qemu-thread-win32.c 9.79 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Win32 implementation for mutex/cond/thread functions
 *
 * Copyright Red Hat, Inc. 2010
 *
 * Author:
 *  Paolo Bonzini <pbonzini@redhat.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */
#include "qemu-common.h"
14
#include "qemu/thread.h"
15 16 17 18
#include <process.h>
#include <assert.h>
#include <limits.h>

19 20 21 22 23 24
static bool name_threads;

void qemu_thread_naming(bool enable)
{
    /* But note we don't actually name them on Windows yet */
    name_threads = enable;
25 26

    fprintf(stderr, "qemu: thread naming not supported on this host\n");
27 28
}

29 30 31 32 33 34 35 36
static void error_exit(int err, const char *msg)
{
    char *pstr;

    FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
                  NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
    fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
    LocalFree(pstr);
37
    abort();
38 39 40 41 42 43 44 45
}

void qemu_mutex_init(QemuMutex *mutex)
{
    mutex->owner = 0;
    InitializeCriticalSection(&mutex->lock);
}

46 47 48 49 50 51
void qemu_mutex_destroy(QemuMutex *mutex)
{
    assert(mutex->owner == 0);
    DeleteCriticalSection(&mutex->lock);
}

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
void qemu_mutex_lock(QemuMutex *mutex)
{
    EnterCriticalSection(&mutex->lock);

    /* Win32 CRITICAL_SECTIONs are recursive.  Assert that we're not
     * using them as such.
     */
    assert(mutex->owner == 0);
    mutex->owner = GetCurrentThreadId();
}

int qemu_mutex_trylock(QemuMutex *mutex)
{
    int owned;

    owned = TryEnterCriticalSection(&mutex->lock);
    if (owned) {
        assert(mutex->owner == 0);
        mutex->owner = GetCurrentThreadId();
    }
    return !owned;
}

void qemu_mutex_unlock(QemuMutex *mutex)
{
    assert(mutex->owner == GetCurrentThreadId());
    mutex->owner = 0;
    LeaveCriticalSection(&mutex->lock);
}

void qemu_cond_init(QemuCond *cond)
{
    memset(cond, 0, sizeof(*cond));

    cond->sema = CreateSemaphore(NULL, 0, LONG_MAX, NULL);
    if (!cond->sema) {
        error_exit(GetLastError(), __func__);
    }
    cond->continue_event = CreateEvent(NULL,    /* security */
                                       FALSE,   /* auto-reset */
                                       FALSE,   /* not signaled */
                                       NULL);   /* name */
    if (!cond->continue_event) {
        error_exit(GetLastError(), __func__);
    }
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
void qemu_cond_destroy(QemuCond *cond)
{
    BOOL result;
    result = CloseHandle(cond->continue_event);
    if (!result) {
        error_exit(GetLastError(), __func__);
    }
    cond->continue_event = 0;
    result = CloseHandle(cond->sema);
    if (!result) {
        error_exit(GetLastError(), __func__);
    }
    cond->sema = 0;
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
void qemu_cond_signal(QemuCond *cond)
{
    DWORD result;

    /*
     * Signal only when there are waiters.  cond->waiters is
     * incremented by pthread_cond_wait under the external lock,
     * so we are safe about that.
     */
    if (cond->waiters == 0) {
        return;
    }

    /*
     * Waiting threads decrement it outside the external lock, but
     * only if another thread is executing pthread_cond_broadcast and
     * has the mutex.  So, it also cannot be decremented concurrently
     * with this particular access.
     */
    cond->target = cond->waiters - 1;
    result = SignalObjectAndWait(cond->sema, cond->continue_event,
                                 INFINITE, FALSE);
    if (result == WAIT_ABANDONED || result == WAIT_FAILED) {
        error_exit(GetLastError(), __func__);
    }
}

void qemu_cond_broadcast(QemuCond *cond)
{
    BOOLEAN result;
    /*
     * As in pthread_cond_signal, access to cond->waiters and
     * cond->target is locked via the external mutex.
     */
    if (cond->waiters == 0) {
        return;
    }

    cond->target = 0;
    result = ReleaseSemaphore(cond->sema, cond->waiters, NULL);
    if (!result) {
        error_exit(GetLastError(), __func__);
    }

    /*
     * At this point all waiters continue. Each one takes its
     * slice of the semaphore. Now it's our turn to wait: Since
     * the external mutex is held, no thread can leave cond_wait,
     * yet. For this reason, we can be sure that no thread gets
     * a chance to eat *more* than one slice. OTOH, it means
     * that the last waiter must send us a wake-up.
     */
    WaitForSingleObject(cond->continue_event, INFINITE);
}

void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex)
{
    /*
     * This access is protected under the mutex.
     */
    cond->waiters++;

    /*
     * Unlock external mutex and wait for signal.
     * NOTE: we've held mutex locked long enough to increment
     * waiters count above, so there's no problem with
     * leaving mutex unlocked before we wait on semaphore.
     */
    qemu_mutex_unlock(mutex);
    WaitForSingleObject(cond->sema, INFINITE);

    /* Now waiters must rendez-vous with the signaling thread and
     * let it continue.  For cond_broadcast this has heavy contention
     * and triggers thundering herd.  So goes life.
     *
     * Decrease waiters count.  The mutex is not taken, so we have
     * to do this atomically.
     *
     * All waiters contend for the mutex at the end of this function
     * until the signaling thread relinquishes it.  To ensure
     * each waiter consumes exactly one slice of the semaphore,
     * the signaling thread stops until it is told by the last
     * waiter that it can go on.
     */
    if (InterlockedDecrement(&cond->waiters) == cond->target) {
        SetEvent(cond->continue_event);
    }

    qemu_mutex_lock(mutex);
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
void qemu_sem_init(QemuSemaphore *sem, int init)
{
    /* Manual reset.  */
    sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
}

void qemu_sem_destroy(QemuSemaphore *sem)
{
    CloseHandle(sem->sema);
}

void qemu_sem_post(QemuSemaphore *sem)
{
    ReleaseSemaphore(sem->sema, 1, NULL);
}

int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
{
    int rc = WaitForSingleObject(sem->sema, ms);
    if (rc == WAIT_OBJECT_0) {
        return 0;
    }
    if (rc != WAIT_TIMEOUT) {
        error_exit(GetLastError(), __func__);
    }
    return -1;
}

void qemu_sem_wait(QemuSemaphore *sem)
{
    if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
        error_exit(GetLastError(), __func__);
    }
}

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
void qemu_event_init(QemuEvent *ev, bool init)
{
    /* Manual reset.  */
    ev->event = CreateEvent(NULL, TRUE, init, NULL);
}

void qemu_event_destroy(QemuEvent *ev)
{
    CloseHandle(ev->event);
}

void qemu_event_set(QemuEvent *ev)
{
    SetEvent(ev->event);
}

void qemu_event_reset(QemuEvent *ev)
{
    ResetEvent(ev->event);
}

void qemu_event_wait(QemuEvent *ev)
{
    WaitForSingleObject(ev->event, INFINITE);
}

266
struct QemuThreadData {
267 268 269 270 271 272 273 274 275
    /* Passed to win32_start_routine.  */
    void             *(*start_routine)(void *);
    void             *arg;
    short             mode;

    /* Only used for joinable threads. */
    bool              exited;
    void             *ret;
    CRITICAL_SECTION  cs;
276 277
};

278
static __thread QemuThreadData *qemu_thread_data;
279 280 281

static unsigned __stdcall win32_start_routine(void *arg)
{
282 283 284 285 286 287 288 289
    QemuThreadData *data = (QemuThreadData *) arg;
    void *(*start_routine)(void *) = data->start_routine;
    void *thread_arg = data->arg;

    if (data->mode == QEMU_THREAD_DETACHED) {
        g_free(data);
        data = NULL;
    }
290
    qemu_thread_data = data;
291
    qemu_thread_exit(start_routine(thread_arg));
292 293 294 295 296
    abort();
}

void qemu_thread_exit(void *arg)
{
297 298
    QemuThreadData *data = qemu_thread_data;

299
    if (data) {
300
        assert(data->mode != QEMU_THREAD_DETACHED);
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        data->ret = arg;
        EnterCriticalSection(&data->cs);
        data->exited = true;
        LeaveCriticalSection(&data->cs);
    }
    _endthreadex(0);
}

void *qemu_thread_join(QemuThread *thread)
{
    QemuThreadData *data;
    void *ret;
    HANDLE handle;

    data = thread->data;
    if (!data) {
        return NULL;
    }
    /*
     * Because multiple copies of the QemuThread can exist via
     * qemu_thread_get_self, we need to store a value that cannot
     * leak there.  The simplest, non racy way is to store the TID,
     * discard the handle that _beginthreadex gives back, and
     * get another copy of the handle here.
     */
Paolo Bonzini's avatar
Paolo Bonzini committed
326 327
    handle = qemu_thread_get_handle(thread);
    if (handle) {
328 329 330 331
        WaitForSingleObject(handle, INFINITE);
        CloseHandle(handle);
    }
    ret = data->ret;
332
    assert(data->mode != QEMU_THREAD_DETACHED);
333 334 335
    DeleteCriticalSection(&data->cs);
    g_free(data);
    return ret;
336 337
}

338
void qemu_thread_create(QemuThread *thread, const char *name,
339
                       void *(*start_routine)(void *),
340
                       void *arg, int mode)
341 342 343
{
    HANDLE hThread;
    struct QemuThreadData *data;
344

345
    data = g_malloc(sizeof *data);
346 347
    data->start_routine = start_routine;
    data->arg = arg;
348 349
    data->mode = mode;
    data->exited = false;
350

351 352 353 354
    if (data->mode != QEMU_THREAD_DETACHED) {
        InitializeCriticalSection(&data->cs);
    }

355
    hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
356
                                      data, 0, &thread->tid);
357 358 359 360
    if (!hThread) {
        error_exit(GetLastError(), __func__);
    }
    CloseHandle(hThread);
361
    thread->data = (mode == QEMU_THREAD_DETACHED) ? NULL : data;
362 363 364 365
}

void qemu_thread_get_self(QemuThread *thread)
{
366
    thread->data = qemu_thread_data;
367
    thread->tid = GetCurrentThreadId();
368 369
}

Paolo Bonzini's avatar
Paolo Bonzini committed
370 371 372 373 374 375 376 377 378 379
HANDLE qemu_thread_get_handle(QemuThread *thread)
{
    QemuThreadData *data;
    HANDLE handle;

    data = thread->data;
    if (!data) {
        return NULL;
    }

380
    assert(data->mode != QEMU_THREAD_DETACHED);
Paolo Bonzini's avatar
Paolo Bonzini committed
381 382 383 384 385 386 387 388 389 390 391
    EnterCriticalSection(&data->cs);
    if (!data->exited) {
        handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME, FALSE,
                            thread->tid);
    } else {
        handle = NULL;
    }
    LeaveCriticalSection(&data->cs);
    return handle;
}

392
bool qemu_thread_is_self(QemuThread *thread)
393
{
394
    return GetCurrentThreadId() == thread->tid;
395
}