cputlb.c 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  Common CPU TLB handling
 *
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "config.h"
#include "cpu.h"
22 23 24
#include "exec/exec-all.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
25
#include "exec/cpu_ldst.h"
26

27
#include "exec/cputlb.h"
28

29
#include "exec/memory-internal.h"
30
#include "exec/ram_addr.h"
31
#include "tcg/tcg.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

//#define DEBUG_TLB
//#define DEBUG_TLB_CHECK

/* statistics */
int tlb_flush_count;

/* NOTE:
 * If flush_global is true (the usual case), flush all tlb entries.
 * If flush_global is false, flush (at least) all tlb entries not
 * marked global.
 *
 * Since QEMU doesn't currently implement a global/not-global flag
 * for tlb entries, at the moment tlb_flush() will also flush all
 * tlb entries in the flush_global == false case. This is OK because
 * CPU architectures generally permit an implementation to drop
 * entries from the TLB at any time, so flushing more entries than
 * required is only an efficiency issue, not a correctness issue.
 */
51
void tlb_flush(CPUState *cpu, int flush_global)
52
{
53
    CPUArchState *env = cpu->env_ptr;
54 55 56 57 58 59

#if defined(DEBUG_TLB)
    printf("tlb_flush:\n");
#endif
    /* must reset current TB so that interrupts cannot modify the
       links while we are modifying them */
60
    cpu->current_tb = NULL;
61

62
    memset(env->tlb_table, -1, sizeof(env->tlb_table));
63
    memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table));
64
    memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
65

66
    env->vtlb_index = 0;
67 68 69 70 71 72 73 74 75 76 77 78 79
    env->tlb_flush_addr = -1;
    env->tlb_flush_mask = 0;
    tlb_flush_count++;
}

static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
{
    if (addr == (tlb_entry->addr_read &
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
        addr == (tlb_entry->addr_write &
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
        addr == (tlb_entry->addr_code &
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
80
        memset(tlb_entry, -1, sizeof(*tlb_entry));
81 82 83
    }
}

84
void tlb_flush_page(CPUState *cpu, target_ulong addr)
85
{
86
    CPUArchState *env = cpu->env_ptr;
87 88 89 90 91 92 93 94 95 96 97 98 99
    int i;
    int mmu_idx;

#if defined(DEBUG_TLB)
    printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
#endif
    /* Check if we need to flush due to large pages.  */
    if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
#if defined(DEBUG_TLB)
        printf("tlb_flush_page: forced full flush ("
               TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
               env->tlb_flush_addr, env->tlb_flush_mask);
#endif
100
        tlb_flush(cpu, 1);
101 102 103 104
        return;
    }
    /* must reset current TB so that interrupts cannot modify the
       links while we are modifying them */
105
    cpu->current_tb = NULL;
106 107 108 109 110 111 112

    addr &= TARGET_PAGE_MASK;
    i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
        tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
    }

113 114 115 116 117 118 119 120
    /* check whether there are entries that need to be flushed in the vtlb */
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
        int k;
        for (k = 0; k < CPU_VTLB_SIZE; k++) {
            tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
        }
    }

121
    tb_flush_jmp_cache(cpu, addr);
122 123 124 125 126 127
}

/* update the TLBs so that writes to code in the virtual page 'addr'
   can be detected */
void tlb_protect_code(ram_addr_t ram_addr)
{
128
    cpu_physical_memory_reset_dirty(ram_addr, TARGET_PAGE_SIZE,
129
                                    DIRTY_MEMORY_CODE);
130 131 132 133
}

/* update the TLB so that writes in physical page 'phys_addr' are no longer
   tested for self modifying code */
134
void tlb_unprotect_code_phys(CPUState *cpu, ram_addr_t ram_addr,
135 136
                             target_ulong vaddr)
{
137
    cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
}

static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
{
    return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
}

void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
                           uintptr_t length)
{
    uintptr_t addr;

    if (tlb_is_dirty_ram(tlb_entry)) {
        addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
        if ((addr - start) < length) {
            tlb_entry->addr_write |= TLB_NOTDIRTY;
        }
    }
}

158 159 160 161
static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
{
    ram_addr_t ram_addr;

162
    if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) {
163 164 165 166 167 168
        fprintf(stderr, "Bad ram pointer %p\n", ptr);
        abort();
    }
    return ram_addr;
}

169 170
void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
{
171
    CPUState *cpu;
172 173
    CPUArchState *env;

174
    CPU_FOREACH(cpu) {
175 176
        int mmu_idx;

177
        env = cpu->env_ptr;
178 179 180 181 182 183 184
        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
            unsigned int i;

            for (i = 0; i < CPU_TLB_SIZE; i++) {
                tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
                                      start1, length);
            }
185 186 187 188 189

            for (i = 0; i < CPU_VTLB_SIZE; i++) {
                tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i],
                                      start1, length);
            }
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        }
    }
}

static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
{
    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
        tlb_entry->addr_write = vaddr;
    }
}

/* update the TLB corresponding to virtual page vaddr
   so that it is no longer dirty */
void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
{
    int i;
    int mmu_idx;

    vaddr &= TARGET_PAGE_MASK;
    i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
        tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
    }
213 214 215 216 217 218 219

    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
        int k;
        for (k = 0; k < CPU_VTLB_SIZE; k++) {
            tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr);
        }
    }
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
}

/* Our TLB does not support large pages, so remember the area covered by
   large pages and trigger a full TLB flush if these are invalidated.  */
static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
                               target_ulong size)
{
    target_ulong mask = ~(size - 1);

    if (env->tlb_flush_addr == (target_ulong)-1) {
        env->tlb_flush_addr = vaddr & mask;
        env->tlb_flush_mask = mask;
        return;
    }
    /* Extend the existing region to include the new page.
       This is a compromise between unnecessary flushes and the cost
       of maintaining a full variable size TLB.  */
    mask &= env->tlb_flush_mask;
    while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
        mask <<= 1;
    }
    env->tlb_flush_addr &= mask;
    env->tlb_flush_mask = mask;
}

/* Add a new TLB entry. At most one entry for a given virtual address
   is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
   supplied size is only used by tlb_flush_page.  */
248
void tlb_set_page(CPUState *cpu, target_ulong vaddr,
249
                  hwaddr paddr, int prot,
250 251
                  int mmu_idx, target_ulong size)
{
252
    CPUArchState *env = cpu->env_ptr;
253 254 255 256 257 258
    MemoryRegionSection *section;
    unsigned int index;
    target_ulong address;
    target_ulong code_address;
    uintptr_t addend;
    CPUTLBEntry *te;
259
    hwaddr iotlb, xlat, sz;
260
    unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE;
261 262 263 264 265

    assert(size >= TARGET_PAGE_SIZE);
    if (size != TARGET_PAGE_SIZE) {
        tlb_add_large_page(env, vaddr, size);
    }
266 267

    sz = size;
268
    section = address_space_translate_for_iotlb(cpu->as, paddr,
269
                                                &xlat, &sz);
270 271
    assert(sz >= TARGET_PAGE_SIZE);

272 273
#if defined(DEBUG_TLB)
    printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
274 275
           " prot=%x idx=%d\n",
           vaddr, paddr, prot, mmu_idx);
276 277 278
#endif

    address = vaddr;
279 280
    if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
        /* IO memory case */
281
        address |= TLB_MMIO;
282 283 284
        addend = 0;
    } else {
        /* TLB_MMIO for rom/romd handled below */
285
        addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
286 287 288
    }

    code_address = address;
289
    iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat,
290
                                            prot, &address);
291 292 293

    index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    te = &env->tlb_table[mmu_idx][index];
294 295 296 297 298 299 300

    /* do not discard the translation in te, evict it into a victim tlb */
    env->tlb_v_table[mmu_idx][vidx] = *te;
    env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];

    /* refill the tlb */
    env->iotlb[mmu_idx][index] = iotlb - vaddr;
301 302 303 304 305 306 307 308 309 310 311 312 313 314
    te->addend = addend - vaddr;
    if (prot & PAGE_READ) {
        te->addr_read = address;
    } else {
        te->addr_read = -1;
    }

    if (prot & PAGE_EXEC) {
        te->addr_code = code_address;
    } else {
        te->addr_code = -1;
    }
    if (prot & PAGE_WRITE) {
        if ((memory_region_is_ram(section->mr) && section->readonly)
315
            || memory_region_is_romd(section->mr)) {
316 317 318
            /* Write access calls the I/O callback.  */
            te->addr_write = address | TLB_MMIO;
        } else if (memory_region_is_ram(section->mr)
319 320
                   && cpu_physical_memory_is_clean(section->mr->ram_addr
                                                   + xlat)) {
321 322 323 324 325 326 327 328 329 330 331
            te->addr_write = address | TLB_NOTDIRTY;
        } else {
            te->addr_write = address;
        }
    } else {
        te->addr_write = -1;
    }
}

/* NOTE: this function can trigger an exception */
/* NOTE2: the returned address is not exactly the physical address: it
332 333 334
 * is actually a ram_addr_t (in system mode; the user mode emulation
 * version of this function returns a guest virtual address).
 */
335 336 337 338 339
tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
{
    int mmu_idx, page_index, pd;
    void *p;
    MemoryRegion *mr;
340
    CPUState *cpu = ENV_GET_CPU(env1);
341 342 343 344 345 346 347 348

    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    mmu_idx = cpu_mmu_index(env1);
    if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
                 (addr & TARGET_PAGE_MASK))) {
        cpu_ldub_code(env1, addr);
    }
    pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
349
    mr = iotlb_to_region(cpu->as, pd);
350
    if (memory_region_is_unassigned(mr)) {
351 352 353 354 355
        CPUClass *cc = CPU_GET_CLASS(cpu);

        if (cc->do_unassigned_access) {
            cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
        } else {
356
            cpu_abort(cpu, "Trying to execute code outside RAM or ROM at 0x"
357 358
                      TARGET_FMT_lx "\n", addr);
        }
359 360 361 362 363
    }
    p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
    return qemu_ram_addr_from_host_nofail(p);
}

364 365 366
#define MMUSUFFIX _mmu

#define SHIFT 0
367
#include "softmmu_template.h"
368 369

#define SHIFT 1
370
#include "softmmu_template.h"
371 372

#define SHIFT 2
373
#include "softmmu_template.h"
374 375

#define SHIFT 3
376
#include "softmmu_template.h"
377 378
#undef MMUSUFFIX

379
#define MMUSUFFIX _cmmu
380 381 382 383
#undef GETPC_ADJ
#define GETPC_ADJ 0
#undef GETRA
#define GETRA() ((uintptr_t)0)
384 385 386
#define SOFTMMU_CODE_ACCESS

#define SHIFT 0
387
#include "softmmu_template.h"
388 389

#define SHIFT 1
390
#include "softmmu_template.h"
391 392

#define SHIFT 2
393
#include "softmmu_template.h"
394 395

#define SHIFT 3
396
#include "softmmu_template.h"