vl.c 96.8 KB
Newer Older
1
/*
bellard's avatar
bellard committed
2
 * QEMU PC System Emulator
3
 * 
bellard's avatar
bellard committed
4
 * Copyright (c) 2003 Fabrice Bellard
5
 * 
bellard's avatar
bellard committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
23
24
25
 */
#include <stdlib.h>
#include <stdio.h>
bellard's avatar
bellard committed
26
#include <stdarg.h>
27
#include <string.h>
28
#include <ctype.h>
29
30
31
32
33
34
35
36
37
38
39
40
#include <getopt.h>
#include <inttypes.h>
#include <unistd.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <signal.h>
#include <time.h>
#include <sys/time.h>
#include <malloc.h>
#include <termios.h>
#include <sys/poll.h>
#include <errno.h>
bellard's avatar
bellard committed
41
42
43
44
45
46
#include <sys/wait.h>

#include <sys/ioctl.h>
#include <sys/socket.h>
#include <linux/if.h>
#include <linux/if_tun.h>
47
48

#include "disas.h"
bellard's avatar
bellard committed
49
50
51
#include "thunk.h"

#include "vl.h"
52

53
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
54
55
#define BIOS_FILENAME "bios.bin"
#define VGABIOS_FILENAME "vgabios.bin"
bellard's avatar
bellard committed
56
#define LINUX_BOOT_FILENAME "linux_boot.bin"
bellard's avatar
bellard committed
57

58
//#define DEBUG_UNUSED_IOPORT
59

60
//#define DEBUG_IRQ_LATENCY
61

62
63
64
/* output Bochs bios info messages */
//#define DEBUG_BIOS

65
66
//#define DEBUG_CMOS

67
68
69
70
71
72
73
74
75
/* debug PIC */
//#define DEBUG_PIC

/* debug NE2000 card */
//#define DEBUG_NE2000

/* debug PC keyboard */
//#define DEBUG_KBD

76
77
78
/* debug PC keyboard : only mouse */
//#define DEBUG_MOUSE

79
80
//#define DEBUG_SERIAL

81
#if !defined(CONFIG_SOFTMMU)
bellard's avatar
bellard committed
82
#define PHYS_RAM_MAX_SIZE (256 * 1024 * 1024)
83
84
85
#else
#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
#endif
bellard's avatar
bellard committed
86

87
#if defined (TARGET_I386)
88
#define KERNEL_LOAD_ADDR   0x00100000
89
90
#elif defined (TARGET_PPC)
//#define USE_OPEN_FIRMWARE
bellard's avatar
bellard committed
91
#if !defined (USE_OPEN_FIRMWARE)
92
93
94
95
96
97
98
#define KERNEL_LOAD_ADDR    0x01000000
#define KERNEL_STACK_ADDR   0x01200000
#else
#define KERNEL_LOAD_ADDR    0x00000000
#define KERNEL_STACK_ADDR   0x00400000
#endif
#endif
99
100
101
#define INITRD_LOAD_ADDR     0x00400000
#define KERNEL_PARAMS_ADDR   0x00090000
#define KERNEL_CMDLINE_ADDR  0x00099000
102

103
104
#define GUI_REFRESH_INTERVAL 30 

105
106
/* XXX: use a two level table to limit memory usage */
#define MAX_IOPORTS 65536
107

108
static const char *bios_dir = CONFIG_QEMU_SHAREDIR;
109
char phys_ram_file[1024];
110
111
CPUState *global_env;
CPUState *cpu_single_env;
bellard's avatar
bellard committed
112
113
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
114
BlockDriverState *bs_table[MAX_DISKS], *fd_table[MAX_FD];
115
116
int vga_ram_size;
static DisplayState display_state;
117
int nographic;
118
119
int term_inited;
int64_t ticks_per_sec;
120
int boot_device = 'c';
121
static int ram_size;
122
123
124
125

/***********************************************************/
/* x86 io ports */

126
uint32_t default_ioport_readb(CPUState *env, uint32_t address)
127
128
129
130
{
#ifdef DEBUG_UNUSED_IOPORT
    fprintf(stderr, "inb: port=0x%04x\n", address);
#endif
bellard's avatar
bellard committed
131
    return 0xff;
132
133
}

134
void default_ioport_writeb(CPUState *env, uint32_t address, uint32_t data)
135
136
137
138
139
140
141
{
#ifdef DEBUG_UNUSED_IOPORT
    fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
#endif
}

/* default is to make two byte accesses */
142
uint32_t default_ioport_readw(CPUState *env, uint32_t address)
143
144
{
    uint32_t data;
145
146
    data = ioport_read_table[0][address & (MAX_IOPORTS - 1)](env, address);
    data |= ioport_read_table[0][(address + 1) & (MAX_IOPORTS - 1)](env, address + 1) << 8;
147
148
149
    return data;
}

150
void default_ioport_writew(CPUState *env, uint32_t address, uint32_t data)
151
{
152
153
    ioport_write_table[0][address & (MAX_IOPORTS - 1)](env, address, data & 0xff);
    ioport_write_table[0][(address + 1) & (MAX_IOPORTS - 1)](env, address + 1, (data >> 8) & 0xff);
154
155
}

156
uint32_t default_ioport_readl(CPUState *env, uint32_t address)
157
{
bellard's avatar
bellard committed
158
159
160
161
#ifdef DEBUG_UNUSED_IOPORT
    fprintf(stderr, "inl: port=0x%04x\n", address);
#endif
    return 0xffffffff;
162
163
}

164
void default_ioport_writel(CPUState *env, uint32_t address, uint32_t data)
165
{
bellard's avatar
bellard committed
166
167
168
#ifdef DEBUG_UNUSED_IOPORT
    fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
#endif
169
170
}

bellard's avatar
bellard committed
171
void init_ioports(void)
172
173
174
{
    int i;

bellard's avatar
bellard committed
175
176
177
178
179
180
181
182
    for(i = 0; i < MAX_IOPORTS; i++) {
        ioport_read_table[0][i] = default_ioport_readb;
        ioport_write_table[0][i] = default_ioport_writeb;
        ioport_read_table[1][i] = default_ioport_readw;
        ioport_write_table[1][i] = default_ioport_writew;
        ioport_read_table[2][i] = default_ioport_readl;
        ioport_write_table[2][i] = default_ioport_writel;
    }
183
184
}

bellard's avatar
bellard committed
185
186
/* size is the word size in byte */
int register_ioport_read(int start, int length, IOPortReadFunc *func, int size)
bellard's avatar
bellard committed
187
{
bellard's avatar
bellard committed
188
    int i, bsize;
bellard's avatar
bellard committed
189

bellard's avatar
bellard committed
190
191
192
193
194
195
196
197
198
199
    if (size == 1)
        bsize = 0;
    else if (size == 2)
        bsize = 1;
    else if (size == 4)
        bsize = 2;
    else
        return -1;
    for(i = start; i < start + length; i += size)
        ioport_read_table[bsize][i] = func;
bellard's avatar
bellard committed
200
201
202
    return 0;
}

bellard's avatar
bellard committed
203
204
/* size is the word size in byte */
int register_ioport_write(int start, int length, IOPortWriteFunc *func, int size)
bellard's avatar
bellard committed
205
{
bellard's avatar
bellard committed
206
    int i, bsize;
bellard's avatar
bellard committed
207

bellard's avatar
bellard committed
208
209
210
211
212
213
214
215
216
217
    if (size == 1)
        bsize = 0;
    else if (size == 2)
        bsize = 1;
    else if (size == 4)
        bsize = 2;
    else
        return -1;
    for(i = start; i < start + length; i += size)
        ioport_write_table[bsize][i] = func;
bellard's avatar
bellard committed
218
219
220
    return 0;
}

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
void pstrcpy(char *buf, int buf_size, const char *str)
{
    int c;
    char *q = buf;

    if (buf_size <= 0)
        return;

    for(;;) {
        c = *str++;
        if (c == 0 || q >= buf + buf_size - 1)
            break;
        *q++ = c;
    }
    *q = '\0';
}

/* strcat and truncate. */
char *pstrcat(char *buf, int buf_size, const char *s)
{
    int len;
    len = strlen(buf);
    if (len < buf_size) 
        pstrcpy(buf + len, buf_size - len, s);
    return buf;
}

248
249
250
#if defined (TARGET_I386)
int load_kernel(const char *filename, uint8_t *addr, 
                uint8_t *real_addr)
251
{
252
253
    int fd, size;
    int setup_sects;
254
255
256
257

    fd = open(filename, O_RDONLY);
    if (fd < 0)
        return -1;
258
259
260

    /* load 16 bit code */
    if (read(fd, real_addr, 512) != 512)
261
        goto fail;
262
    setup_sects = real_addr[0x1F1];
263
264
    if (!setup_sects)
        setup_sects = 4;
265
266
267
268
269
    if (read(fd, real_addr + 512, setup_sects * 512) != 
        setup_sects * 512)
        goto fail;
    
    /* load 32 bit code */
270
271
272
273
274
275
276
277
278
    size = read(fd, addr, 16 * 1024 * 1024);
    if (size < 0)
        goto fail;
    close(fd);
    return size;
 fail:
    close(fd);
    return -1;
}
279
#endif
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

/* return the size or -1 if error */
int load_image(const char *filename, uint8_t *addr)
{
    int fd, size;
    fd = open(filename, O_RDONLY);
    if (fd < 0)
        return -1;
    size = lseek(fd, 0, SEEK_END);
    lseek(fd, 0, SEEK_SET);
    if (read(fd, addr, size) != size) {
        close(fd);
        return -1;
    }
    close(fd);
    return size;
}

298
void cpu_outb(CPUState *env, int addr, int val)
299
{
bellard's avatar
bellard committed
300
    ioport_write_table[0][addr & (MAX_IOPORTS - 1)](env, addr, val);
301
302
}

303
void cpu_outw(CPUState *env, int addr, int val)
304
{
bellard's avatar
bellard committed
305
    ioport_write_table[1][addr & (MAX_IOPORTS - 1)](env, addr, val);
306
307
}

308
void cpu_outl(CPUState *env, int addr, int val)
309
{
bellard's avatar
bellard committed
310
    ioport_write_table[2][addr & (MAX_IOPORTS - 1)](env, addr, val);
311
312
}

313
int cpu_inb(CPUState *env, int addr)
314
{
bellard's avatar
bellard committed
315
    return ioport_read_table[0][addr & (MAX_IOPORTS - 1)](env, addr);
316
317
}

318
int cpu_inw(CPUState *env, int addr)
319
{
bellard's avatar
bellard committed
320
    return ioport_read_table[1][addr & (MAX_IOPORTS - 1)](env, addr);
321
322
}

323
int cpu_inl(CPUState *env, int addr)
324
{
bellard's avatar
bellard committed
325
    return ioport_read_table[2][addr & (MAX_IOPORTS - 1)](env, addr);
326
327
328
}

/***********************************************************/
329
void ioport80_write(CPUState *env, uint32_t addr, uint32_t data)
330
331
332
333
334
335
336
337
338
339
340
341
342
{
}

void hw_error(const char *fmt, ...)
{
    va_list ap;

    va_start(ap, fmt);
    fprintf(stderr, "qemu: hardware error: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
#ifdef TARGET_I386
    cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
343
344
#else
    cpu_dump_state(global_env, stderr, 0);
345
346
347
348
349
350
351
352
#endif
    va_end(ap);
    abort();
}

/***********************************************************/
/* cmos emulation */

353
#if defined (TARGET_I386)
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
#define RTC_SECONDS             0
#define RTC_SECONDS_ALARM       1
#define RTC_MINUTES             2
#define RTC_MINUTES_ALARM       3
#define RTC_HOURS               4
#define RTC_HOURS_ALARM         5
#define RTC_ALARM_DONT_CARE    0xC0

#define RTC_DAY_OF_WEEK         6
#define RTC_DAY_OF_MONTH        7
#define RTC_MONTH               8
#define RTC_YEAR                9

#define RTC_REG_A               10
#define RTC_REG_B               11
#define RTC_REG_C               12
#define RTC_REG_D               13

/* PC cmos mappings */
#define REG_EQUIPMENT_BYTE          0x14
374
#define REG_IBM_CENTURY_BYTE        0x32
375
#define REG_IBM_PS2_CENTURY_BYTE    0x37
376
377
378
379

uint8_t cmos_data[128];
uint8_t cmos_index;

380
void cmos_ioport_write(CPUState *env, uint32_t addr, uint32_t data)
381
382
383
{
    if (addr == 0x70) {
        cmos_index = data & 0x7f;
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    } else {
#ifdef DEBUG_CMOS
        printf("cmos: write index=0x%02x val=0x%02x\n",
               cmos_index, data);
#endif        
        switch(addr) {
        case RTC_SECONDS_ALARM:
        case RTC_MINUTES_ALARM:
        case RTC_HOURS_ALARM:
            /* XXX: not supported */
            cmos_data[cmos_index] = data;
            break;
        case RTC_SECONDS:
        case RTC_MINUTES:
        case RTC_HOURS:
        case RTC_DAY_OF_WEEK:
        case RTC_DAY_OF_MONTH:
        case RTC_MONTH:
        case RTC_YEAR:
            cmos_data[cmos_index] = data;
            break;
        case RTC_REG_A:
        case RTC_REG_B:
            cmos_data[cmos_index] = data;
            break;
        case RTC_REG_C:
        case RTC_REG_D:
            /* cannot write to them */
            break;
        default:
            cmos_data[cmos_index] = data;
            break;
        }
417
418
419
    }
}

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
static inline int to_bcd(int a)
{
    return ((a / 10) << 4) | (a % 10);
}

static void cmos_update_time(void)
{
    struct tm *tm;
    time_t ti;

    ti = time(NULL);
    tm = gmtime(&ti);
    cmos_data[RTC_SECONDS] = to_bcd(tm->tm_sec);
    cmos_data[RTC_MINUTES] = to_bcd(tm->tm_min);
    cmos_data[RTC_HOURS] = to_bcd(tm->tm_hour);
    cmos_data[RTC_DAY_OF_WEEK] = to_bcd(tm->tm_wday);
    cmos_data[RTC_DAY_OF_MONTH] = to_bcd(tm->tm_mday);
    cmos_data[RTC_MONTH] = to_bcd(tm->tm_mon + 1);
    cmos_data[RTC_YEAR] = to_bcd(tm->tm_year % 100);
    cmos_data[REG_IBM_CENTURY_BYTE] = to_bcd((tm->tm_year / 100) + 19);
440
    cmos_data[REG_IBM_PS2_CENTURY_BYTE] = cmos_data[REG_IBM_CENTURY_BYTE];
441
442
}

443
uint32_t cmos_ioport_read(CPUState *env, uint32_t addr)
444
445
446
447
448
449
{
    int ret;

    if (addr == 0x70) {
        return 0xff;
    } else {
450
        switch(cmos_index) {
451
452
453
454
455
456
457
458
        case RTC_SECONDS:
        case RTC_MINUTES:
        case RTC_HOURS:
        case RTC_DAY_OF_WEEK:
        case RTC_DAY_OF_MONTH:
        case RTC_MONTH:
        case RTC_YEAR:
        case REG_IBM_CENTURY_BYTE:
459
        case REG_IBM_PS2_CENTURY_BYTE:
460
461
462
            cmos_update_time();
            ret = cmos_data[cmos_index];
            break;
463
        case RTC_REG_A:
464
            ret = cmos_data[cmos_index];
465
466
            /* toggle update-in-progress bit for Linux (same hack as
               plex86) */
467
            cmos_data[RTC_REG_A] ^= 0x80; 
468
469
            break;
        case RTC_REG_C:
470
            ret = cmos_data[cmos_index];
471
            pic_set_irq(8, 0);
472
            cmos_data[RTC_REG_C] = 0x00; 
473
            break;
474
475
476
        default:
            ret = cmos_data[cmos_index];
            break;
477
478
479
480
481
        }
#ifdef DEBUG_CMOS
        printf("cmos: read index=0x%02x val=0x%02x\n",
               cmos_index, ret);
#endif
482
483
484
485
486
487
        return ret;
    }
}

void cmos_init(void)
{
488
    int val;
489

490
    cmos_update_time();
491
492
493
494
495
496

    cmos_data[RTC_REG_A] = 0x26;
    cmos_data[RTC_REG_B] = 0x02;
    cmos_data[RTC_REG_C] = 0x00;
    cmos_data[RTC_REG_D] = 0x80;

497
498
    /* various important CMOS locations needed by PC/Bochs bios */

499
    cmos_data[REG_EQUIPMENT_BYTE] = 0x02; /* FPU is there */
500
    cmos_data[REG_EQUIPMENT_BYTE] |= 0x04; /* PS/2 mouse installed */
501

502
    /* memory size */
503
    val = (ram_size / 1024) - 1024;
504
505
506
507
508
509
510
    if (val > 65535)
        val = 65535;
    cmos_data[0x17] = val;
    cmos_data[0x18] = val >> 8;
    cmos_data[0x30] = val;
    cmos_data[0x31] = val >> 8;

511
    val = (ram_size / 65536) - ((16 * 1024 * 1024) / 65536);
512
513
514
515
516
    if (val > 65535)
        val = 65535;
    cmos_data[0x34] = val;
    cmos_data[0x35] = val >> 8;
    
517
518
    switch(boot_device) {
    case 'a':
519
    case 'b':
520
521
522
523
524
525
526
527
528
529
530
        cmos_data[0x3d] = 0x01; /* floppy boot */
        break;
    default:
    case 'c':
        cmos_data[0x3d] = 0x02; /* hard drive boot */
        break;
    case 'd':
        cmos_data[0x3d] = 0x03; /* CD-ROM boot */
        break;
    }

bellard's avatar
bellard committed
531
532
    register_ioport_write(0x70, 2, cmos_ioport_write, 1);
    register_ioport_read(0x70, 2, cmos_ioport_read, 1);
533
534
}

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
void cmos_register_fd (uint8_t fd0, uint8_t fd1)
{
    int nb = 0;

    cmos_data[0x10] = 0;
    switch (fd0) {
    case 0:
        /* 1.44 Mb 3"5 drive */
        cmos_data[0x10] |= 0x40;
        break;
    case 1:
        /* 2.88 Mb 3"5 drive */
        cmos_data[0x10] |= 0x60;
        break;
    case 2:
        /* 1.2 Mb 5"5 drive */
        cmos_data[0x10] |= 0x20;
        break;
    }
    switch (fd1) {
    case 0:
        /* 1.44 Mb 3"5 drive */
        cmos_data[0x10] |= 0x04;
        break;
    case 1:
        /* 2.88 Mb 3"5 drive */
        cmos_data[0x10] |= 0x06;
        break;
    case 2:
        /* 1.2 Mb 5"5 drive */
        cmos_data[0x10] |= 0x02;
        break;
    }
    if (fd0 < 3)
        nb++;
    if (fd1 < 3)
        nb++;
    switch (nb) {
    case 0:
        break;
    case 1:
        cmos_data[REG_EQUIPMENT_BYTE] |= 0x01; /* 1 drive, ready for boot */
        break;
    case 2:
        cmos_data[REG_EQUIPMENT_BYTE] |= 0x41; /* 2 drives, ready for boot */
        break;
    }
}
#endif /* TARGET_I386 */

585
586
587
588
589
590
591
592
/***********************************************************/
/* 8259 pic emulation */

typedef struct PicState {
    uint8_t last_irr; /* edge detection */
    uint8_t irr; /* interrupt request register */
    uint8_t imr; /* interrupt mask register */
    uint8_t isr; /* interrupt service register */
593
    uint8_t priority_add; /* highest irq priority */
594
595
    uint8_t irq_base;
    uint8_t read_reg_select;
596
    uint8_t poll;
597
598
599
    uint8_t special_mask;
    uint8_t init_state;
    uint8_t auto_eoi;
600
601
    uint8_t rotate_on_auto_eoi;
    uint8_t special_fully_nested_mode;
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
    uint8_t init4; /* true if 4 byte init */
} PicState;

/* 0 is master pic, 1 is slave pic */
PicState pics[2];
int pic_irq_requested;

/* set irq level. If an edge is detected, then the IRR is set to 1 */
static inline void pic_set_irq1(PicState *s, int irq, int level)
{
    int mask;
    mask = 1 << irq;
    if (level) {
        if ((s->last_irr & mask) == 0)
            s->irr |= mask;
        s->last_irr |= mask;
    } else {
        s->last_irr &= ~mask;
    }
}

623
624
/* return the highest priority found in mask (highest = smallest
   number). Return 8 if no irq */
625
626
627
628
static inline int get_priority(PicState *s, int mask)
{
    int priority;
    if (mask == 0)
629
630
        return 8;
    priority = 0;
631
    while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
632
        priority++;
633
634
635
636
637
638
639
640
641
642
    return priority;
}

/* return the pic wanted interrupt. return -1 if none */
static int pic_get_irq(PicState *s)
{
    int mask, cur_priority, priority;

    mask = s->irr & ~s->imr;
    priority = get_priority(s, mask);
643
    if (priority == 8)
644
        return -1;
645
646
647
648
649
650
651
652
    /* compute current priority. If special fully nested mode on the
       master, the IRQ coming from the slave is not taken into account
       for the priority computation. */
    mask = s->isr;
    if (s->special_fully_nested_mode && s == &pics[0])
        mask &= ~(1 << 2);
    cur_priority = get_priority(s, mask);
    if (priority < cur_priority) {
653
        /* higher priority found: an irq should be generated */
654
        return (priority + s->priority_add) & 7;
655
656
657
658
659
    } else {
        return -1;
    }
}

660
661
/* raise irq to CPU if necessary. must be called every time the active
   irq may change */
662
void pic_update_irq(void)
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
{
    int irq2, irq;

    /* first look at slave pic */
    irq2 = pic_get_irq(&pics[1]);
    if (irq2 >= 0) {
        /* if irq request by slave pic, signal master PIC */
        pic_set_irq1(&pics[0], 2, 1);
        pic_set_irq1(&pics[0], 2, 0);
    }
    /* look at requested irq */
    irq = pic_get_irq(&pics[0]);
    if (irq >= 0) {
        if (irq == 2) {
            /* from slave pic */
            pic_irq_requested = 8 + irq2;
        } else {
            /* from master pic */
            pic_irq_requested = irq;
        }
683
684
685
686
687
688
689
690
691
692
693
#if defined(DEBUG_PIC)
        {
            int i;
            for(i = 0; i < 2; i++) {
                printf("pic%d: imr=%x irr=%x padd=%d\n", 
                       i, pics[i].imr, pics[i].irr, pics[i].priority_add);
                
            }
        }
        printf("pic: cpu_interrupt req=%d\n", pic_irq_requested);
#endif
694
        cpu_interrupt(global_env, CPU_INTERRUPT_HARD);
695
696
697
    }
}

698
699
700
701
#ifdef DEBUG_IRQ_LATENCY
int64_t irq_time[16];
int64_t cpu_get_ticks(void);
#endif
702
#if defined(DEBUG_PIC)
bellard's avatar
bellard committed
703
704
int irq_level[16];
#endif
705
706
707

void pic_set_irq(int irq, int level)
{
708
#if defined(DEBUG_PIC)
bellard's avatar
bellard committed
709
710
711
712
713
    if (level != irq_level[irq]) {
        printf("pic_set_irq: irq=%d level=%d\n", irq, level);
        irq_level[irq] = level;
    }
#endif
714
715
716
717
718
719
720
721
722
#ifdef DEBUG_IRQ_LATENCY
    if (level) {
        irq_time[irq] = cpu_get_ticks();
    }
#endif
    pic_set_irq1(&pics[irq >> 3], irq & 7, level);
    pic_update_irq();
}

723
724
725
726
727
728
729
730
731
732
733
734
/* acknowledge interrupt 'irq' */
static inline void pic_intack(PicState *s, int irq)
{
    if (s->auto_eoi) {
        if (s->rotate_on_auto_eoi)
            s->priority_add = (irq + 1) & 7;
    } else {
        s->isr |= (1 << irq);
    }
    s->irr &= ~(1 << irq);
}

735
int cpu_x86_get_pic_interrupt(CPUState *env)
736
737
738
739
740
{
    int irq, irq2, intno;

    /* signal the pic that the irq was acked by the CPU */
    irq = pic_irq_requested;
741
#ifdef DEBUG_IRQ_LATENCY
742
743
744
    printf("IRQ%d latency=%0.3fus\n", 
           irq, 
           (double)(cpu_get_ticks() - irq_time[irq]) * 1000000.0 / ticks_per_sec);
745
#endif
746
#if defined(DEBUG_PIC)
bellard's avatar
bellard committed
747
748
    printf("pic_interrupt: irq=%d\n", irq);
#endif
749

750
751
    if (irq >= 8) {
        irq2 = irq & 7;
752
        pic_intack(&pics[1], irq2);
753
754
755
756
757
        irq = 2;
        intno = pics[1].irq_base + irq2;
    } else {
        intno = pics[0].irq_base + irq;
    }
758
    pic_intack(&pics[0], irq);
759
760
761
    return intno;
}

762
void pic_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
763
764
{
    PicState *s;
765
    int priority, cmd, irq;
766

bellard's avatar
bellard committed
767
768
769
#ifdef DEBUG_PIC
    printf("pic_write: addr=0x%02x val=0x%02x\n", addr, val);
#endif
770
771
772
773
774
775
776
777
778
779
780
781
782
    s = &pics[addr >> 7];
    addr &= 1;
    if (addr == 0) {
        if (val & 0x10) {
            /* init */
            memset(s, 0, sizeof(PicState));
            s->init_state = 1;
            s->init4 = val & 1;
            if (val & 0x02)
                hw_error("single mode not supported");
            if (val & 0x08)
                hw_error("level sensitive irq not supported");
        } else if (val & 0x08) {
783
            if (val & 0x04)
784
                s->poll = 1;
785
786
787
788
789
            if (val & 0x02)
                s->read_reg_select = val & 1;
            if (val & 0x40)
                s->special_mask = (val >> 5) & 1;
        } else {
790
791
792
793
794
            cmd = val >> 5;
            switch(cmd) {
            case 0:
            case 4:
                s->rotate_on_auto_eoi = cmd >> 2;
795
                break;
796
797
            case 1: /* end of interrupt */
            case 5:
798
                priority = get_priority(s, s->isr);
799
800
801
802
803
804
                if (priority != 8) {
                    irq = (priority + s->priority_add) & 7;
                    s->isr &= ~(1 << irq);
                    if (cmd == 5)
                        s->priority_add = (irq + 1) & 7;
                    pic_update_irq();
805
806
                }
                break;
807
808
809
            case 3:
                irq = val & 7;
                s->isr &= ~(1 << irq);
810
                pic_update_irq();
811
                break;
812
            case 6:
813
                s->priority_add = (val + 1) & 7;
814
                pic_update_irq();
815
                break;
816
817
818
819
            case 7:
                irq = val & 7;
                s->isr &= ~(1 << irq);
                s->priority_add = (irq + 1) & 7;
820
                pic_update_irq();
821
                break;
822
823
824
            default:
                /* no operation */
                break;
825
826
827
828
829
830
831
            }
        }
    } else {
        switch(s->init_state) {
        case 0:
            /* normal mode */
            s->imr = val;
832
            pic_update_irq();
833
834
835
836
837
838
839
840
841
842
843
844
845
            break;
        case 1:
            s->irq_base = val & 0xf8;
            s->init_state = 2;
            break;
        case 2:
            if (s->init4) {
                s->init_state = 3;
            } else {
                s->init_state = 0;
            }
            break;
        case 3:
846
            s->special_fully_nested_mode = (val >> 4) & 1;
847
848
849
850
851
852
853
            s->auto_eoi = (val >> 1) & 1;
            s->init_state = 0;
            break;
        }
    }
}

854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
static uint32_t pic_poll_read (PicState *s, uint32_t addr1)
{
    int ret;

    ret = pic_get_irq(s);
    if (ret >= 0) {
        if (addr1 >> 7) {
            pics[0].isr &= ~(1 << 2);
            pics[0].irr &= ~(1 << 2);
        }
        s->irr &= ~(1 << ret);
        s->isr &= ~(1 << ret);
        if (addr1 >> 7 || ret != 2)
            pic_update_irq();
    } else {
        ret = 0x07;
        pic_update_irq();
    }

    return ret;
}

uint32_t pic_ioport_read(CPUState *env, uint32_t addr1)
877
878
{
    PicState *s;
bellard's avatar
bellard committed
879
880
881
882
    unsigned int addr;
    int ret;

    addr = addr1;
883
884
    s = &pics[addr >> 7];
    addr &= 1;
885
    if (s->poll) {
886
887
888
        ret = pic_poll_read(s, addr1);
        s->poll = 0;
    } else {
889
890
891
892
893
894
895
896
        if (addr == 0) {
            if (s->read_reg_select)
                ret = s->isr;
            else
                ret = s->irr;
        } else {
            ret = s->imr;
        }
897
    }
bellard's avatar
bellard committed
898
899
900
901
#ifdef DEBUG_PIC
    printf("pic_read: addr=0x%02x val=0x%02x\n", addr1, ret);
#endif
    return ret;
902
903
}

904
905
906
907
908
909
910
911
912
913
914
915
916
917
/* memory mapped interrupt status */
uint32_t pic_intack_read(CPUState *env)
{
    int ret;

    ret = pic_poll_read(&pics[0], 0x00);
    if (ret == 2)
        ret = pic_poll_read(&pics[1], 0x80) + 8;
    /* Prepare for ISR read */
    pics[0].read_reg_select = 1;
    
    return ret;
}

918
919
void pic_init(void)
{
920
#if defined (TARGET_I386) || defined (TARGET_PPC)
bellard's avatar
bellard committed
921
922
923
924
    register_ioport_write(0x20, 2, pic_ioport_write, 1);
    register_ioport_read(0x20, 2, pic_ioport_read, 1);
    register_ioport_write(0xa0, 2, pic_ioport_write, 1);
    register_ioport_read(0xa0, 2, pic_ioport_read, 1);
925
#endif
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
}

/***********************************************************/
/* 8253 PIT emulation */

#define PIT_FREQ 1193182

#define RW_STATE_LSB 0
#define RW_STATE_MSB 1
#define RW_STATE_WORD0 2
#define RW_STATE_WORD1 3
#define RW_STATE_LATCHED_WORD0 4
#define RW_STATE_LATCHED_WORD1 5

typedef struct PITChannelState {
941
    int count; /* can be 65536 */
942
943
944
945
946
947
    uint16_t latched_count;
    uint8_t rw_state;
    uint8_t mode;
    uint8_t bcd; /* not supported */
    uint8_t gate; /* timer start */
    int64_t count_load_time;
948
    int64_t count_last_edge_check_time;
949
950
951
952
} PITChannelState;

PITChannelState pit_channels[3];
int speaker_data_on;
953
int dummy_refresh_clock;
954
int pit_min_timer_count = 0;
955

956
957
958
959

#if defined(__powerpc__)

static inline uint32_t get_tbl(void) 
960
{
961
962
963
    uint32_t tbl;
    asm volatile("mftb %0" : "=r" (tbl));
    return tbl;
964
965
}

966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
static inline uint32_t get_tbu(void) 
{
	uint32_t tbl;
	asm volatile("mftbu %0" : "=r" (tbl));
	return tbl;
}

int64_t cpu_get_real_ticks(void)
{
    uint32_t l, h, h1;
    /* NOTE: we test if wrapping has occurred */
    do {
        h = get_tbu();
        l = get_tbl();
        h1 = get_tbu();
    } while (h != h1);
    return ((int64_t)h << 32) | l;
}

#elif defined(__i386__)

int64_t cpu_get_real_ticks(void)
988
989
990
991
992
993
{
    int64_t val;
    asm("rdtsc" : "=A" (val));
    return val;
}

994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
#else
#error unsupported CPU
#endif

static int64_t cpu_ticks_offset;
static int64_t cpu_ticks_last;

int64_t cpu_get_ticks(void)
{
    return cpu_get_real_ticks() + cpu_ticks_offset;
}

/* enable cpu_get_ticks() */
void cpu_enable_ticks(void)
{
    cpu_ticks_offset = cpu_ticks_last - cpu_get_real_ticks();
}

/* disable cpu_get_ticks() : the clock is stopped. You must not call
   cpu_get_ticks() after that.  */
void cpu_disable_ticks(void)
{
    cpu_ticks_last = cpu_get_ticks();
}

int64_t get_clock(void)
{
    struct timeval tv;
    gettimeofday(&tv, NULL);
    return tv.tv_sec * 1000000LL + tv.tv_usec;
}

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
void cpu_calibrate_ticks(void)
{
    int64_t usec, ticks;

    usec = get_clock();
    ticks = cpu_get_ticks();
    usleep(50 * 1000);
    usec = get_clock() - usec;
    ticks = cpu_get_ticks() - ticks;
    ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
}

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
/* compute with 96 bit intermediate result: (a*b)/c */
static uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
{
    union {
        uint64_t ll;
        struct {
#ifdef WORDS_BIGENDIAN
            uint32_t high, low;
#else
            uint32_t low, high;
#endif            
        } l;
    } u, res;
    uint64_t rl, rh;

    u.ll = a;
    rl = (uint64_t)u.l.low * (uint64_t)b;
    rh = (uint64_t)u.l.high * (uint64_t)b;
    rh += (rl >> 32);
    res.l.high = rh / c;
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
    return res.ll;
}

1062
1063
static int pit_get_count(PITChannelState *s)
{
1064
    uint64_t d;
1065
1066
    int counter;

1067
    d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
1068
1069
1070
1071
1072
1073
1074
    switch(s->mode) {
    case 0:
    case 1:
    case 4:
    case 5:
        counter = (s->count - d) & 0xffff;
        break;
bellard's avatar
bellard committed
1075
1076
1077
1078
    case 3:
        /* XXX: may be incorrect for odd counts */
        counter = s->count - ((2 * d) % s->count);
        break;
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
    default:
        counter = s->count - (d % s->count);
        break;
    }
    return counter;
}

/* get pit output bit */
static int pit_get_out(PITChannelState *s)
{
1089
    uint64_t d;
1090
1091
    int out;

1092
    d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
    switch(s->mode) {
    default:
    case 0:
        out = (d >= s->count);
        break;
    case 1:
        out = (d < s->count);
        break;
    case 2:
        if ((d % s->count) == 0 && d != 0)
            out = 1;
        else
            out = 0;
        break;
    case 3:
bellard's avatar
bellard committed
1108
        out = (d % s->count) < ((s->count + 1) >> 1);
1109
1110
1111
1112
1113
1114
1115
1116
1117
        break;
    case 4:
    case 5:
        out = (d == s->count);
        break;
    }
    return out;
}

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
/* get the number of 0 to 1 transitions we had since we call this
   function */
/* XXX: maybe better to use ticks precision to avoid getting edges
   twice if checks are done at very small intervals */
static int pit_get_out_edges(PITChannelState *s)
{
    uint64_t d1, d2;
    int64_t ticks;
    int ret, v;

    ticks = cpu_get_ticks();
    d1 = muldiv64(s->count_last_edge_check_time - s->count_load_time, 
                 PIT_FREQ, ticks_per_sec);
    d2 = muldiv64(ticks - s->count_load_time, 
                  PIT_FREQ, ticks_per_sec);
    s->count_last_edge_check_time = ticks;
    switch(s->mode) {
    default:
    case 0:
        if (d1 < s->count && d2 >= s->count)
            ret = 1;
        else
            ret = 0;
        break;
    case 1:
        ret = 0;
        break;
    case 2:
        d1 /= s->count;
        d2 /= s->count;
        ret = d2 - d1;
        break;
    case 3:
bellard's avatar
bellard committed
1151
        v = s->count - ((s->count + 1) >> 1);
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
        d1 = (d1 + v) / s->count;
        d2 = (d2 + v) / s->count;
        ret = d2 - d1;
        break;
    case 4:
    case 5:
        if (d1 < s->count && d2 >= s->count)
            ret = 1;
        else
            ret = 0;
        break;
    }
    return ret;
}

bellard's avatar
bellard committed
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
/* val must be 0 or 1 */
static inline void pit_set_gate(PITChannelState *s, int val)
{
    switch(s->mode) {
    default:
    case 0:
    case 4:
        /* XXX: just disable/enable counting */
        break;
    case 1:
    case 5:
        if (s->gate < val) {
            /* restart counting on rising edge */
            s->count_load_time = cpu_get_ticks();
            s->count_last_edge_check_time = s->count_load_time;
        }
        break;
    case 2:
    case 3:
        if (s->gate < val) {
            /* restart counting on rising edge */
            s->count_load_time = cpu_get_ticks();
            s->count_last_edge_check_time = s->count_load_time;
        }
        /* XXX: disable/enable counting */
        break;
    }
    s->gate = val;
}

1197
1198
1199
1200
1201
1202
1203
1204
1205
static inline void pit_load_count(PITChannelState *s, int val)
{
    if (val == 0)
        val = 0x10000;
    s->count_load_time = cpu_get_ticks();
    s->count_last_edge_check_time = s->count_load_time;
    s->count = val;
    if (s == &pit_channels[0] && val <= pit_min_timer_count) {
        fprintf(stderr, 
1206
                "\nWARNING: qemu: on your system, accurate timer emulation is impossible if its frequency is more than %d Hz. If using a 2.6 guest Linux kernel, you must patch asm/param.h to change HZ from 1000 to 100.\n\n", 
1207
1208
1209
1210
                PIT_FREQ / pit_min_timer_count);
    }
}

1211
void pit_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
1212
1213
1214
{
    int channel, access;
    PITChannelState *s;
1215

1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
    addr &= 3;
    if (addr == 3) {
        channel = val >> 6;
        if (channel == 3)
            return;
        s = &pit_channels[channel];
        access = (val >> 4) & 3;
        switch(access) {
        case 0:
            s->latched_count = pit_get_count(s);
            s->rw_state = RW_STATE_LATCHED_WORD0;
            break;
        default:
1229
1230
            s->mode = (val >> 1) & 7;
            s->bcd = val & 1;
1231
1232
1233
1234
1235
1236
1237
            s->rw_state = access - 1 +  RW_STATE_LSB;
            break;
        }
    } else {
        s = &pit_channels[addr];
        switch(s->rw_state) {
        case RW_STATE_LSB:
1238
            pit_load_count(s, val);
1239
1240
            break;
        case RW_STATE_MSB:
1241
            pit_load_count(s, val << 8);
1242
1243
1244
1245
            break;
        case RW_STATE_WORD0:
        case RW_STATE_WORD1:
            if (s->rw_state & 1) {
1246
                pit_load_count(s, (s->latched_count & 0xff) | (val << 8));
1247
1248
1249
1250
1251
1252
1253
1254
1255
            } else {
                s->latched_count = val;
            }
            s->rw_state ^= 1;
            break;
        }
    }
}

1256
uint32_t pit_ioport_read(CPUState *env, uint32_t addr)
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
{
    int ret, count;
    PITChannelState *s;
    
    addr &= 3;
    s = &pit_channels[addr];
    switch(s->rw_state) {
    case RW_STATE_LSB:
    case RW_STATE_MSB:
    case RW_STATE_WORD0:
    case RW_STATE_WORD1:
        count = pit_get_count(s);
        if (s->rw_state & 1)
            ret = (count >> 8) & 0xff;
        else
            ret = count & 0xff;
        if (s->rw_state & 2)
            s->rw_state ^= 1;
        break;
    default:
    case RW_STATE_LATCHED_WORD0:
    case RW_STATE_LATCHED_WORD1:
        if (s->rw_state & 1)
            ret = s->latched_count >> 8;
        else
            ret = s->latched_count & 0xff;
        s->rw_state ^= 1;
        break;
    }
    return ret;
}

1289
1290
#if defined (TARGET_I386)
void speaker_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
1291
1292
{
    speaker_data_on = (val >> 1) & 1;
bellard's avatar
bellard committed
1293
    pit_set_gate(&pit_channels[2], val & 1);
1294
1295
}

1296
uint32_t speaker_ioport_read(CPUState *env, uint32_t addr)
1297
1298
1299
{
    int out;
    out = pit_get_out(&pit_channels[2]);
1300
1301
1302
    dummy_refresh_clock ^= 1;
    return (speaker_data_on << 1) | pit_channels[2].gate | (out << 5) |
      (dummy_refresh_clock << 4);
1303
}
1304
#endif
1305
1306
1307

void pit_init(void)
{
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
    PITChannelState *s;
    int i;

    cpu_calibrate_ticks();

    for(i = 0;i < 3; i++) {
        s = &pit_channels[i];
        s->mode = 3;
        s->gate = (i != 2);
        pit_load_count(s, 0);
    }

bellard's avatar
bellard committed
1320
1321
    register_ioport_write(0x40, 4, pit_ioport_write, 1);
    register_ioport_read(0x40, 3, pit_ioport_read, 1);
1322

1323
#if defined (TARGET_I386)
bellard's avatar
bellard committed
1324
1325
    register_ioport_read(0x61, 1, speaker_ioport_read, 1);
    register_ioport_write(0x61, 1, speaker_ioport_write, 1);
1326
#endif
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
}

/***********************************************************/
/* serial port emulation */

#define UART_IRQ        4

#define UART_LCR_DLAB	0x80	/* Divisor latch access bit */

#define UART_IER_MSI	0x08	/* Enable Modem status interrupt */
#define UART_IER_RLSI	0x04	/* Enable receiver line status interrupt */
#define UART_IER_THRI	0x02	/* Enable Transmitter holding register int. */
#define UART_IER_RDI	0x01	/* Enable receiver data interrupt */

#define UART_IIR_NO_INT	0x01	/* No interrupts pending */
#define UART_IIR_ID	0x06	/* Mask for the interrupt ID */

#define UART_IIR_MSI	0x00	/* Modem status interrupt */
#define UART_IIR_THRI	0x02	/* Transmitter holding register empty */
#define UART_IIR_RDI	0x04	/* Receiver data interrupt */
#define UART_IIR_RLSI	0x06	/* Receiver line status interrupt */

1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
/*
 * These are the definitions for the Modem Control Register
 */
#define UART_MCR_LOOP	0x10	/* Enable loopback test mode */
#define UART_MCR_OUT2	0x08	/* Out2 complement */
#define UART_MCR_OUT1	0x04	/* Out1 complement */
#define UART_MCR_RTS	0x02	/* RTS complement */
#define UART_MCR_DTR	0x01	/* DTR complement */

/*
 * These are the definitions for the Modem Status Register
 */
#define UART_MSR_DCD	0x80	/* Data Carrier Detect */
#define UART_MSR_RI	0x40	/* Ring Indicator */
#define UART_MSR_DSR	0x20	/* Data Set Ready */
#define UART_MSR_CTS	0x10	/* Clear to Send */
#define UART_MSR_DDCD	0x08	/* Delta DCD */
#define UART_MSR_TERI	0x04	/* Trailing edge ring indicator */
#define UART_MSR_DDSR	0x02	/* Delta DSR */
#define UART_MSR_DCTS	0x01	/* Delta CTS */
#define UART_MSR_ANY_DELTA 0x0F	/* Any of the delta bits! */

1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
#define UART_LSR_TEMT	0x40	/* Transmitter empty */
#define UART_LSR_THRE	0x20	/* Transmit-hold-register empty */
#define UART_LSR_BI	0x10	/* Break interrupt indicator */
#define UART_LSR_FE	0x08	/* Frame error indicator */
#define UART_LSR_PE	0x04	/* Parity error indicator */
#define UART_LSR_OE	0x02	/* Overrun error indicator */
#define UART_LSR_DR	0x01	/* Receiver data ready */

typedef struct SerialState {
    uint8_t divider;
    uint8_t rbr; /* receive register */
    uint8_t ier;
    uint8_t iir; /* read only */
    uint8_t lcr;
    uint8_t mcr;
    uint8_t lsr; /* read only */
    uint8_t msr;
    uint8_t scr;
1389
1390
1391
    /* NOTE: this hidden state is necessary for tx irq generation as
       it can be reset while reading iir */
    int thr_ipending;
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
} SerialState;

SerialState serial_ports[1];

void serial_update_irq(void)
{
    SerialState *s = &serial_ports[0];

    if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) {
        s->iir = UART_IIR_RDI;
1402
    } else if (s->thr_ipending && (s->ier & UART_IER_THRI)) {
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
        s->iir = UART_IIR_THRI;
    } else {
        s->iir = UART_IIR_NO_INT;
    }
    if (s->iir != UART_IIR_NO_INT) {
        pic_set_irq(UART_IRQ, 1);
    } else {
        pic_set_irq(UART_IRQ, 0);
    }
}

1414
void serial_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
1415
1416
1417
1418
1419
1420
{
    SerialState *s = &serial_ports[0];
    unsigned char ch;
    int ret;
    
    addr &= 7;
1421
1422
1423
#ifdef DEBUG_SERIAL
    printf("serial: write addr=0x%02x val=0x%02x\n", addr, val);
#endif
1424
1425
1426
1427
1428
1429
    switch(addr) {
    default:
    case 0:
        if (s->lcr & UART_LCR_DLAB) {
            s->divider = (s->divider & 0xff00) | val;
        } else {
1430
            s->thr_ipending = 0;
1431
1432
1433
1434
1435
1436
1437
            s->lsr &= ~UART_LSR_THRE;
            serial_update_irq();

            ch = val;
            do {
                ret = write(1, &ch, 1);
            } while (ret != 1);
1438
            s->thr_ipending = 1;
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453