vl.c 56.2 KB
Newer Older
1
/*
bellard's avatar
bellard committed
2
 * QEMU PC System Emulator
3
 * 
bellard's avatar
bellard committed
4
 * Copyright (c) 2003 Fabrice Bellard
5
 * 
bellard's avatar
bellard committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
23
24
25
 */
#include <stdlib.h>
#include <stdio.h>
bellard's avatar
bellard committed
26
#include <stdarg.h>
27
28
29
30
31
32
33
34
35
36
37
38
39
#include <string.h>
#include <getopt.h>
#include <inttypes.h>
#include <unistd.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <signal.h>
#include <time.h>
#include <sys/time.h>
#include <malloc.h>
#include <termios.h>
#include <sys/poll.h>
#include <errno.h>
bellard's avatar
bellard committed
40
41
42
43
44
45
#include <sys/wait.h>

#include <sys/ioctl.h>
#include <sys/socket.h>
#include <linux/if.h>
#include <linux/if_tun.h>
46
47
48
49
50

#include "cpu-i386.h"
#include "disas.h"

#define DEBUG_LOGFILE "/tmp/vl.log"
bellard's avatar
bellard committed
51
52
#define DEFAULT_NETWORK_SCRIPT "/etc/vl-ifup"

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
//#define DEBUG_UNUSED_IOPORT

#define PHYS_RAM_BASE 0xa8000000
#define KERNEL_LOAD_ADDR   0x00100000
#define INITRD_LOAD_ADDR   0x00400000
#define KERNEL_PARAMS_ADDR 0x00090000

/* from plex86 (BSD license) */
struct  __attribute__ ((packed)) linux_params {
  // For 0x00..0x3f, see 'struct screen_info' in linux/include/linux/tty.h.
  // I just padded out the VESA parts, rather than define them.

  /* 0x000 */ uint8_t   orig_x;
  /* 0x001 */ uint8_t   orig_y;
  /* 0x002 */ uint16_t  ext_mem_k;
  /* 0x004 */ uint16_t  orig_video_page;
  /* 0x006 */ uint8_t   orig_video_mode;
  /* 0x007 */ uint8_t   orig_video_cols;
  /* 0x008 */ uint16_t  unused1;
  /* 0x00a */ uint16_t  orig_video_ega_bx;
  /* 0x00c */ uint16_t  unused2;
  /* 0x00e */ uint8_t   orig_video_lines;
  /* 0x00f */ uint8_t   orig_video_isVGA;
  /* 0x010 */ uint16_t  orig_video_points;
  /* 0x012 */ uint8_t   pad0[0x20 - 0x12]; // VESA info.
  /* 0x020 */ uint16_t  cl_magic;  // Commandline magic number (0xA33F)
  /* 0x022 */ uint16_t  cl_offset; // Commandline offset.  Address of commandline
                                 // is calculated as 0x90000 + cl_offset, bu
                                 // only if cl_magic == 0xA33F.
  /* 0x024 */ uint8_t   pad1[0x40 - 0x24]; // VESA info.

  /* 0x040 */ uint8_t   apm_bios_info[20]; // struct apm_bios_info
  /* 0x054 */ uint8_t   pad2[0x80 - 0x54];

  // Following 2 from 'struct drive_info_struct' in drivers/block/cciss.h.
  // Might be truncated?
  /* 0x080 */ uint8_t   hd0_info[16]; // hd0-disk-parameter from intvector 0x41
  /* 0x090 */ uint8_t   hd1_info[16]; // hd1-disk-parameter from intvector 0x46

  // System description table truncated to 16 bytes
  // From 'struct sys_desc_table_struct' in linux/arch/i386/kernel/setup.c.
  /* 0x0a0 */ uint16_t  sys_description_len;
  /* 0x0a2 */ uint8_t   sys_description_table[14];
                        // [0] machine id
                        // [1] machine submodel id
                        // [2] BIOS revision
                        // [3] bit1: MCA bus

  /* 0x0b0 */ uint8_t   pad3[0x1e0 - 0xb0];
  /* 0x1e0 */ uint32_t  alt_mem_k;
  /* 0x1e4 */ uint8_t   pad4[4];
  /* 0x1e8 */ uint8_t   e820map_entries;
  /* 0x1e9 */ uint8_t   eddbuf_entries; // EDD_NR
  /* 0x1ea */ uint8_t   pad5[0x1f1 - 0x1ea];
  /* 0x1f1 */ uint8_t   setup_sects; // size of setup.S, number of sectors
  /* 0x1f2 */ uint16_t  mount_root_rdonly; // MOUNT_ROOT_RDONLY (if !=0)
  /* 0x1f4 */ uint16_t  sys_size; // size of compressed kernel-part in the
                                // (b)zImage-file (in 16 byte units, rounded up)
  /* 0x1f6 */ uint16_t  swap_dev; // (unused AFAIK)
  /* 0x1f8 */ uint16_t  ramdisk_flags;
  /* 0x1fa */ uint16_t  vga_mode; // (old one)
  /* 0x1fc */ uint16_t  orig_root_dev; // (high=Major, low=minor)
  /* 0x1fe */ uint8_t   pad6[1];
  /* 0x1ff */ uint8_t   aux_device_info;
  /* 0x200 */ uint16_t  jump_setup; // Jump to start of setup code,
                                  // aka "reserved" field.
  /* 0x202 */ uint8_t   setup_signature[4]; // Signature for SETUP-header, ="HdrS"
  /* 0x206 */ uint16_t  header_format_version; // Version number of header format;
  /* 0x208 */ uint8_t   setup_S_temp0[8]; // Used by setup.S for communication with
                                        // boot loaders, look there.
  /* 0x210 */ uint8_t   loader_type;
                        // 0 for old one.
                        // else 0xTV:
                        //   T=0: LILO
                        //   T=1: Loadlin
                        //   T=2: bootsect-loader
                        //   T=3: SYSLINUX
                        //   T=4: ETHERBOOT
                        //   V=version
  /* 0x211 */ uint8_t   loadflags;
                        // bit0 = 1: kernel is loaded high (bzImage)
                        // bit7 = 1: Heap and pointer (see below) set by boot
                        //   loader.
  /* 0x212 */ uint16_t  setup_S_temp1;
  /* 0x214 */ uint32_t  kernel_start;
  /* 0x218 */ uint32_t  initrd_start;
  /* 0x21c */ uint32_t  initrd_size;
  /* 0x220 */ uint8_t   setup_S_temp2[4];
  /* 0x224 */ uint16_t  setup_S_heap_end_pointer;
  /* 0x226 */ uint8_t   pad7[0x2d0 - 0x226];

  /* 0x2d0 : Int 15, ax=e820 memory map. */
  // (linux/include/asm-i386/e820.h, 'struct e820entry')
#define E820MAX  32
#define E820_RAM  1
#define E820_RESERVED 2
#define E820_ACPI 3 /* usable as RAM once ACPI tables have been read */
#define E820_NVS  4
  struct {
    uint64_t addr;
    uint64_t size;
    uint32_t type;
    } e820map[E820MAX];

  /* 0x550 */ uint8_t   pad8[0x600 - 0x550];

  // BIOS Enhanced Disk Drive Services.
  // (From linux/include/asm-i386/edd.h, 'struct edd_info')
  // Each 'struct edd_info is 78 bytes, times a max of 6 structs in array.
  /* 0x600 */ uint8_t   eddbuf[0x7d4 - 0x600];

  /* 0x7d4 */ uint8_t   pad9[0x800 - 0x7d4];
  /* 0x800 */ uint8_t   commandline[0x800];

  /* 0x1000 */
  uint64_t gdt_table[256];
  uint64_t idt_table[48];
};

#define KERNEL_CS     0x10
#define KERNEL_DS     0x18

typedef void (IOPortWriteFunc)(CPUX86State *env, uint32_t address, uint32_t data);
typedef uint32_t (IOPortReadFunc)(CPUX86State *env, uint32_t address);

#define MAX_IOPORTS 1024

char phys_ram_file[1024];
CPUX86State *global_env;
bellard's avatar
bellard committed
182
CPUX86State *cpu_single_env;
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
FILE *logfile = NULL;
int loglevel;
IOPortReadFunc *ioport_readb_table[MAX_IOPORTS];
IOPortWriteFunc *ioport_writeb_table[MAX_IOPORTS];
IOPortReadFunc *ioport_readw_table[MAX_IOPORTS];
IOPortWriteFunc *ioport_writew_table[MAX_IOPORTS];

/***********************************************************/
/* x86 io ports */

uint32_t default_ioport_readb(CPUX86State *env, uint32_t address)
{
#ifdef DEBUG_UNUSED_IOPORT
    fprintf(stderr, "inb: port=0x%04x\n", address);
#endif
    return 0;
}

void default_ioport_writeb(CPUX86State *env, uint32_t address, uint32_t data)
{
#ifdef DEBUG_UNUSED_IOPORT
    fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
#endif
}

/* default is to make two byte accesses */
uint32_t default_ioport_readw(CPUX86State *env, uint32_t address)
{
    uint32_t data;
    data = ioport_readb_table[address](env, address);
    data |= ioport_readb_table[address + 1](env, address + 1) << 8;
    return data;
}

void default_ioport_writew(CPUX86State *env, uint32_t address, uint32_t data)
{
    ioport_writeb_table[address](env, address, data & 0xff);
    ioport_writeb_table[address + 1](env, address + 1, (data >> 8) & 0xff);
}

void init_ioports(void)
{
    int i;

    for(i = 0; i < MAX_IOPORTS; i++) {
        ioport_readb_table[i] = default_ioport_readb;
        ioport_writeb_table[i] = default_ioport_writeb;
        ioport_readw_table[i] = default_ioport_readw;
        ioport_writew_table[i] = default_ioport_writew;
    }
}

int register_ioport_readb(int start, int length, IOPortReadFunc *func)
{
    int i;

    for(i = start; i < start + length; i++)
        ioport_readb_table[i] = func;
    return 0;
}

int register_ioport_writeb(int start, int length, IOPortWriteFunc *func)
{
    int i;

    for(i = start; i < start + length; i++)
        ioport_writeb_table[i] = func;
    return 0;
}

bellard's avatar
bellard committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
int register_ioport_readw(int start, int length, IOPortReadFunc *func)
{
    int i;

    for(i = start; i < start + length; i += 2)
        ioport_readw_table[i] = func;
    return 0;
}

int register_ioport_writew(int start, int length, IOPortWriteFunc *func)
{
    int i;

    for(i = start; i < start + length; i += 2)
        ioport_writew_table[i] = func;
    return 0;
}

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
void pstrcpy(char *buf, int buf_size, const char *str)
{
    int c;
    char *q = buf;

    if (buf_size <= 0)
        return;

    for(;;) {
        c = *str++;
        if (c == 0 || q >= buf + buf_size - 1)
            break;
        *q++ = c;
    }
    *q = '\0';
}

/* strcat and truncate. */
char *pstrcat(char *buf, int buf_size, const char *s)
{
    int len;
    len = strlen(buf);
    if (len < buf_size) 
        pstrcpy(buf + len, buf_size - len, s);
    return buf;
}

int load_kernel(const char *filename, uint8_t *addr)
{
    int fd, size, setup_sects;
    uint8_t bootsect[512];

    fd = open(filename, O_RDONLY);
    if (fd < 0)
        return -1;
    if (read(fd, bootsect, 512) != 512)
        goto fail;
    setup_sects = bootsect[0x1F1];
    if (!setup_sects)
        setup_sects = 4;
    /* skip 16 bit setup code */
    lseek(fd, (setup_sects + 1) * 512, SEEK_SET);
    size = read(fd, addr, 16 * 1024 * 1024);
    if (size < 0)
        goto fail;
    close(fd);
    return size;
 fail:
    close(fd);
    return -1;
}

/* return the size or -1 if error */
int load_image(const char *filename, uint8_t *addr)
{
    int fd, size;
    fd = open(filename, O_RDONLY);
    if (fd < 0)
        return -1;
    size = lseek(fd, 0, SEEK_END);
    lseek(fd, 0, SEEK_SET);
    if (read(fd, addr, size) != size) {
        close(fd);
        return -1;
    }
    close(fd);
    return size;
}

void cpu_x86_outb(CPUX86State *env, int addr, int val)
{
    ioport_writeb_table[addr & (MAX_IOPORTS - 1)](env, addr, val);
}

void cpu_x86_outw(CPUX86State *env, int addr, int val)
{
    ioport_writew_table[addr & (MAX_IOPORTS - 1)](env, addr, val);
}

void cpu_x86_outl(CPUX86State *env, int addr, int val)
{
    fprintf(stderr, "outl: port=0x%04x, data=%08x\n", addr, val);
}

int cpu_x86_inb(CPUX86State *env, int addr)
{
    return ioport_readb_table[addr & (MAX_IOPORTS - 1)](env, addr);
}

int cpu_x86_inw(CPUX86State *env, int addr)
{
    return ioport_readw_table[addr & (MAX_IOPORTS - 1)](env, addr);
}

int cpu_x86_inl(CPUX86State *env, int addr)
{
    fprintf(stderr, "inl: port=0x%04x\n", addr);
    return 0;
}

/***********************************************************/
void ioport80_write(CPUX86State *env, uint32_t addr, uint32_t data)
{
}

void hw_error(const char *fmt, ...)
{
    va_list ap;

    va_start(ap, fmt);
    fprintf(stderr, "qemu: hardware error: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
#ifdef TARGET_I386
    cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
#endif
    va_end(ap);
    abort();
}

/***********************************************************/
/* vga emulation */
static uint8_t vga_index;
static uint8_t vga_regs[256];
static int last_cursor_pos;

void update_console_messages(void)
{
    int c, i, cursor_pos, eol;

    cursor_pos = vga_regs[0x0f] | (vga_regs[0x0e] << 8);
    eol = 0;
    for(i = last_cursor_pos; i < cursor_pos; i++) {
        c = phys_ram_base[0xb8000 + (i) * 2];
        if (c >= ' ') {
            putchar(c);
            eol = 0;
        } else {
            if (!eol)
                putchar('\n');
            eol = 1;
        }
    }
    fflush(stdout);
    last_cursor_pos = cursor_pos;
}

/* just to see first Linux console messages, we intercept cursor position */
void vga_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
{
    switch(addr) {
    case 0x3d4:
        vga_index = data;
        break;
    case 0x3d5:
        vga_regs[vga_index] = data;
        if (vga_index == 0x0f)
            update_console_messages();
        break;
    }
            
}

/***********************************************************/
/* cmos emulation */

#define RTC_SECONDS             0
#define RTC_SECONDS_ALARM       1
#define RTC_MINUTES             2
#define RTC_MINUTES_ALARM       3
#define RTC_HOURS               4
#define RTC_HOURS_ALARM         5
#define RTC_ALARM_DONT_CARE    0xC0

#define RTC_DAY_OF_WEEK         6
#define RTC_DAY_OF_MONTH        7
#define RTC_MONTH               8
#define RTC_YEAR                9

#define RTC_REG_A               10
#define RTC_REG_B               11
#define RTC_REG_C               12
#define RTC_REG_D               13

/* PC cmos mappings */
#define REG_EQUIPMENT_BYTE          0x14

uint8_t cmos_data[128];
uint8_t cmos_index;

void cmos_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
{
    if (addr == 0x70) {
        cmos_index = data & 0x7f;
    }
}

uint32_t cmos_ioport_read(CPUX86State *env, uint32_t addr)
{
    int ret;

    if (addr == 0x70) {
        return 0xff;
    } else {
        /* toggle update-in-progress bit for Linux (same hack as
           plex86) */
        ret = cmos_data[cmos_index];
        if (cmos_index == RTC_REG_A)
            cmos_data[RTC_REG_A] ^= 0x80; 
        else if (cmos_index == RTC_REG_C)
            cmos_data[RTC_REG_C] = 0x00; 
        return ret;
    }
}


static inline int to_bcd(int a)
{
    return ((a / 10) << 4) | (a % 10);
}

void cmos_init(void)
{
    struct tm *tm;
    time_t ti;

    ti = time(NULL);
    tm = gmtime(&ti);
    cmos_data[RTC_SECONDS] = to_bcd(tm->tm_sec);
    cmos_data[RTC_MINUTES] = to_bcd(tm->tm_min);
    cmos_data[RTC_HOURS] = to_bcd(tm->tm_hour);
    cmos_data[RTC_DAY_OF_WEEK] = to_bcd(tm->tm_wday);
    cmos_data[RTC_DAY_OF_MONTH] = to_bcd(tm->tm_mday);
    cmos_data[RTC_MONTH] = to_bcd(tm->tm_mon);
    cmos_data[RTC_YEAR] = to_bcd(tm->tm_year % 100);

    cmos_data[RTC_REG_A] = 0x26;
    cmos_data[RTC_REG_B] = 0x02;
    cmos_data[RTC_REG_C] = 0x00;
    cmos_data[RTC_REG_D] = 0x80;

    cmos_data[REG_EQUIPMENT_BYTE] = 0x02; /* FPU is there */

    register_ioport_writeb(0x70, 2, cmos_ioport_write);
    register_ioport_readb(0x70, 2, cmos_ioport_read);
}

/***********************************************************/
/* 8259 pic emulation */

typedef struct PicState {
    uint8_t last_irr; /* edge detection */
    uint8_t irr; /* interrupt request register */
    uint8_t imr; /* interrupt mask register */
    uint8_t isr; /* interrupt service register */
    uint8_t priority_add; /* used to compute irq priority */
    uint8_t irq_base;
    uint8_t read_reg_select;
    uint8_t special_mask;
    uint8_t init_state;
    uint8_t auto_eoi;
    uint8_t rotate_on_autoeoi;
    uint8_t init4; /* true if 4 byte init */
} PicState;

/* 0 is master pic, 1 is slave pic */
PicState pics[2];
int pic_irq_requested;

/* set irq level. If an edge is detected, then the IRR is set to 1 */
static inline void pic_set_irq1(PicState *s, int irq, int level)
{
    int mask;
    mask = 1 << irq;
    if (level) {
        if ((s->last_irr & mask) == 0)
            s->irr |= mask;
        s->last_irr |= mask;
    } else {
        s->last_irr &= ~mask;
    }
}

static inline int get_priority(PicState *s, int mask)
{
    int priority;
    if (mask == 0)
        return -1;
    priority = 7;
    while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
        priority--;
    return priority;
}

/* return the pic wanted interrupt. return -1 if none */
static int pic_get_irq(PicState *s)
{
    int mask, cur_priority, priority;

    mask = s->irr & ~s->imr;
    priority = get_priority(s, mask);
    if (priority < 0)
        return -1;
    /* compute current priority */
    cur_priority = get_priority(s, s->isr);
    if (priority > cur_priority) {
        /* higher priority found: an irq should be generated */
        return priority;
    } else {
        return -1;
    }
}

void pic_set_irq(int irq, int level)
{
    pic_set_irq1(&pics[irq >> 3], irq & 7, level);
}

/* can be called at any time outside cpu_exec() to raise irqs if
   necessary */
void pic_handle_irq(void)
{
    int irq2, irq;

    /* first look at slave pic */
    irq2 = pic_get_irq(&pics[1]);
    if (irq2 >= 0) {
        /* if irq request by slave pic, signal master PIC */
        pic_set_irq1(&pics[0], 2, 1);
        pic_set_irq1(&pics[0], 2, 0);
    }
    /* look at requested irq */
    irq = pic_get_irq(&pics[0]);
    if (irq >= 0) {
        if (irq == 2) {
            /* from slave pic */
            pic_irq_requested = 8 + irq2;
        } else {
            /* from master pic */
            pic_irq_requested = irq;
        }
        global_env->hard_interrupt_request = 1;
    }
}

int cpu_x86_get_pic_interrupt(CPUX86State *env)
{
    int irq, irq2, intno;

    /* signal the pic that the irq was acked by the CPU */
    irq = pic_irq_requested;
    if (irq >= 8) {
        irq2 = irq & 7;
        pics[1].isr |= (1 << irq2);
        pics[1].irr &= ~(1 << irq2);
        irq = 2;
        intno = pics[1].irq_base + irq2;
    } else {
        intno = pics[0].irq_base + irq;
    }
    pics[0].isr |= (1 << irq);
    pics[0].irr &= ~(1 << irq);
    return intno;
}

void pic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
    PicState *s;
    int priority;

    s = &pics[addr >> 7];
    addr &= 1;
    if (addr == 0) {
        if (val & 0x10) {
            /* init */
            memset(s, 0, sizeof(PicState));
            s->init_state = 1;
            s->init4 = val & 1;
            if (val & 0x02)
                hw_error("single mode not supported");
            if (val & 0x08)
                hw_error("level sensitive irq not supported");
        } else if (val & 0x08) {
            if (val & 0x02)
                s->read_reg_select = val & 1;
            if (val & 0x40)
                s->special_mask = (val >> 5) & 1;
        } else {
            switch(val) {
            case 0x00:
            case 0x80:
                s->rotate_on_autoeoi = val >> 7;
                break;
            case 0x20: /* end of interrupt */
            case 0xa0:
                priority = get_priority(s, s->isr);
                if (priority >= 0) {
                    s->isr &= ~(1 << ((priority + s->priority_add) & 7));
                }
                if (val == 0xa0)
                    s->priority_add = (s->priority_add + 1) & 7;
                break;
            case 0x60 ... 0x67:
                priority = val & 7;
                s->isr &= ~(1 << priority);
                break;
            case 0xc0 ... 0xc7:
                s->priority_add = (val + 1) & 7;
                break;
            case 0xe0 ... 0xe7:
                priority = val & 7;
                s->isr &= ~(1 << priority);
                s->priority_add = (priority + 1) & 7;
                break;
            }
        }
    } else {
        switch(s->init_state) {
        case 0:
            /* normal mode */
            s->imr = val;
            break;
        case 1:
            s->irq_base = val & 0xf8;
            s->init_state = 2;
            break;
        case 2:
            if (s->init4) {
                s->init_state = 3;
            } else {
                s->init_state = 0;
            }
            break;
        case 3:
            s->auto_eoi = (val >> 1) & 1;
            s->init_state = 0;
            break;
        }
    }
}

uint32_t pic_ioport_read(CPUX86State *env, uint32_t addr)
{
    PicState *s;
    s = &pics[addr >> 7];
    addr &= 1;
    if (addr == 0) {
        if (s->read_reg_select)
            return s->isr;
        else
            return s->irr;
    } else {
        return s->imr;
    }
}

void pic_init(void)
{
    register_ioport_writeb(0x20, 2, pic_ioport_write);
    register_ioport_readb(0x20, 2, pic_ioport_read);
    register_ioport_writeb(0xa0, 2, pic_ioport_write);
    register_ioport_readb(0xa0, 2, pic_ioport_read);
}

/***********************************************************/
/* 8253 PIT emulation */

#define PIT_FREQ 1193182

#define RW_STATE_LSB 0
#define RW_STATE_MSB 1
#define RW_STATE_WORD0 2
#define RW_STATE_WORD1 3
#define RW_STATE_LATCHED_WORD0 4
#define RW_STATE_LATCHED_WORD1 5

typedef struct PITChannelState {
748
    int count; /* can be 65536 */
749
750
751
752
753
754
    uint16_t latched_count;
    uint8_t rw_state;
    uint8_t mode;
    uint8_t bcd; /* not supported */
    uint8_t gate; /* timer start */
    int64_t count_load_time;
755
    int64_t count_last_edge_check_time;
756
757
758
759
} PITChannelState;

PITChannelState pit_channels[3];
int speaker_data_on;
760
int pit_min_timer_count = 0;
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789

int64_t ticks_per_sec;

int64_t get_clock(void)
{
    struct timeval tv;
    gettimeofday(&tv, NULL);
    return tv.tv_sec * 1000000LL + tv.tv_usec;
}

int64_t cpu_get_ticks(void)
{
    int64_t val;
    asm("rdtsc" : "=A" (val));
    return val;
}

void cpu_calibrate_ticks(void)
{
    int64_t usec, ticks;

    usec = get_clock();
    ticks = cpu_get_ticks();
    usleep(50 * 1000);
    usec = get_clock() - usec;
    ticks = cpu_get_ticks() - ticks;
    ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
}

790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
/* compute with 96 bit intermediate result: (a*b)/c */
static uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
{
    union {
        uint64_t ll;
        struct {
#ifdef WORDS_BIGENDIAN
            uint32_t high, low;
#else
            uint32_t low, high;
#endif            
        } l;
    } u, res;
    uint64_t rl, rh;

    u.ll = a;
    rl = (uint64_t)u.l.low * (uint64_t)b;
    rh = (uint64_t)u.l.high * (uint64_t)b;
    rh += (rl >> 32);
    res.l.high = rh / c;
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
    return res.ll;
}

814
815
static int pit_get_count(PITChannelState *s)
{
816
    uint64_t d;
817
818
    int counter;

819
    d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
    switch(s->mode) {
    case 0:
    case 1:
    case 4:
    case 5:
        counter = (s->count - d) & 0xffff;
        break;
    default:
        counter = s->count - (d % s->count);
        break;
    }
    return counter;
}

/* get pit output bit */
static int pit_get_out(PITChannelState *s)
{
837
    uint64_t d;
838
839
    int out;

840
    d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
    switch(s->mode) {
    default:
    case 0:
        out = (d >= s->count);
        break;
    case 1:
        out = (d < s->count);
        break;
    case 2:
        if ((d % s->count) == 0 && d != 0)
            out = 1;
        else
            out = 0;
        break;
    case 3:
        out = (d % s->count) < (s->count >> 1);
        break;
    case 4:
    case 5:
        out = (d == s->count);
        break;
    }
    return out;
}

866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
/* get the number of 0 to 1 transitions we had since we call this
   function */
/* XXX: maybe better to use ticks precision to avoid getting edges
   twice if checks are done at very small intervals */
static int pit_get_out_edges(PITChannelState *s)
{
    uint64_t d1, d2;
    int64_t ticks;
    int ret, v;

    ticks = cpu_get_ticks();
    d1 = muldiv64(s->count_last_edge_check_time - s->count_load_time, 
                 PIT_FREQ, ticks_per_sec);
    d2 = muldiv64(ticks - s->count_load_time, 
                  PIT_FREQ, ticks_per_sec);
    s->count_last_edge_check_time = ticks;
    switch(s->mode) {
    default:
    case 0:
        if (d1 < s->count && d2 >= s->count)
            ret = 1;
        else
            ret = 0;
        break;
    case 1:
        ret = 0;
        break;
    case 2:
        d1 /= s->count;
        d2 /= s->count;
        ret = d2 - d1;
        break;
    case 3:
        v = s->count - (s->count >> 1);
        d1 = (d1 + v) / s->count;
        d2 = (d2 + v) / s->count;
        ret = d2 - d1;
        break;
    case 4:
    case 5:
        if (d1 < s->count && d2 >= s->count)
            ret = 1;
        else
            ret = 0;
        break;
    }
    return ret;
}

static inline void pit_load_count(PITChannelState *s, int val)
{
    if (val == 0)
        val = 0x10000;
    s->count_load_time = cpu_get_ticks();
    s->count_last_edge_check_time = s->count_load_time;
    s->count = val;
    if (s == &pit_channels[0] && val <= pit_min_timer_count) {
        fprintf(stderr, 
                "\nWARNING: vl: on your system, accurate timer emulation is impossible if its frequency is more than %d Hz. If using a 2.5.xx Linux kernel, you must patch asm/param.h to change HZ from 1000 to 100.\n\n", 
                PIT_FREQ / pit_min_timer_count);
    }
}

929
930
931
932
void pit_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
    int channel, access;
    PITChannelState *s;
933

934
935
936
937
938
939
940
941
942
943
944
945
946
    addr &= 3;
    if (addr == 3) {
        channel = val >> 6;
        if (channel == 3)
            return;
        s = &pit_channels[channel];
        access = (val >> 4) & 3;
        switch(access) {
        case 0:
            s->latched_count = pit_get_count(s);
            s->rw_state = RW_STATE_LATCHED_WORD0;
            break;
        default:
947
948
            s->mode = (val >> 1) & 7;
            s->bcd = val & 1;
949
950
951
952
953
954
955
            s->rw_state = access - 1 +  RW_STATE_LSB;
            break;
        }
    } else {
        s = &pit_channels[addr];
        switch(s->rw_state) {
        case RW_STATE_LSB:
956
            pit_load_count(s, val);
957
958
            break;
        case RW_STATE_MSB:
959
            pit_load_count(s, val << 8);
960
961
962
963
            break;
        case RW_STATE_WORD0:
        case RW_STATE_WORD1:
            if (s->rw_state & 1) {
964
                pit_load_count(s, (s->latched_count & 0xff) | (val << 8));
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
            } else {
                s->latched_count = val;
            }
            s->rw_state ^= 1;
            break;
        }
    }
}

uint32_t pit_ioport_read(CPUX86State *env, uint32_t addr)
{
    int ret, count;
    PITChannelState *s;
    
    addr &= 3;
    s = &pit_channels[addr];
    switch(s->rw_state) {
    case RW_STATE_LSB:
    case RW_STATE_MSB:
    case RW_STATE_WORD0:
    case RW_STATE_WORD1:
        count = pit_get_count(s);
        if (s->rw_state & 1)
            ret = (count >> 8) & 0xff;
        else
            ret = count & 0xff;
        if (s->rw_state & 2)
            s->rw_state ^= 1;
        break;
    default:
    case RW_STATE_LATCHED_WORD0:
    case RW_STATE_LATCHED_WORD1:
        if (s->rw_state & 1)
            ret = s->latched_count >> 8;
        else
            ret = s->latched_count & 0xff;
        s->rw_state ^= 1;
        break;
    }
    return ret;
}

void speaker_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
    speaker_data_on = (val >> 1) & 1;
    pit_channels[2].gate = val & 1;
}

uint32_t speaker_ioport_read(CPUX86State *env, uint32_t addr)
{
    int out;
    out = pit_get_out(&pit_channels[2]);
    return (speaker_data_on << 1) | pit_channels[2].gate | (out << 5);
}

void pit_init(void)
{
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
    PITChannelState *s;
    int i;

    cpu_calibrate_ticks();

    for(i = 0;i < 3; i++) {
        s = &pit_channels[i];
        s->mode = 3;
        s->gate = (i != 2);
        pit_load_count(s, 0);
    }

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
    register_ioport_writeb(0x40, 4, pit_ioport_write);
    register_ioport_readb(0x40, 3, pit_ioport_read);

    register_ioport_readb(0x61, 1, speaker_ioport_read);
    register_ioport_writeb(0x61, 1, speaker_ioport_write);
}

/***********************************************************/
/* serial port emulation */

#define UART_IRQ        4

#define UART_LCR_DLAB	0x80	/* Divisor latch access bit */

#define UART_IER_MSI	0x08	/* Enable Modem status interrupt */
#define UART_IER_RLSI	0x04	/* Enable receiver line status interrupt */
#define UART_IER_THRI	0x02	/* Enable Transmitter holding register int. */
#define UART_IER_RDI	0x01	/* Enable receiver data interrupt */

#define UART_IIR_NO_INT	0x01	/* No interrupts pending */
#define UART_IIR_ID	0x06	/* Mask for the interrupt ID */

#define UART_IIR_MSI	0x00	/* Modem status interrupt */
#define UART_IIR_THRI	0x02	/* Transmitter holding register empty */
#define UART_IIR_RDI	0x04	/* Receiver data interrupt */
#define UART_IIR_RLSI	0x06	/* Receiver line status interrupt */

#define UART_LSR_TEMT	0x40	/* Transmitter empty */
#define UART_LSR_THRE	0x20	/* Transmit-hold-register empty */
#define UART_LSR_BI	0x10	/* Break interrupt indicator */
#define UART_LSR_FE	0x08	/* Frame error indicator */
#define UART_LSR_PE	0x04	/* Parity error indicator */
#define UART_LSR_OE	0x02	/* Overrun error indicator */
#define UART_LSR_DR	0x01	/* Receiver data ready */

typedef struct SerialState {
    uint8_t divider;
    uint8_t rbr; /* receive register */
    uint8_t ier;
    uint8_t iir; /* read only */
    uint8_t lcr;
    uint8_t mcr;
    uint8_t lsr; /* read only */
    uint8_t msr;
    uint8_t scr;
} SerialState;

SerialState serial_ports[1];

void serial_update_irq(void)
{
    SerialState *s = &serial_ports[0];

    if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) {
        s->iir = UART_IIR_RDI;
    } else if ((s->lsr & UART_LSR_THRE) && (s->ier & UART_IER_THRI)) {
        s->iir = UART_IIR_THRI;
    } else {
        s->iir = UART_IIR_NO_INT;
    }
    if (s->iir != UART_IIR_NO_INT) {
        pic_set_irq(UART_IRQ, 1);
    } else {
        pic_set_irq(UART_IRQ, 0);
    }
}

void serial_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
    SerialState *s = &serial_ports[0];
    unsigned char ch;
    int ret;
    
    addr &= 7;
    switch(addr) {
    default:
    case 0:
        if (s->lcr & UART_LCR_DLAB) {
            s->divider = (s->divider & 0xff00) | val;
        } else {
            s->lsr &= ~UART_LSR_THRE;
            serial_update_irq();

            ch = val;
            do {
                ret = write(1, &ch, 1);
            } while (ret != 1);
            s->lsr |= UART_LSR_THRE;
            s->lsr |= UART_LSR_TEMT;
            serial_update_irq();
        }
        break;
    case 1:
        if (s->lcr & UART_LCR_DLAB) {
            s->divider = (s->divider & 0x00ff) | (val << 8);
        } else {
            s->ier = val;
            serial_update_irq();
        }
        break;
    case 2:
        break;
    case 3:
        s->lcr = val;
        break;
    case 4:
        s->mcr = val;
        break;
    case 5:
        break;
    case 6:
        s->msr = val;
        break;
    case 7:
        s->scr = val;
        break;
    }
}

uint32_t serial_ioport_read(CPUX86State *env, uint32_t addr)
{
    SerialState *s = &serial_ports[0];
    uint32_t ret;

    addr &= 7;
    switch(addr) {
    default:
    case 0:
        if (s->lcr & UART_LCR_DLAB) {
            ret = s->divider & 0xff; 
        } else {
            ret = s->rbr;
            s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
            serial_update_irq();
        }
        break;
    case 1:
        if (s->lcr & UART_LCR_DLAB) {
            ret = (s->divider >> 8) & 0xff;
        } else {
            ret = s->ier;
        }
        break;
    case 2:
        ret = s->iir;
        break;
    case 3:
        ret = s->lcr;
        break;
    case 4:
        ret = s->mcr;
        break;
    case 5:
        ret = s->lsr;
        break;
    case 6:
        ret = s->msr;
        break;
    case 7:
        ret = s->scr;
        break;
    }
    return ret;
}

#define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
static int term_got_escape;

void term_print_help(void)
{
    printf("\n"
           "C-a h    print this help\n"
           "C-a x    exit emulatior\n"
           "C-a b    send break (magic sysrq)\n"
           "C-a C-a  send C-a\n"
           );
}

/* called when a char is received */
void serial_received_byte(SerialState *s, int ch)
{
    if (term_got_escape) {
        term_got_escape = 0;
        switch(ch) {
        case 'h':
            term_print_help();
            break;
        case 'x':
            exit(0);
            break;
        case 'b':
            /* send break */
            s->rbr = 0;
            s->lsr |= UART_LSR_BI | UART_LSR_DR;
            serial_update_irq();
            break;
        case TERM_ESCAPE:
            goto send_char;
        }
    } else if (ch == TERM_ESCAPE) {
        term_got_escape = 1;
    } else {
    send_char:
        s->rbr = ch;
        s->lsr |= UART_LSR_DR;
        serial_update_irq();
    }
}

/* init terminal so that we can grab keys */
static struct termios oldtty;

static void term_exit(void)
{
    tcsetattr (0, TCSANOW, &oldtty);
}

static void term_init(void)
{
    struct termios tty;

    tcgetattr (0, &tty);
    oldtty = tty;

    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
                          |INLCR|IGNCR|ICRNL|IXON);
    tty.c_oflag |= OPOST;
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
    tty.c_cflag &= ~(CSIZE|PARENB);
    tty.c_cflag |= CS8;
    tty.c_cc[VMIN] = 1;
    tty.c_cc[VTIME] = 0;
    
    tcsetattr (0, TCSANOW, &tty);

    atexit(term_exit);

    fcntl(0, F_SETFL, O_NONBLOCK);
}

void serial_init(void)
{
    SerialState *s = &serial_ports[0];

    s->lsr = UART_LSR_TEMT | UART_LSR_THRE;

    register_ioport_writeb(0x3f8, 8, serial_ioport_write);
    register_ioport_readb(0x3f8, 8, serial_ioport_read);

    term_init();
}

bellard's avatar
bellard committed
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
/***********************************************************/
/* ne2000 emulation */

//#define DEBUG_NE2000

#define NE2000_IOPORT   0x300
#define NE2000_IRQ      9

#define MAX_ETH_FRAME_SIZE 1514

#define E8390_CMD	0x00  /* The command register (for all pages) */
/* Page 0 register offsets. */
#define EN0_CLDALO	0x01	/* Low byte of current local dma addr  RD */
#define EN0_STARTPG	0x01	/* Starting page of ring bfr WR */
#define EN0_CLDAHI	0x02	/* High byte of current local dma addr  RD */
#define EN0_STOPPG	0x02	/* Ending page +1 of ring bfr WR */
#define EN0_BOUNDARY	0x03	/* Boundary page of ring bfr RD WR */
#define EN0_TSR		0x04	/* Transmit status reg RD */
#define EN0_TPSR	0x04	/* Transmit starting page WR */
#define EN0_NCR		0x05	/* Number of collision reg RD */
#define EN0_TCNTLO	0x05	/* Low  byte of tx byte count WR */
#define EN0_FIFO	0x06	/* FIFO RD */
#define EN0_TCNTHI	0x06	/* High byte of tx byte count WR */
#define EN0_ISR		0x07	/* Interrupt status reg RD WR */
#define EN0_CRDALO	0x08	/* low byte of current remote dma address RD */
#define EN0_RSARLO	0x08	/* Remote start address reg 0 */
#define EN0_CRDAHI	0x09	/* high byte, current remote dma address RD */
#define EN0_RSARHI	0x09	/* Remote start address reg 1 */
#define EN0_RCNTLO	0x0a	/* Remote byte count reg WR */
#define EN0_RCNTHI	0x0b	/* Remote byte count reg WR */
#define EN0_RSR		0x0c	/* rx status reg RD */
#define EN0_RXCR	0x0c	/* RX configuration reg WR */
#define EN0_TXCR	0x0d	/* TX configuration reg WR */
#define EN0_COUNTER0	0x0d	/* Rcv alignment error counter RD */
#define EN0_DCFG	0x0e	/* Data configuration reg WR */
#define EN0_COUNTER1	0x0e	/* Rcv CRC error counter RD */
#define EN0_IMR		0x0f	/* Interrupt mask reg WR */
#define EN0_COUNTER2	0x0f	/* Rcv missed frame error counter RD */

#define EN1_PHYS        0x11
#define EN1_CURPAG      0x17
#define EN1_MULT        0x18

/*  Register accessed at EN_CMD, the 8390 base addr.  */
#define E8390_STOP	0x01	/* Stop and reset the chip */
#define E8390_START	0x02	/* Start the chip, clear reset */
#define E8390_TRANS	0x04	/* Transmit a frame */
#define E8390_RREAD	0x08	/* Remote read */
#define E8390_RWRITE	0x10	/* Remote write  */
#define E8390_NODMA	0x20	/* Remote DMA */
#define E8390_PAGE0	0x00	/* Select page chip registers */
#define E8390_PAGE1	0x40	/* using the two high-order bits */
#define E8390_PAGE2	0x80	/* Page 3 is invalid. */

/* Bits in EN0_ISR - Interrupt status register */
#define ENISR_RX	0x01	/* Receiver, no error */
#define ENISR_TX	0x02	/* Transmitter, no error */
#define ENISR_RX_ERR	0x04	/* Receiver, with error */
#define ENISR_TX_ERR	0x08	/* Transmitter, with error */
#define ENISR_OVER	0x10	/* Receiver overwrote the ring */
#define ENISR_COUNTERS	0x20	/* Counters need emptying */
#define ENISR_RDC	0x40	/* remote dma complete */
#define ENISR_RESET	0x80	/* Reset completed */
#define ENISR_ALL	0x3f	/* Interrupts we will enable */

/* Bits in received packet status byte and EN0_RSR*/
#define ENRSR_RXOK	0x01	/* Received a good packet */
#define ENRSR_CRC	0x02	/* CRC error */
#define ENRSR_FAE	0x04	/* frame alignment error */
#define ENRSR_FO	0x08	/* FIFO overrun */
#define ENRSR_MPA	0x10	/* missed pkt */
#define ENRSR_PHY	0x20	/* physical/multicast address */
#define ENRSR_DIS	0x40	/* receiver disable. set in monitor mode */
#define ENRSR_DEF	0x80	/* deferring */

/* Transmitted packet status, EN0_TSR. */
#define ENTSR_PTX 0x01	/* Packet transmitted without error */
#define ENTSR_ND  0x02	/* The transmit wasn't deferred. */
#define ENTSR_COL 0x04	/* The transmit collided at least once. */
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
#define ENTSR_CRS 0x10	/* The carrier sense was lost. */
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
#define ENTSR_CDH 0x40	/* The collision detect "heartbeat" signal was lost. */
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */

#define NE2000_MEM_SIZE 32768

typedef struct NE2000State {
    uint8_t cmd;
    uint32_t start;
    uint32_t stop;
    uint8_t boundary;
    uint8_t tsr;
    uint8_t tpsr;
    uint16_t tcnt;
    uint16_t rcnt;
    uint32_t rsar;
    uint8_t isr;
    uint8_t dcfg;
    uint8_t imr;
    uint8_t phys[6]; /* mac address */
    uint8_t curpag;
    uint8_t mult[8]; /* multicast mask array */
    uint8_t mem[NE2000_MEM_SIZE];
} NE2000State;

NE2000State ne2000_state;
int net_fd = -1;
char network_script[1024];

void ne2000_reset(void)
{
    NE2000State *s = &ne2000_state;
    int i;

    s->isr = ENISR_RESET;
    s->mem[0] = 0x52;
    s->mem[1] = 0x54;
    s->mem[2] = 0x00;
    s->mem[3] = 0x12;
    s->mem[4] = 0x34;
    s->mem[5] = 0x56;
    s->mem[14] = 0x57;
    s->mem[15] = 0x57;

    /* duplicate prom data */
    for(i = 15;i >= 0; i--) {
        s->mem[2 * i] = s->mem[i];
        s->mem[2 * i + 1] = s->mem[i];
    }
}

void ne2000_update_irq(NE2000State *s)
{
    int isr;
    isr = s->isr & s->imr;
    if (isr)
        pic_set_irq(NE2000_IRQ, 1);
    else
        pic_set_irq(NE2000_IRQ, 0);
}

int net_init(void)
{
    struct ifreq ifr;
    int fd, ret, pid, status;
    
    fd = open("/dev/net/tun", O_RDWR);
    if (fd < 0) {
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
        return -1;
    }
    memset(&ifr, 0, sizeof(ifr));
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
    pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
    if (ret != 0) {
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
        close(fd);
        return -1;
    }
    printf("connected to host network interface: %s\n", ifr.ifr_name);
    fcntl(fd, F_SETFL, O_NONBLOCK);
    net_fd = fd;

    /* try to launch network init script */
    pid = fork();
    if (pid >= 0) {
        if (pid == 0) {
            execl(network_script, network_script, ifr.ifr_name, NULL);
            exit(1);
        }
        while (waitpid(pid, &status, 0) != pid);
        if (!WIFEXITED(status) ||
            WEXITSTATUS(status) != 0) {
            fprintf(stderr, "%s: could not launch network script for '%s'\n",
                    network_script, ifr.ifr_name);
        }
    }
    return 0;
}

void net_send_packet(NE2000State *s, const uint8_t *buf, int size)
{
#ifdef DEBUG_NE2000
    printf("NE2000: sending packet size=%d\n", size);
#endif
    write(net_fd, buf, size);
}

/* return true if the NE2000 can receive more data */
int ne2000_can_receive(NE2000State *s)
{
    int avail, index, boundary;
    
    if (s->cmd & E8390_STOP)
        return 0;
    index = s->curpag << 8;
    boundary = s->boundary << 8;
    if (index < boundary)
        avail = boundary - index;
    else
        avail = (s->stop - s->start) - (index - boundary);
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
        return 0;
    return 1;
}

void ne2000_receive(NE2000State *s, uint8_t *buf, int size)
{
    uint8_t *p;
    int total_len, next, avail, len, index;

#if defined(DEBUG_NE2000)
    printf("NE2000: received len=%d\n", size);
#endif

    index = s->curpag << 8;
    /* 4 bytes for header */
    total_len = size + 4;
    /* address for next packet (4 bytes for CRC) */
    next = index + ((total_len + 4 + 255) & ~0xff);
    if (next >= s->stop)
        next -= (s->stop - s->start);
    /* prepare packet header */
    p = s->mem + index;
    p[0] = ENRSR_RXOK; /* receive status */
    p[1] = next >> 8;
    p[2] = total_len;
    p[3] = total_len >> 8;
    index += 4;

    /* write packet data */
    while (size > 0) {
        avail = s->stop - index;
        len = size;
        if (len > avail)
            len = avail;
        memcpy(s->mem + index, buf, len);
        buf += len;
        index += len;
        if (index == s->stop)
            index = s->start;
        size -= len;
    }
    s->curpag = next >> 8;
    
    /* now we can signal we have receive something */
    s->isr |= ENISR_RX;
    ne2000_update_irq(s);
}

void ne2000_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
    NE2000State *s = &ne2000_state;
    int offset, page;

    addr &= 0xf;
#ifdef DEBUG_NE2000
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
#endif
    if (addr == E8390_CMD) {
        /* control register */
        s->cmd = val;
        if (val & E8390_START) {
            /* test specific case: zero length transfert */
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
                s->rcnt == 0) {
                s->isr |= ENISR_RDC;
                ne2000_update_irq(s);
1556
1557
                /* XXX: find a better solution for irqs */
                cpu_x86_interrupt(global_env);
bellard's avatar
bellard committed
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
            }
            if (val & E8390_TRANS) {
                net_send_packet(s, s->mem + (s->tpsr << 8), s->tcnt);
                /* signal end of transfert */
                s->tsr = ENTSR_PTX;
                s->isr |= ENISR_TX;
                ne2000_update_irq(s);
            }
        }
    } else {
        page = s->cmd >> 6;
        offset = addr | (page << 4);
        switch(offset) {
        case EN0_STARTPG:
            s->start = val << 8;
            break;
        case EN0_STOPPG:
            s->stop = val << 8;
            break;
        case EN0_BOUNDARY:
            s->boundary = val;
            break;
        case EN0_IMR:
            s->imr = val;
            ne2000_update_irq(s);
            break;
        case EN0_TPSR:
            s->tpsr = val;
            break;
        case EN0_TCNTLO:
            s->tcnt = (s->tcnt & 0xff00) | val;
            break;
        case EN0_TCNTHI:
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
            break;
        case EN0_RSARLO:
            s->rsar = (s->rsar & 0xff00) | val;
            break;
        case EN0_RSARHI:
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
            break;
        case EN0_RCNTLO:
            s->rcnt = (s->rcnt & 0xff00) | val;
            break;
        case EN0_RCNTHI:
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
            break;
        case EN0_DCFG:
            s->dcfg = val;
            break;
        case EN0_ISR:
            s->isr &= ~val;
            ne2000_update_irq(s);
            break;
        case EN1_PHYS ... EN1_PHYS + 5:
            s->phys[offset - EN1_PHYS] = val;
            break;
        case EN1_CURPAG:
            s->curpag = val;
            break;
        case EN1_MULT ... EN1_MULT + 7:
            s->mult[offset - EN1_MULT] = val;
            break;
        }
    }
}

uint32_t ne2000_ioport_read(CPUX86State *env, uint32_t addr)
{
    NE2000State *s = &ne2000_state;
    int offset, page, ret;

    addr &= 0xf;
    if (addr == E8390_CMD) {
        ret = s->cmd;
    } else {
        page = s->cmd >> 6;
        offset = addr | (page << 4);
        switch(offset) {
        case EN0_TSR:
            ret = s->tsr;
            break;
        case EN0_BOUNDARY:
            ret = s->boundary;
            break;
        case EN0_ISR:
            ret = s->isr;
            break;
        case EN1_PHYS ... EN1_PHYS + 5:
            ret = s->phys[offset - EN1_PHYS];
            break;
        case EN1_CURPAG:
            ret = s->curpag;
            break;
        case EN1_MULT ... EN1_MULT + 7:
            ret = s->mult[offset - EN1_MULT];
            break;
        default:
            ret = 0x00;
            break;
        }
    }
#ifdef DEBUG_NE2000
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
#endif
    return ret;
}

void ne2000_asic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
    NE2000State *s = &ne2000_state;
    uint8_t *p;

#ifdef DEBUG_NE2000
    printf("NE2000: asic write val=0x%04x\n", val);
#endif
    p = s->mem + s->rsar;
    if (s->dcfg & 0x01) {
        /* 16 bit access */
        p[0] = val;
        p[1] = val >> 8;
        s->rsar += 2;
        s->rcnt -= 2;
    } else {
        /* 8 bit access */
        p[0] = val;
        s->rsar++;
        s->rcnt--;
    }
    /* wrap */
    if (s->rsar == s->stop)
        s->rsar = s->start;
    if (s->rcnt == 0) {
        /* signal end of transfert */
        s->isr |= ENISR_RDC;
        ne2000_update_irq(s);
    }
}

uint32_t ne2000_asic_ioport_read(CPUX86State *env, uint32_t addr)
{
    NE2000State *s = &ne2000_state;
    uint8_t *p;
    int ret;

    p = s->mem + s->rsar;
    if (s->dcfg & 0x01) {
        /* 16 bit access */
        ret = p[0] | (p[1] << 8);
        s->rsar += 2;
        s->rcnt -= 2;
    } else {
        /* 8 bit access */
        ret = p[0];
        s->rsar++;
        s->rcnt--;
    }
    /* wrap */
    if (s->rsar == s->stop)
        s->rsar = s->start;
    if (s->rcnt == 0) {
        /* signal end of transfert */
        s->isr |= ENISR_RDC;
        ne2000_update_irq(s);
    }
#ifdef DEBUG_NE2000
    printf("NE2000: asic read val=0x%04x\n", ret);
#endif
    return ret;
}

void ne2000_reset_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
    /* nothing to do (end of reset pulse) */
}

uint32_t ne2000_reset_ioport_read(CPUX86State *env, uint32_t addr)
{
    ne2000_reset();
    return 0;
}

void ne2000_init(void)
{
    register_ioport_writeb(NE2000_IOPORT, 16, ne2000_ioport_write);
    register_ioport_readb(NE2000_IOPORT, 16, ne2000_ioport_read);

    register_ioport_writeb(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_write);
    register_ioport_readb(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_read);
    register_ioport_writew(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_write);
    register_ioport_readw(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_read);

    register_ioport_writeb(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_write);
    register_ioport_readb(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_read);
    ne2000_reset();
}

/***********************************************************/
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
/* cpu signal handler */
static void host_segv_handler(int host_signum, siginfo_t *info, 
                              void *puc)
{
    if (cpu_signal_handler(host_signum, info, puc))
        return;
    term_exit();
    abort();
}

static int timer_irq_pending;
1767
static int timer_irq_count;
1768
1769
1770
1771

static void host_alarm_handler(int host_signum, siginfo_t *info, 
                               void *puc)
{
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
    /* NOTE: since usually the OS asks a 100 Hz clock, there can be
       some drift between cpu_get_ticks() and the interrupt time. So
       we queue some interrupts to avoid missing some */
    timer_irq_count += pit_get_out_edges(&pit_channels[0]);
    if (timer_irq_count) {
        if (timer_irq_count > 2)
            timer_irq_count = 2;
        timer_irq_count--;
        /* just exit from the cpu to have a chance to handle timers */
        cpu_x86_interrupt(global_env);
        timer_irq_pending = 1;
    }
1784
1785
}

bellard's avatar
bellard committed
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
/* main execution loop */

CPUState *cpu_gdbstub_get_env(void *opaque)
{
    return global_env;
}

void main_loop(void *opaque)
{
    struct pollfd ufds[2], *pf, *serial_ufd, *net_ufd, *gdb_ufd;
    int ret, n, timeout;
    uint8_t ch;
    CPUState *env = global_env;

    for(;;) {

        ret = cpu_x86_exec(env);

        /* if hlt instruction, we wait until the next IRQ */
        if (ret == EXCP_HLT) 
            timeout = 10;
        else
            timeout = 0;
        /* poll any events */
        serial_ufd = NULL;
        pf = ufds;
        if (!(serial_ports[0].lsr & UART_LSR_DR)) {
            serial_ufd = pf;
            pf->fd = 0;
            pf->events = POLLIN;
            pf++;
        }
        net_ufd = NULL;
        if (net_fd > 0 && ne2000_can_receive(&ne2000_state)) {
            net_ufd = pf;
            pf->fd = net_fd;
            pf->events = POLLIN;
            pf++;
        }
        gdb_ufd = NULL;
        if (gdbstub_fd > 0) {
            gdb_ufd = pf;
            pf->fd = gdbstub_fd;
            pf->events = POLLIN;
            pf++;
        }

        ret = poll(ufds, pf - ufds, timeout);
        if (ret > 0) {
            if (serial_ufd && (serial_ufd->revents & POLLIN)) {
                n = read(0, &ch, 1);
                if (n == 1) {
                    serial_received_byte(&serial_ports[0], ch);
                }
            }
            if (net_ufd && (net_ufd->revents & POLLIN)) {
                uint8_t buf[MAX_ETH_FRAME_SIZE];

                n = read(net_fd, buf, MAX_ETH_FRAME_SIZE);
                if (n > 0) {
                    if (n < 60) {
                        memset(buf + n, 0, 60 - n);
                        n = 60;
                    }
                    ne2000_receive(&ne2000_state, buf, n);
                }
            }
            if (gdb_ufd && (gdb_ufd->revents & POLLIN)) {
                uint8_t buf[1];
                /* stop emulation if requested by gdb */
                n = read(gdbstub_fd, buf, 1);
                if (n == 1)
                    break;
            }
        }

        /* timer IRQ */
        if (timer_irq_pending) {
            pic_set_irq(0, 1);
            pic_set_irq(0, 0);
            timer_irq_pending = 0;
        }

        pic_handle_irq();
    }
}

1873
1874
1875
void help(void)
{
    printf("Virtual Linux version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
bellard's avatar
bellard committed
1876
           "usage: vl [options] bzImage initrd [kernel parameters...]\n"
1877
1878
1879
1880
1881
           "\n"
           "'bzImage' is a Linux kernel image (PAGE_OFFSET must be defined\n"
           "to 0x90000000 in asm/page.h and arch/i386/vmlinux.lds)\n"
           "'initrd' is an initrd image\n"
           "-m megs   set virtual RAM size to megs MB\n"
bellard's avatar
bellard committed
1882
           "-n script set network init script [default=%s]\n"
bellard's avatar
bellard committed
1883
1884
           "-s        wait gdb connection to port %d\n"
           "-p port   change gdb connection port\n"
1885
1886
           "-d        output log in /tmp/vl.log\n"
           "\n"
bellard's avatar
bellard committed
1887
           "During emulation, use C-a h to get terminal commands:\n",
bellard's avatar
bellard committed
1888
           DEFAULT_NETWORK_SCRIPT, DEFAULT_GDBSTUB_PORT);
1889
1890
1891
1892
1893
1894
    term_print_help();
    exit(1);
}

int main(int argc, char **argv)
{
bellard's avatar
bellard committed
1895
    int c, ret, initrd_size, i, use_gdbstub, gdbstub_port;
1896
1897
1898
1899
    struct linux_params *params;
    struct sigaction act;
    struct itimerval itv;
    CPUX86State *env;
1900
1901
    const char *tmpdir;
    
1902
1903
1904
1905
    /* we never want that malloc() uses mmap() */
    mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
    
    phys_ram_size = 32 * 1024 * 1024;
bellard's avatar
bellard committed
1906
    pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
bellard's avatar
bellard committed
1907
1908
    use_gdbstub = 0;
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
1909
    for(;;) {
bellard's avatar
bellard committed
1910
        c = getopt(argc, argv, "hm:dn:sp:");
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
        if (c == -1)
            break;
        switch(c) {
        case 'h':
            help();
            break;
        case 'm':
            phys_ram_size = atoi(optarg) * 1024 * 1024;
            if (phys_ram_size <= 0)
                help();
            break;
        case 'd':
            loglevel = 1;
            break;
bellard's avatar
bellard committed
1925
1926
1927
        case 'n':
            pstrcpy(network_script, sizeof(network_script), optarg);
            break;
bellard's avatar
bellard committed
1928
1929
1930
1931
1932
1933
        case 's':
            use_gdbstub = 1;
            break;
        case 'p':
            gdbstub_port = atoi(optarg);
            break;
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
        }
    }
    if (optind + 1 >= argc)
        help();

    /* init debug */
    if (loglevel) {
        logfile = fopen(DEBUG_LOGFILE, "w");
        if (!logfile) {
            perror(DEBUG_LOGFILE);
            _exit(1);
        }
        setvbuf(logfile, NULL, _IOLBF, 0);
    }

bellard's avatar
bellard committed
1949
1950
1951
    /* init network tun interface */
    net_init();

1952
    /* init the memory */
1953
1954
1955
1956
    tmpdir = getenv("VLTMPDIR");
    if (!tmpdir)
        tmpdir = "/tmp";
    snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
1957
    if (mkstemp(phys_ram_file) < 0) {
1958
1959
        fprintf(stderr, "Could not create temporary memory file '%s'\n", 
                phys_ram_file);
1960
1961
1962
1963
        exit(1);
    }
    phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
    if (phys_ram_fd < 0) {
1964
1965
        fprintf(stderr, "Could not open temporary memory file '%s'\n", 
                phys_ram_file);
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
        exit(1);
    }
    ftruncate(phys_ram_fd, phys_ram_size);
    unlink(phys_ram_file);
    phys_ram_base = mmap((void *)PHYS_RAM_BASE, phys_ram_size, 
                         PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED, 
                         phys_ram_fd, 0);
    if (phys_ram_base == MAP_FAILED) {
        fprintf(stderr, "Could not map physical memory\n");
        exit(1);
    }

    /* now we can load the kernel */
    ret = load_kernel(argv[optind], phys_ram_base + KERNEL_LOAD_ADDR);
    if (ret < 0) {
        fprintf(stderr, "%s: could not load kernel\n", argv[optind]);
        exit(1);
    }

    /* load initrd */
    initrd_size = load_image(argv[optind + 1], phys_ram_base + INITRD_LOAD_ADDR);
    if (initrd_size < 0) {
        fprintf(stderr, "%s: could not load initrd\n", argv[optind + 1]);
        exit(1);
    }

    /* init kernel params */
    params = (void *)(phys_ram_base + KERNEL_PARAMS_ADDR);
    memset(params, 0, sizeof(struct linux_params));
    params->mount_root_rdonly = 0;
    params->cl_magic = 0xA33F;
    params->cl_offset = params->commandline - (uint8_t *)params;
    params->ext_mem_k = (phys_ram_size / 1024) - 1024;
    for(i = optind + 2; i < argc; i++) {
        if (i != optind + 2)
            pstrcat(params->commandline, sizeof(params->commandline), " ");
        pstrcat(params->commandline, sizeof(params->commandline), argv[i]);
    }
    params->loader_type = 0x01;
    if (initrd_size > 0) {
        params->initrd_start = INITRD_LOAD_ADDR;
        params->initrd_size = initrd_size;
    }
    params->orig_video_lines = 25;
    params->orig_video_cols = 80;

    /* init basic PC hardware */
    init_ioports();
    register_ioport_writeb(0x80, 1, ioport80_write);

    register_ioport_writeb(0x3d4, 2, vga_ioport_write);

    cmos_init();
    pic_init();
    pit_init();
    serial_init();
bellard's avatar
bellard committed
2022
    ne2000_init();
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036

    /* setup cpu signal handlers for MMU / self modifying code handling */
    sigfillset(&act.sa_mask);
    act.sa_flags = SA_SIGINFO;
    act.sa_sigaction = host_segv_handler;
    sigaction(SIGSEGV, &act, NULL);
    sigaction(SIGBUS, &act, NULL);

    act.sa_sigaction = host_alarm_handler;
    sigaction(SIGALRM, &act, NULL);

    /* init CPU state */
    env = cpu_init();
    global_env = env;
bellard's avatar
bellard committed
2037
    cpu_single_env = env;
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064

    /* setup basic memory access */
    env->cr[0] = 0x00000033;
    cpu_x86_init_mmu(env);
    
    memset(params->idt_table, 0, sizeof(params->idt_table));

    params->gdt_table[2] = 0x00cf9a000000ffffLL; /* KERNEL_CS */
    params->gdt_table[3] = 0x00cf92000000ffffLL; /* KERNEL_DS */
    
    env->idt.base = (void *)params->idt_table;
    env->idt.limit = sizeof(params->idt_table) - 1;
    env->gdt.base = (void *)params->gdt_table;
    env->gdt.limit = sizeof(params->gdt_table) - 1;

    cpu_x86_load_seg(env, R_CS, KERNEL_CS);
    cpu_x86_load_seg(env, R_DS, KERNEL_DS);
    cpu_x86_load_seg(env, R_ES, KERNEL_DS);
    cpu_x86_load_seg(env, R_SS, KERNEL_DS);
    cpu_x86_load_seg(env, R_FS, KERNEL_DS);
    cpu_x86_load_seg(env, R_GS, KERNEL_DS);
    
    env->eip = KERNEL_LOAD_ADDR;
    env->regs[R_ESI] = KERNEL_PARAMS_ADDR;
    env->eflags = 0x2;

    itv.it_interval.tv_sec = 0;
2065
    itv.it_interval.tv_usec = 1000;
2066
2067
2068
    itv.it_value.tv_sec = 0;
    itv.it_value.tv_usec = 10 * 1000;
    setitimer(ITIMER_REAL, &itv, NULL);
2069
2070
2071
2072
2073
    /* we probe the tick duration of the kernel to inform the user if
       the emulated kernel requested a too high timer frequency */
    getitimer(ITIMER_REAL, &itv);
    pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * PIT_FREQ) / 
        1000000;
bellard's avatar
bellard committed
2074
2075
2076
2077
2078
    
    if (use_gdbstub) {
        cpu_gdbstub(NULL, main_loop, gdbstub_port);
    } else {
        main_loop(NULL);
2079
2080
2081
    }
    return 0;
}