap() rely on the assumption
* that high_memory defines the upper bound on direct map memory, then end
* of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
* highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
* and ZONE_HIGHMEM.
*/
void * high_memory;
unsigned long vmalloc_earlyreserve;
EXPORT_SYMBOL(num_physpages);
EXPORT_SYMBOL(high_memory);
EXPORT_SYMBOL(vmalloc_earlyreserve);
int randomize_va_space __read_mostly = 1;
static int __init disable_randmaps(char *s)
{
randomize_va_space = 0;
}
__setup("norandmaps", disable_randmaps);
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
/*
* If a p?d_bad entry is found while walking page tables, report
* the error, before resetting entry to p?d_none. Usually (but
* very seldom) called out from the p?d_none_or_clear_bad macros.
*/
void pgd_clear_bad(pgd_t *pgd)
{
pgd_ERROR(*pgd);
pgd_clear(pgd);
}
void pud_clear_bad(pud_t *pud)
{
pud_ERROR(*pud);
pud_clear(pud);
}
void pmd_clear_bad(pmd_t *pmd)
{
pmd_ERROR(*pmd);
pmd_clear(pmd);
}
/*
* Note: this doesn't free the actual pages themselves. That
* has been handled earlier when unmapping all the memory regions.
*/
static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
struct page *page = pmd_page(*pmd);
pmd_clear(pmd);
Christoph Lameter
committed
dec_zone_page_state(page, NR_PAGETABLE);
static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
if (pmd_none_or_clear_bad(pmd))
continue;
start &= PUD_MASK;
if (start < floor)
return;
if (ceiling) {
ceiling &= PUD_MASK;
if (!ceiling)
return;
if (end - 1 > ceiling - 1)
return;
pmd = pmd_offset(pud, start);
pud_clear(pud);
pmd_free_tlb(tlb, pmd);
static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
pud = pud_offset(pgd, addr);
do {
next = pud_addr_end(addr, end);
if (pud_none_or_clear_bad(pud))
continue;
free_pmd_range(tlb, pud, addr, next, floor, ceiling);
start &= PGDIR_MASK;
if (start < floor)
return;
if (ceiling) {
ceiling &= PGDIR_MASK;
if (!ceiling)
return;
if (end - 1 > ceiling - 1)
return;
pud = pud_offset(pgd, start);
pgd_clear(pgd);
pud_free_tlb(tlb, pud);
* This function frees user-level page tables of a process.
*
void free_pgd_range(struct mmu_gather **tlb,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
unsigned long start;
/*
* The next few lines have given us lots of grief...
*
* Why are we testing PMD* at this top level? Because often
* there will be no work to do at all, and we'd prefer not to
* go all the way down to the bottom just to discover that.
*
* Why all these "- 1"s? Because 0 represents both the bottom
* of the address space and the top of it (using -1 for the
* top wouldn't help much: the masks would do the wrong thing).
* The rule is that addr 0 and floor 0 refer to the bottom of
* the address space, but end 0 and ceiling 0 refer to the top
* Comparisons need to use "end - 1" and "ceiling - 1" (though
* that end 0 case should be mythical).
*
* Wherever addr is brought up or ceiling brought down, we must
* be careful to reject "the opposite 0" before it confuses the
* subsequent tests. But what about where end is brought down
* by PMD_SIZE below? no, end can't go down to 0 there.
*
* Whereas we round start (addr) and ceiling down, by different
* masks at different levels, in order to test whether a table
* now has no other vmas using it, so can be freed, we don't
* bother to round floor or end up - the tests don't need that.
*/
addr &= PMD_MASK;
if (addr < floor) {
addr += PMD_SIZE;
if (!addr)
return;
}
if (ceiling) {
ceiling &= PMD_MASK;
if (!ceiling)
return;
}
if (end - 1 > ceiling - 1)
end -= PMD_SIZE;
if (addr > end - 1)
return;
start = addr;
pgd = pgd_offset((*tlb)->mm, addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
continue;
free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
flush_tlb_pgtables((*tlb)->mm, start, end);
}
void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
unsigned long floor, unsigned long ceiling)
{
while (vma) {
struct vm_area_struct *next = vma->vm_next;
unsigned long addr = vma->vm_start;
/*
* Hide vma from rmap and vmtruncate before freeing pgtables
*/
anon_vma_unlink(vma);
unlink_file_vma(vma);
if (is_vm_hugetlb_page(vma)) {
hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
floor, next? next->vm_start: ceiling);
} else {
/*
* Optimization: gather nearby vmas into one call down
*/
while (next && next->vm_start <= vma->vm_end + PMD_SIZE
&& !is_vm_hugetlb_page(next)) {
vma = next;
next = vma->vm_next;
anon_vma_unlink(vma);
unlink_file_vma(vma);
}
free_pgd_range(tlb, addr, vma->vm_end,
floor, next? next->vm_start: ceiling);
}
int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
struct page *new = pte_alloc_one(mm, address);
if (pmd_present(*pmd)) { /* Another has populated it */
pte_lock_deinit(new);
Christoph Lameter
committed
inc_zone_page_state(new, NR_PAGETABLE);
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
pte_t *new = pte_alloc_one_kernel(&init_mm, address);
if (!new)
return -ENOMEM;
spin_lock(&init_mm.page_table_lock);
if (pmd_present(*pmd)) /* Another has populated it */
pte_free_kernel(new);
else
pmd_populate_kernel(&init_mm, pmd, new);
spin_unlock(&init_mm.page_table_lock);
return 0;
static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
{
if (file_rss)
add_mm_counter(mm, file_rss, file_rss);
if (anon_rss)
add_mm_counter(mm, anon_rss, anon_rss);
}
* This function is called to print an error when a bad pte
* is found. For example, we might have a PFN-mapped pte in
* a region that doesn't allow it.
*
* The calling function must still handle the error.
*/
void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
{
printk(KERN_ERR "Bad pte = %08llx, process = %s, "
"vm_flags = %lx, vaddr = %lx\n",
(long long)pte_val(pte),
(vma->vm_mm == current->mm ? current->comm : "???"),
vma->vm_flags, vaddr);
dump_stack();
}
static inline int is_cow_mapping(unsigned int flags)
{
return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
}
* This function gets the "struct page" associated with a pte.
*
* NOTE! Some mappings do not have "struct pages". A raw PFN mapping
* will have each page table entry just pointing to a raw page frame
* number, and as far as the VM layer is concerned, those do not have
* pages associated with them - even if the PFN might point to memory
* that otherwise is perfectly fine and has a "struct page".
*
* The way we recognize those mappings is through the rules set up
* by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
* and the vm_pgoff will point to the first PFN mapped: thus every
* page that is a raw mapping will always honor the rule
*
* pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
*
* and if that isn't true, the page has been COW'ed (in which case it
* _does_ have a "struct page" associated with it even if it is in a
* VM_PFNMAP range).
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
unsigned long pfn = pte_pfn(pte);
if (unlikely(vma->vm_flags & VM_PFNMAP)) {
unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
if (pfn == vma->vm_pgoff + off)
return NULL;
if (!is_cow_mapping(vma->vm_flags))
/*
* Add some anal sanity checks for now. Eventually,
* we should just do "return pfn_to_page(pfn)", but
* in the meantime we check that we get a valid pfn,
* and that the resulting page looks ok.
*/
if (unlikely(!pfn_valid(pfn))) {
print_bad_pte(vma, pte, addr);
return NULL;
}
/*
* NOTE! We still have PageReserved() pages in the page
* tables.
*
* The PAGE_ZERO() pages and various VDSO mappings can
* cause them to exist.
*/
return pfn_to_page(pfn);
/*
* copy one vm_area from one task to the other. Assumes the page tables
* already present in the new task to be cleared in the whole range
* covered by this vma.
*/
copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
pte_t pte = *src_pte;
struct page *page;
/* pte contains position in swap or file, so copy. */
if (unlikely(!pte_present(pte))) {
if (!pte_file(pte)) {
swp_entry_t entry = pte_to_swp_entry(pte);
swap_duplicate(entry);
/* make sure dst_mm is on swapoff's mmlist. */
if (unlikely(list_empty(&dst_mm->mmlist))) {
spin_lock(&mmlist_lock);
if (list_empty(&dst_mm->mmlist))
list_add(&dst_mm->mmlist,
&src_mm->mmlist);
if (is_write_migration_entry(entry) &&
is_cow_mapping(vm_flags)) {
/*
* COW mappings require pages in both parent
* and child to be set to read.
*/
make_migration_entry_read(&entry);
pte = swp_entry_to_pte(entry);
set_pte_at(src_mm, addr, src_pte, pte);
}
}
/*
* If it's a COW mapping, write protect it both
* in the parent and the child
*/
if (is_cow_mapping(vm_flags)) {
pte = pte_wrprotect(pte);
}
/*
* If it's a shared mapping, mark it clean in
* the child
*/
if (vm_flags & VM_SHARED)
pte = pte_mkclean(pte);
pte = pte_mkold(pte);
page = vm_normal_page(vma, addr, pte);
if (page) {
get_page(page);
page_dup_rmap(page);
rss[!!PageAnon(page)]++;
}
out_set_pte:
set_pte_at(dst_mm, addr, dst_pte, pte);
}
static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
unsigned long addr, unsigned long end)
{
pte_t *src_pte, *dst_pte;
dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
if (!dst_pte)
return -ENOMEM;
src_pte = pte_offset_map_nested(src_pmd, addr);
src_ptl = pte_lockptr(src_mm, src_pmd);
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
do {
/*
* We are holding two locks at this point - either of them
* could generate latencies in another task on another CPU.
*/
if (progress >= 32) {
progress = 0;
if (need_resched() ||
need_lockbreak(src_ptl) ||
need_lockbreak(dst_ptl))
if (pte_none(*src_pte)) {
progress++;
continue;
}
copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
progress += 8;
} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
add_mm_rss(dst_mm, rss[0], rss[1]);
pte_unmap_unlock(dst_pte - 1, dst_ptl);
cond_resched();
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
if (addr != end)
goto again;
return 0;
}
static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
unsigned long addr, unsigned long end)
{
pmd_t *src_pmd, *dst_pmd;
unsigned long next;
dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
if (!dst_pmd)
return -ENOMEM;
src_pmd = pmd_offset(src_pud, addr);
do {
next = pmd_addr_end(addr, end);
if (pmd_none_or_clear_bad(src_pmd))
continue;
if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
vma, addr, next))
return -ENOMEM;
} while (dst_pmd++, src_pmd++, addr = next, addr != end);
return 0;
}
static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
unsigned long addr, unsigned long end)
{
pud_t *src_pud, *dst_pud;
unsigned long next;
dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
if (!dst_pud)
return -ENOMEM;
src_pud = pud_offset(src_pgd, addr);
do {
next = pud_addr_end(addr, end);
if (pud_none_or_clear_bad(src_pud))
continue;
if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
vma, addr, next))
return -ENOMEM;
} while (dst_pud++, src_pud++, addr = next, addr != end);
return 0;
}
int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
struct vm_area_struct *vma)
{
pgd_t *src_pgd, *dst_pgd;
unsigned long next;
unsigned long addr = vma->vm_start;
unsigned long end = vma->vm_end;
/*
* Don't copy ptes where a page fault will fill them correctly.
* Fork becomes much lighter when there are big shared or private
* readonly mappings. The tradeoff is that copy_page_range is more
* efficient than faulting.
*/
if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
if (!vma->anon_vma)
return 0;
}
if (is_vm_hugetlb_page(vma))
return copy_hugetlb_page_range(dst_mm, src_mm, vma);
dst_pgd = pgd_offset(dst_mm, addr);
src_pgd = pgd_offset(src_mm, addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(src_pgd))
continue;
if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
vma, addr, next))
return -ENOMEM;
} while (dst_pgd++, src_pgd++, addr = next, addr != end);
return 0;
}
static unsigned long zap_pte_range(struct mmu_gather *tlb,
long *zap_work, struct zap_details *details)
int file_rss = 0;
int anon_rss = 0;
pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
if (pte_none(ptent)) {
(*zap_work)--;
page = vm_normal_page(vma, addr, ptent);
if (unlikely(details) && page) {
/*
* unmap_shared_mapping_pages() wants to
* invalidate cache without truncating:
* unmap shared but keep private pages.
*/
if (details->check_mapping &&
details->check_mapping != page->mapping)
continue;
/*
* Each page->index must be checked when
* invalidating or truncating nonlinear.
*/
if (details->nonlinear_vma &&
(page->index < details->first_index ||
page->index > details->last_index))
continue;
}
ptent = ptep_get_and_clear_full(mm, addr, pte,
tlb_remove_tlb_entry(tlb, pte, addr);
if (unlikely(!page))
continue;
if (unlikely(details) && details->nonlinear_vma
&& linear_page_index(details->nonlinear_vma,
addr) != page->index)
else {
if (pte_dirty(ptent))
set_page_dirty(page);
if (pte_young(ptent))
mark_page_accessed(page);
page_remove_rmap(page);
tlb_remove_page(tlb, page);
continue;
}
/*
* If details->check_mapping, we leave swap entries;
* if details->nonlinear_vma, we leave file entries.
*/
if (unlikely(details))
continue;
if (!pte_file(ptent))
free_swap_and_cache(pte_to_swp_entry(ptent));
pte_clear_full(mm, addr, pte, tlb->fullmm);
} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
long *zap_work, struct zap_details *details)
{
pmd_t *pmd;
unsigned long next;
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
if (pmd_none_or_clear_bad(pmd)) {
(*zap_work)--;
}
next = zap_pte_range(tlb, vma, pmd, addr, next,
zap_work, details);
} while (pmd++, addr = next, (addr != end && *zap_work > 0));
return addr;
static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
long *zap_work, struct zap_details *details)
{
pud_t *pud;
unsigned long next;
pud = pud_offset(pgd, addr);
do {
next = pud_addr_end(addr, end);
if (pud_none_or_clear_bad(pud)) {
(*zap_work)--;
}
next = zap_pmd_range(tlb, vma, pud, addr, next,
zap_work, details);
} while (pud++, addr = next, (addr != end && *zap_work > 0));
return addr;
static unsigned long unmap_page_range(struct mmu_gather *tlb,
struct vm_area_struct *vma,
long *zap_work, struct zap_details *details)
{
pgd_t *pgd;
unsigned long next;
if (details && !details->check_mapping && !details->nonlinear_vma)
details = NULL;
BUG_ON(addr >= end);
tlb_start_vma(tlb, vma);
pgd = pgd_offset(vma->vm_mm, addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd)) {
(*zap_work)--;
}
next = zap_pud_range(tlb, vma, pgd, addr, next,
zap_work, details);
} while (pgd++, addr = next, (addr != end && *zap_work > 0));
}
#ifdef CONFIG_PREEMPT
# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
#else
/* No preempt: go for improved straight-line efficiency */
# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
#endif
/**
* unmap_vmas - unmap a range of memory covered by a list of vma's
* @tlbp: address of the caller's struct mmu_gather
* @vma: the starting vma
* @start_addr: virtual address at which to start unmapping
* @end_addr: virtual address at which to end unmapping
* @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
* @details: details of nonlinear truncation or shared cache invalidation
*
* Returns the end address of the unmapping (restart addr if interrupted).
* Unmap all pages in the vma list.
* We aim to not hold locks for too long (for scheduling latency reasons).
* So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
* return the ending mmu_gather to the caller.
*
* Only addresses between `start' and `end' will be unmapped.
*
* The VMA list must be sorted in ascending virtual address order.
*
* unmap_vmas() assumes that the caller will flush the whole unmapped address
* range after unmap_vmas() returns. So the only responsibility here is to
* ensure that any thus-far unmapped pages are flushed before unmap_vmas()
* drops the lock and schedules.
*/
unsigned long unmap_vmas(struct mmu_gather **tlbp,
struct vm_area_struct *vma, unsigned long start_addr,
unsigned long end_addr, unsigned long *nr_accounted,
struct zap_details *details)
{
long zap_work = ZAP_BLOCK_SIZE;
unsigned long tlb_start = 0; /* For tlb_finish_mmu */
int tlb_start_valid = 0;
spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
unsigned long end;
start = max(vma->vm_start, start_addr);
if (start >= vma->vm_end)
continue;
end = min(vma->vm_end, end_addr);
if (end <= vma->vm_start)
continue;
if (vma->vm_flags & VM_ACCOUNT)
*nr_accounted += (end - start) >> PAGE_SHIFT;
while (start != end) {
if (!tlb_start_valid) {
tlb_start = start;
tlb_start_valid = 1;
}
if (unlikely(is_vm_hugetlb_page(vma))) {
zap_work -= (end - start) /
(HPAGE_SIZE / PAGE_SIZE);
start = end;
} else
start = unmap_page_range(*tlbp, vma,
start, end, &zap_work, details);
if (zap_work > 0) {
BUG_ON(start != end);
break;
}
tlb_finish_mmu(*tlbp, tlb_start, start);
if (need_resched() ||
(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
if (i_mmap_lock) {
*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
return start; /* which is now the end (or restart) address */
}
/**
* zap_page_range - remove user pages in a given range
* @vma: vm_area_struct holding the applicable pages
* @address: starting address of pages to zap
* @size: number of bytes to zap
* @details: details of nonlinear truncation or shared cache invalidation
*/
unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
unsigned long size, struct zap_details *details)
{
struct mm_struct *mm = vma->vm_mm;
struct mmu_gather *tlb;
unsigned long end = address + size;
unsigned long nr_accounted = 0;
lru_add_drain();
tlb = tlb_gather_mmu(mm, 0);
end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
if (tlb)
tlb_finish_mmu(tlb, address, end);
}
/*
* Do a quick page-table lookup for a single page.
*/
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *ptep, pte;
struct mm_struct *mm = vma->vm_mm;
page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
if (!IS_ERR(page)) {
BUG_ON(flags & FOLL_GET);
goto out;
}
pgd = pgd_offset(mm, address);
if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
pud = pud_offset(pgd, address);
if (pud_none(*pud) || unlikely(pud_bad(*pud)))
pmd = pmd_offset(pud, address);
if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
goto no_page_table;
if (pmd_huge(*pmd)) {
BUG_ON(flags & FOLL_GET);
page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
if (!pte_present(pte))
goto unlock;
if ((flags & FOLL_WRITE) && !pte_write(pte))
goto unlock;
page = vm_normal_page(vma, address, pte);
if (unlikely(!page))
if (flags & FOLL_GET)
get_page(page);
if (flags & FOLL_TOUCH) {
if ((flags & FOLL_WRITE) &&
!pte_dirty(pte) && !PageDirty(page))
set_page_dirty(page);
mark_page_accessed(page);
}
unlock:
pte_unmap_unlock(ptep, ptl);
no_page_table:
/*
* When core dumping an enormous anonymous area that nobody
* has touched so far, we don't want to allocate page tables.
*/
if (flags & FOLL_ANON) {
page = ZERO_PAGE(address);
if (flags & FOLL_GET)
get_page(page);
BUG_ON(flags & FOLL_WRITE);
}
return page;
}
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, int len, int write, int force,
struct page **pages, struct vm_area_struct **vmas)
{
int i;
/*
* Require read or write permissions.
* If 'force' is set, we only require the "MAY" flags.
*/
vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
struct vm_area_struct *vma;
unsigned int foll_flags;
vma = find_extend_vma(mm, start);
if (!vma && in_gate_area(tsk, start)) {
unsigned long pg = start & PAGE_MASK;
struct vm_area_struct *gate_vma = get_gate_vma(tsk);
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;