vl.c 35.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
/*
 * QEMU based User Mode Linux 
 * 
 * This file is part of proprietary software - it is published here
 * only for demonstration and information purposes.
 * 
 * Copyright (c) 2003 Fabrice Bellard 
 */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <getopt.h>
#include <inttypes.h>
#include <unistd.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <signal.h>
#include <time.h>
#include <sys/time.h>
#include <malloc.h>
#include <termios.h>
#include <sys/poll.h>
#include <errno.h>

#include "cpu-i386.h"
#include "disas.h"

#define DEBUG_LOGFILE "/tmp/vl.log"
//#define DEBUG_UNUSED_IOPORT

#define PHYS_RAM_BASE 0xa8000000
#define KERNEL_LOAD_ADDR   0x00100000
#define INITRD_LOAD_ADDR   0x00400000
#define KERNEL_PARAMS_ADDR 0x00090000

/* from plex86 (BSD license) */
struct  __attribute__ ((packed)) linux_params {
  // For 0x00..0x3f, see 'struct screen_info' in linux/include/linux/tty.h.
  // I just padded out the VESA parts, rather than define them.

  /* 0x000 */ uint8_t   orig_x;
  /* 0x001 */ uint8_t   orig_y;
  /* 0x002 */ uint16_t  ext_mem_k;
  /* 0x004 */ uint16_t  orig_video_page;
  /* 0x006 */ uint8_t   orig_video_mode;
  /* 0x007 */ uint8_t   orig_video_cols;
  /* 0x008 */ uint16_t  unused1;
  /* 0x00a */ uint16_t  orig_video_ega_bx;
  /* 0x00c */ uint16_t  unused2;
  /* 0x00e */ uint8_t   orig_video_lines;
  /* 0x00f */ uint8_t   orig_video_isVGA;
  /* 0x010 */ uint16_t  orig_video_points;
  /* 0x012 */ uint8_t   pad0[0x20 - 0x12]; // VESA info.
  /* 0x020 */ uint16_t  cl_magic;  // Commandline magic number (0xA33F)
  /* 0x022 */ uint16_t  cl_offset; // Commandline offset.  Address of commandline
                                 // is calculated as 0x90000 + cl_offset, bu
                                 // only if cl_magic == 0xA33F.
  /* 0x024 */ uint8_t   pad1[0x40 - 0x24]; // VESA info.

  /* 0x040 */ uint8_t   apm_bios_info[20]; // struct apm_bios_info
  /* 0x054 */ uint8_t   pad2[0x80 - 0x54];

  // Following 2 from 'struct drive_info_struct' in drivers/block/cciss.h.
  // Might be truncated?
  /* 0x080 */ uint8_t   hd0_info[16]; // hd0-disk-parameter from intvector 0x41
  /* 0x090 */ uint8_t   hd1_info[16]; // hd1-disk-parameter from intvector 0x46

  // System description table truncated to 16 bytes
  // From 'struct sys_desc_table_struct' in linux/arch/i386/kernel/setup.c.
  /* 0x0a0 */ uint16_t  sys_description_len;
  /* 0x0a2 */ uint8_t   sys_description_table[14];
                        // [0] machine id
                        // [1] machine submodel id
                        // [2] BIOS revision
                        // [3] bit1: MCA bus

  /* 0x0b0 */ uint8_t   pad3[0x1e0 - 0xb0];
  /* 0x1e0 */ uint32_t  alt_mem_k;
  /* 0x1e4 */ uint8_t   pad4[4];
  /* 0x1e8 */ uint8_t   e820map_entries;
  /* 0x1e9 */ uint8_t   eddbuf_entries; // EDD_NR
  /* 0x1ea */ uint8_t   pad5[0x1f1 - 0x1ea];
  /* 0x1f1 */ uint8_t   setup_sects; // size of setup.S, number of sectors
  /* 0x1f2 */ uint16_t  mount_root_rdonly; // MOUNT_ROOT_RDONLY (if !=0)
  /* 0x1f4 */ uint16_t  sys_size; // size of compressed kernel-part in the
                                // (b)zImage-file (in 16 byte units, rounded up)
  /* 0x1f6 */ uint16_t  swap_dev; // (unused AFAIK)
  /* 0x1f8 */ uint16_t  ramdisk_flags;
  /* 0x1fa */ uint16_t  vga_mode; // (old one)
  /* 0x1fc */ uint16_t  orig_root_dev; // (high=Major, low=minor)
  /* 0x1fe */ uint8_t   pad6[1];
  /* 0x1ff */ uint8_t   aux_device_info;
  /* 0x200 */ uint16_t  jump_setup; // Jump to start of setup code,
                                  // aka "reserved" field.
  /* 0x202 */ uint8_t   setup_signature[4]; // Signature for SETUP-header, ="HdrS"
  /* 0x206 */ uint16_t  header_format_version; // Version number of header format;
  /* 0x208 */ uint8_t   setup_S_temp0[8]; // Used by setup.S for communication with
                                        // boot loaders, look there.
  /* 0x210 */ uint8_t   loader_type;
                        // 0 for old one.
                        // else 0xTV:
                        //   T=0: LILO
                        //   T=1: Loadlin
                        //   T=2: bootsect-loader
                        //   T=3: SYSLINUX
                        //   T=4: ETHERBOOT
                        //   V=version
  /* 0x211 */ uint8_t   loadflags;
                        // bit0 = 1: kernel is loaded high (bzImage)
                        // bit7 = 1: Heap and pointer (see below) set by boot
                        //   loader.
  /* 0x212 */ uint16_t  setup_S_temp1;
  /* 0x214 */ uint32_t  kernel_start;
  /* 0x218 */ uint32_t  initrd_start;
  /* 0x21c */ uint32_t  initrd_size;
  /* 0x220 */ uint8_t   setup_S_temp2[4];
  /* 0x224 */ uint16_t  setup_S_heap_end_pointer;
  /* 0x226 */ uint8_t   pad7[0x2d0 - 0x226];

  /* 0x2d0 : Int 15, ax=e820 memory map. */
  // (linux/include/asm-i386/e820.h, 'struct e820entry')
#define E820MAX  32
#define E820_RAM  1
#define E820_RESERVED 2
#define E820_ACPI 3 /* usable as RAM once ACPI tables have been read */
#define E820_NVS  4
  struct {
    uint64_t addr;
    uint64_t size;
    uint32_t type;
    } e820map[E820MAX];

  /* 0x550 */ uint8_t   pad8[0x600 - 0x550];

  // BIOS Enhanced Disk Drive Services.
  // (From linux/include/asm-i386/edd.h, 'struct edd_info')
  // Each 'struct edd_info is 78 bytes, times a max of 6 structs in array.
  /* 0x600 */ uint8_t   eddbuf[0x7d4 - 0x600];

  /* 0x7d4 */ uint8_t   pad9[0x800 - 0x7d4];
  /* 0x800 */ uint8_t   commandline[0x800];

  /* 0x1000 */
  uint64_t gdt_table[256];
  uint64_t idt_table[48];
};

#define KERNEL_CS     0x10
#define KERNEL_DS     0x18

typedef void (IOPortWriteFunc)(CPUX86State *env, uint32_t address, uint32_t data);
typedef uint32_t (IOPortReadFunc)(CPUX86State *env, uint32_t address);

#define MAX_IOPORTS 1024

char phys_ram_file[1024];
CPUX86State *global_env;
FILE *logfile = NULL;
int loglevel;
IOPortReadFunc *ioport_readb_table[MAX_IOPORTS];
IOPortWriteFunc *ioport_writeb_table[MAX_IOPORTS];
IOPortReadFunc *ioport_readw_table[MAX_IOPORTS];
IOPortWriteFunc *ioport_writew_table[MAX_IOPORTS];

/***********************************************************/
/* x86 io ports */

uint32_t default_ioport_readb(CPUX86State *env, uint32_t address)
{
#ifdef DEBUG_UNUSED_IOPORT
    fprintf(stderr, "inb: port=0x%04x\n", address);
#endif
    return 0;
}

void default_ioport_writeb(CPUX86State *env, uint32_t address, uint32_t data)
{
#ifdef DEBUG_UNUSED_IOPORT
    fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
#endif
}

/* default is to make two byte accesses */
uint32_t default_ioport_readw(CPUX86State *env, uint32_t address)
{
    uint32_t data;
    data = ioport_readb_table[address](env, address);
    data |= ioport_readb_table[address + 1](env, address + 1) << 8;
    return data;
}

void default_ioport_writew(CPUX86State *env, uint32_t address, uint32_t data)
{
    ioport_writeb_table[address](env, address, data & 0xff);
    ioport_writeb_table[address + 1](env, address + 1, (data >> 8) & 0xff);
}

void init_ioports(void)
{
    int i;

    for(i = 0; i < MAX_IOPORTS; i++) {
        ioport_readb_table[i] = default_ioport_readb;
        ioport_writeb_table[i] = default_ioport_writeb;
        ioport_readw_table[i] = default_ioport_readw;
        ioport_writew_table[i] = default_ioport_writew;
    }
}

int register_ioport_readb(int start, int length, IOPortReadFunc *func)
{
    int i;

    for(i = start; i < start + length; i++)
        ioport_readb_table[i] = func;
    return 0;
}

int register_ioport_writeb(int start, int length, IOPortWriteFunc *func)
{
    int i;

    for(i = start; i < start + length; i++)
        ioport_writeb_table[i] = func;
    return 0;
}

void pstrcpy(char *buf, int buf_size, const char *str)
{
    int c;
    char *q = buf;

    if (buf_size <= 0)
        return;

    for(;;) {
        c = *str++;
        if (c == 0 || q >= buf + buf_size - 1)
            break;
        *q++ = c;
    }
    *q = '\0';
}

/* strcat and truncate. */
char *pstrcat(char *buf, int buf_size, const char *s)
{
    int len;
    len = strlen(buf);
    if (len < buf_size) 
        pstrcpy(buf + len, buf_size - len, s);
    return buf;
}

int load_kernel(const char *filename, uint8_t *addr)
{
    int fd, size, setup_sects;
    uint8_t bootsect[512];

    fd = open(filename, O_RDONLY);
    if (fd < 0)
        return -1;
    if (read(fd, bootsect, 512) != 512)
        goto fail;
    setup_sects = bootsect[0x1F1];
    if (!setup_sects)
        setup_sects = 4;
    /* skip 16 bit setup code */
    lseek(fd, (setup_sects + 1) * 512, SEEK_SET);
    size = read(fd, addr, 16 * 1024 * 1024);
    if (size < 0)
        goto fail;
    close(fd);
    return size;
 fail:
    close(fd);
    return -1;
}

/* return the size or -1 if error */
int load_image(const char *filename, uint8_t *addr)
{
    int fd, size;
    fd = open(filename, O_RDONLY);
    if (fd < 0)
        return -1;
    size = lseek(fd, 0, SEEK_END);
    lseek(fd, 0, SEEK_SET);
    if (read(fd, addr, size) != size) {
        close(fd);
        return -1;
    }
    close(fd);
    return size;
}

void cpu_x86_outb(CPUX86State *env, int addr, int val)
{
    ioport_writeb_table[addr & (MAX_IOPORTS - 1)](env, addr, val);
}

void cpu_x86_outw(CPUX86State *env, int addr, int val)
{
    ioport_writew_table[addr & (MAX_IOPORTS - 1)](env, addr, val);
}

void cpu_x86_outl(CPUX86State *env, int addr, int val)
{
    fprintf(stderr, "outl: port=0x%04x, data=%08x\n", addr, val);
}

int cpu_x86_inb(CPUX86State *env, int addr)
{
    return ioport_readb_table[addr & (MAX_IOPORTS - 1)](env, addr);
}

int cpu_x86_inw(CPUX86State *env, int addr)
{
    return ioport_readw_table[addr & (MAX_IOPORTS - 1)](env, addr);
}

int cpu_x86_inl(CPUX86State *env, int addr)
{
    fprintf(stderr, "inl: port=0x%04x\n", addr);
    return 0;
}

/***********************************************************/
void ioport80_write(CPUX86State *env, uint32_t addr, uint32_t data)
{
}

void hw_error(const char *fmt, ...)
{
    va_list ap;

    va_start(ap, fmt);
    fprintf(stderr, "qemu: hardware error: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
#ifdef TARGET_I386
    cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
#endif
    va_end(ap);
    abort();
}

/***********************************************************/
/* vga emulation */
static uint8_t vga_index;
static uint8_t vga_regs[256];
static int last_cursor_pos;

void update_console_messages(void)
{
    int c, i, cursor_pos, eol;

    cursor_pos = vga_regs[0x0f] | (vga_regs[0x0e] << 8);
    eol = 0;
    for(i = last_cursor_pos; i < cursor_pos; i++) {
        c = phys_ram_base[0xb8000 + (i) * 2];
        if (c >= ' ') {
            putchar(c);
            eol = 0;
        } else {
            if (!eol)
                putchar('\n');
            eol = 1;
        }
    }
    fflush(stdout);
    last_cursor_pos = cursor_pos;
}

/* just to see first Linux console messages, we intercept cursor position */
void vga_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
{
    switch(addr) {
    case 0x3d4:
        vga_index = data;
        break;
    case 0x3d5:
        vga_regs[vga_index] = data;
        if (vga_index == 0x0f)
            update_console_messages();
        break;
    }
            
}

/***********************************************************/
/* cmos emulation */

#define RTC_SECONDS             0
#define RTC_SECONDS_ALARM       1
#define RTC_MINUTES             2
#define RTC_MINUTES_ALARM       3
#define RTC_HOURS               4
#define RTC_HOURS_ALARM         5
#define RTC_ALARM_DONT_CARE    0xC0

#define RTC_DAY_OF_WEEK         6
#define RTC_DAY_OF_MONTH        7
#define RTC_MONTH               8
#define RTC_YEAR                9

#define RTC_REG_A               10
#define RTC_REG_B               11
#define RTC_REG_C               12
#define RTC_REG_D               13

/* PC cmos mappings */
#define REG_EQUIPMENT_BYTE          0x14

uint8_t cmos_data[128];
uint8_t cmos_index;

void cmos_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
{
    if (addr == 0x70) {
        cmos_index = data & 0x7f;
    }
}

uint32_t cmos_ioport_read(CPUX86State *env, uint32_t addr)
{
    int ret;

    if (addr == 0x70) {
        return 0xff;
    } else {
        /* toggle update-in-progress bit for Linux (same hack as
           plex86) */
        ret = cmos_data[cmos_index];
        if (cmos_index == RTC_REG_A)
            cmos_data[RTC_REG_A] ^= 0x80; 
        else if (cmos_index == RTC_REG_C)
            cmos_data[RTC_REG_C] = 0x00; 
        return ret;
    }
}


static inline int to_bcd(int a)
{
    return ((a / 10) << 4) | (a % 10);
}

void cmos_init(void)
{
    struct tm *tm;
    time_t ti;

    ti = time(NULL);
    tm = gmtime(&ti);
    cmos_data[RTC_SECONDS] = to_bcd(tm->tm_sec);
    cmos_data[RTC_MINUTES] = to_bcd(tm->tm_min);
    cmos_data[RTC_HOURS] = to_bcd(tm->tm_hour);
    cmos_data[RTC_DAY_OF_WEEK] = to_bcd(tm->tm_wday);
    cmos_data[RTC_DAY_OF_MONTH] = to_bcd(tm->tm_mday);
    cmos_data[RTC_MONTH] = to_bcd(tm->tm_mon);
    cmos_data[RTC_YEAR] = to_bcd(tm->tm_year % 100);

    cmos_data[RTC_REG_A] = 0x26;
    cmos_data[RTC_REG_B] = 0x02;
    cmos_data[RTC_REG_C] = 0x00;
    cmos_data[RTC_REG_D] = 0x80;

    cmos_data[REG_EQUIPMENT_BYTE] = 0x02; /* FPU is there */

    register_ioport_writeb(0x70, 2, cmos_ioport_write);
    register_ioport_readb(0x70, 2, cmos_ioport_read);
}

/***********************************************************/
/* 8259 pic emulation */

typedef struct PicState {
    uint8_t last_irr; /* edge detection */
    uint8_t irr; /* interrupt request register */
    uint8_t imr; /* interrupt mask register */
    uint8_t isr; /* interrupt service register */
    uint8_t priority_add; /* used to compute irq priority */
    uint8_t irq_base;
    uint8_t read_reg_select;
    uint8_t special_mask;
    uint8_t init_state;
    uint8_t auto_eoi;
    uint8_t rotate_on_autoeoi;
    uint8_t init4; /* true if 4 byte init */
} PicState;

/* 0 is master pic, 1 is slave pic */
PicState pics[2];
int pic_irq_requested;

/* set irq level. If an edge is detected, then the IRR is set to 1 */
static inline void pic_set_irq1(PicState *s, int irq, int level)
{
    int mask;
    mask = 1 << irq;
    if (level) {
        if ((s->last_irr & mask) == 0)
            s->irr |= mask;
        s->last_irr |= mask;
    } else {
        s->last_irr &= ~mask;
    }
}

static inline int get_priority(PicState *s, int mask)
{
    int priority;
    if (mask == 0)
        return -1;
    priority = 7;
    while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
        priority--;
    return priority;
}

/* return the pic wanted interrupt. return -1 if none */
static int pic_get_irq(PicState *s)
{
    int mask, cur_priority, priority;

    mask = s->irr & ~s->imr;
    priority = get_priority(s, mask);
    if (priority < 0)
        return -1;
    /* compute current priority */
    cur_priority = get_priority(s, s->isr);
    if (priority > cur_priority) {
        /* higher priority found: an irq should be generated */
        return priority;
    } else {
        return -1;
    }
}

void pic_set_irq(int irq, int level)
{
    pic_set_irq1(&pics[irq >> 3], irq & 7, level);
}

/* can be called at any time outside cpu_exec() to raise irqs if
   necessary */
void pic_handle_irq(void)
{
    int irq2, irq;

    /* first look at slave pic */
    irq2 = pic_get_irq(&pics[1]);
    if (irq2 >= 0) {
        /* if irq request by slave pic, signal master PIC */
        pic_set_irq1(&pics[0], 2, 1);
        pic_set_irq1(&pics[0], 2, 0);
    }
    /* look at requested irq */
    irq = pic_get_irq(&pics[0]);
    if (irq >= 0) {
        if (irq == 2) {
            /* from slave pic */
            pic_irq_requested = 8 + irq2;
        } else {
            /* from master pic */
            pic_irq_requested = irq;
        }
        global_env->hard_interrupt_request = 1;
    }
}

int cpu_x86_get_pic_interrupt(CPUX86State *env)
{
    int irq, irq2, intno;

    /* signal the pic that the irq was acked by the CPU */
    irq = pic_irq_requested;
    if (irq >= 8) {
        irq2 = irq & 7;
        pics[1].isr |= (1 << irq2);
        pics[1].irr &= ~(1 << irq2);
        irq = 2;
        intno = pics[1].irq_base + irq2;
    } else {
        intno = pics[0].irq_base + irq;
    }
    pics[0].isr |= (1 << irq);
    pics[0].irr &= ~(1 << irq);
    return intno;
}

void pic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
    PicState *s;
    int priority;

    s = &pics[addr >> 7];
    addr &= 1;
    if (addr == 0) {
        if (val & 0x10) {
            /* init */
            memset(s, 0, sizeof(PicState));
            s->init_state = 1;
            s->init4 = val & 1;
            if (val & 0x02)
                hw_error("single mode not supported");
            if (val & 0x08)
                hw_error("level sensitive irq not supported");
        } else if (val & 0x08) {
            if (val & 0x02)
                s->read_reg_select = val & 1;
            if (val & 0x40)
                s->special_mask = (val >> 5) & 1;
        } else {
            switch(val) {
            case 0x00:
            case 0x80:
                s->rotate_on_autoeoi = val >> 7;
                break;
            case 0x20: /* end of interrupt */
            case 0xa0:
                priority = get_priority(s, s->isr);
                if (priority >= 0) {
                    s->isr &= ~(1 << ((priority + s->priority_add) & 7));
                }
                if (val == 0xa0)
                    s->priority_add = (s->priority_add + 1) & 7;
                break;
            case 0x60 ... 0x67:
                priority = val & 7;
                s->isr &= ~(1 << priority);
                break;
            case 0xc0 ... 0xc7:
                s->priority_add = (val + 1) & 7;
                break;
            case 0xe0 ... 0xe7:
                priority = val & 7;
                s->isr &= ~(1 << priority);
                s->priority_add = (priority + 1) & 7;
                break;
            }
        }
    } else {
        switch(s->init_state) {
        case 0:
            /* normal mode */
            s->imr = val;
            break;
        case 1:
            s->irq_base = val & 0xf8;
            s->init_state = 2;
            break;
        case 2:
            if (s->init4) {
                s->init_state = 3;
            } else {
                s->init_state = 0;
            }
            break;
        case 3:
            s->auto_eoi = (val >> 1) & 1;
            s->init_state = 0;
            break;
        }
    }
}

uint32_t pic_ioport_read(CPUX86State *env, uint32_t addr)
{
    PicState *s;
    s = &pics[addr >> 7];
    addr &= 1;
    if (addr == 0) {
        if (s->read_reg_select)
            return s->isr;
        else
            return s->irr;
    } else {
        return s->imr;
    }
}

void pic_init(void)
{
    register_ioport_writeb(0x20, 2, pic_ioport_write);
    register_ioport_readb(0x20, 2, pic_ioport_read);
    register_ioport_writeb(0xa0, 2, pic_ioport_write);
    register_ioport_readb(0xa0, 2, pic_ioport_read);
}

/***********************************************************/
/* 8253 PIT emulation */

#define PIT_FREQ 1193182

#define RW_STATE_LSB 0
#define RW_STATE_MSB 1
#define RW_STATE_WORD0 2
#define RW_STATE_WORD1 3
#define RW_STATE_LATCHED_WORD0 4
#define RW_STATE_LATCHED_WORD1 5

typedef struct PITChannelState {
    uint16_t count;
    uint16_t latched_count;
    uint8_t rw_state;
    uint8_t mode;
    uint8_t bcd; /* not supported */
    uint8_t gate; /* timer start */
    int64_t count_load_time;
} PITChannelState;

PITChannelState pit_channels[3];
int speaker_data_on;

int64_t ticks_per_sec;

int64_t get_clock(void)
{
    struct timeval tv;
    gettimeofday(&tv, NULL);
    return tv.tv_sec * 1000000LL + tv.tv_usec;
}

int64_t cpu_get_ticks(void)
{
    int64_t val;
    asm("rdtsc" : "=A" (val));
    return val;
}

void cpu_calibrate_ticks(void)
{
    int64_t usec, ticks;

    usec = get_clock();
    ticks = cpu_get_ticks();
    usleep(50 * 1000);
    usec = get_clock() - usec;
    ticks = cpu_get_ticks() - ticks;
    ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
}

static int pit_get_count(PITChannelState *s)
{
    int64_t d;
    int counter;

    d = ((cpu_get_ticks() - s->count_load_time) * PIT_FREQ) / 
        ticks_per_sec;
    switch(s->mode) {
    case 0:
    case 1:
    case 4:
    case 5:
        counter = (s->count - d) & 0xffff;
        break;
    default:
        counter = s->count - (d % s->count);
        break;
    }
    return counter;
}

/* get pit output bit */
static int pit_get_out(PITChannelState *s)
{
    int64_t d;
    int out;

    d = ((cpu_get_ticks() - s->count_load_time) * PIT_FREQ) / 
        ticks_per_sec;
    switch(s->mode) {
    default:
    case 0:
        out = (d >= s->count);
        break;
    case 1:
        out = (d < s->count);
        break;
    case 2:
        if ((d % s->count) == 0 && d != 0)
            out = 1;
        else
            out = 0;
        break;
    case 3:
        out = (d % s->count) < (s->count >> 1);
        break;
    case 4:
    case 5:
        out = (d == s->count);
        break;
    }
    return out;
}

void pit_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
    int channel, access;
    PITChannelState *s;
    
    addr &= 3;
    if (addr == 3) {
        channel = val >> 6;
        if (channel == 3)
            return;
        s = &pit_channels[channel];
        access = (val >> 4) & 3;
        switch(access) {
        case 0:
            s->latched_count = pit_get_count(s);
            s->rw_state = RW_STATE_LATCHED_WORD0;
            break;
        default:
            s->rw_state = access - 1 +  RW_STATE_LSB;
            break;
        }
        s->mode = (val >> 1) & 7;
        s->bcd = val & 1;
    } else {
        s = &pit_channels[addr];
        switch(s->rw_state) {
        case RW_STATE_LSB:
            s->count_load_time = cpu_get_ticks();
            s->count = val;
            break;
        case RW_STATE_MSB:
            s->count_load_time = cpu_get_ticks();
            s->count = (val << 8);
            break;
        case RW_STATE_WORD0:
        case RW_STATE_WORD1:
            if (s->rw_state & 1) {
                s->count_load_time = cpu_get_ticks();
                s->count = (s->latched_count & 0xff) | (val << 8);
            } else {
                s->latched_count = val;
            }
            s->rw_state ^= 1;
            break;
        }
    }
}

uint32_t pit_ioport_read(CPUX86State *env, uint32_t addr)
{
    int ret, count;
    PITChannelState *s;
    
    addr &= 3;
    s = &pit_channels[addr];
    switch(s->rw_state) {
    case RW_STATE_LSB:
    case RW_STATE_MSB:
    case RW_STATE_WORD0:
    case RW_STATE_WORD1:
        count = pit_get_count(s);
        if (s->rw_state & 1)
            ret = (count >> 8) & 0xff;
        else
            ret = count & 0xff;
        if (s->rw_state & 2)
            s->rw_state ^= 1;
        break;
    default:
    case RW_STATE_LATCHED_WORD0:
    case RW_STATE_LATCHED_WORD1:
        if (s->rw_state & 1)
            ret = s->latched_count >> 8;
        else
            ret = s->latched_count & 0xff;
        s->rw_state ^= 1;
        break;
    }
    return ret;
}

void speaker_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
    speaker_data_on = (val >> 1) & 1;
    pit_channels[2].gate = val & 1;
}

uint32_t speaker_ioport_read(CPUX86State *env, uint32_t addr)
{
    int out;
    out = pit_get_out(&pit_channels[2]);
    return (speaker_data_on << 1) | pit_channels[2].gate | (out << 5);
}

void pit_init(void)
{
    pit_channels[0].gate = 1;
    pit_channels[1].gate = 1;
    pit_channels[2].gate = 0;
    
    register_ioport_writeb(0x40, 4, pit_ioport_write);
    register_ioport_readb(0x40, 3, pit_ioport_read);

    register_ioport_readb(0x61, 1, speaker_ioport_read);
    register_ioport_writeb(0x61, 1, speaker_ioport_write);
    cpu_calibrate_ticks();
}

/***********************************************************/
/* serial port emulation */

#define UART_IRQ        4

#define UART_LCR_DLAB	0x80	/* Divisor latch access bit */

#define UART_IER_MSI	0x08	/* Enable Modem status interrupt */
#define UART_IER_RLSI	0x04	/* Enable receiver line status interrupt */
#define UART_IER_THRI	0x02	/* Enable Transmitter holding register int. */
#define UART_IER_RDI	0x01	/* Enable receiver data interrupt */

#define UART_IIR_NO_INT	0x01	/* No interrupts pending */
#define UART_IIR_ID	0x06	/* Mask for the interrupt ID */

#define UART_IIR_MSI	0x00	/* Modem status interrupt */
#define UART_IIR_THRI	0x02	/* Transmitter holding register empty */
#define UART_IIR_RDI	0x04	/* Receiver data interrupt */
#define UART_IIR_RLSI	0x06	/* Receiver line status interrupt */

#define UART_LSR_TEMT	0x40	/* Transmitter empty */
#define UART_LSR_THRE	0x20	/* Transmit-hold-register empty */
#define UART_LSR_BI	0x10	/* Break interrupt indicator */
#define UART_LSR_FE	0x08	/* Frame error indicator */
#define UART_LSR_PE	0x04	/* Parity error indicator */
#define UART_LSR_OE	0x02	/* Overrun error indicator */
#define UART_LSR_DR	0x01	/* Receiver data ready */

typedef struct SerialState {
    uint8_t divider;
    uint8_t rbr; /* receive register */
    uint8_t ier;
    uint8_t iir; /* read only */
    uint8_t lcr;
    uint8_t mcr;
    uint8_t lsr; /* read only */
    uint8_t msr;
    uint8_t scr;
} SerialState;

SerialState serial_ports[1];

void serial_update_irq(void)
{
    SerialState *s = &serial_ports[0];

    if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) {
        s->iir = UART_IIR_RDI;
    } else if ((s->lsr & UART_LSR_THRE) && (s->ier & UART_IER_THRI)) {
        s->iir = UART_IIR_THRI;
    } else {
        s->iir = UART_IIR_NO_INT;
    }
    if (s->iir != UART_IIR_NO_INT) {
        pic_set_irq(UART_IRQ, 1);
    } else {
        pic_set_irq(UART_IRQ, 0);
    }
}

void serial_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
    SerialState *s = &serial_ports[0];
    unsigned char ch;
    int ret;
    
    addr &= 7;
    switch(addr) {
    default:
    case 0:
        if (s->lcr & UART_LCR_DLAB) {
            s->divider = (s->divider & 0xff00) | val;
        } else {
            s->lsr &= ~UART_LSR_THRE;
            serial_update_irq();

            ch = val;
            do {
                ret = write(1, &ch, 1);
            } while (ret != 1);
            s->lsr |= UART_LSR_THRE;
            s->lsr |= UART_LSR_TEMT;
            serial_update_irq();
        }
        break;
    case 1:
        if (s->lcr & UART_LCR_DLAB) {
            s->divider = (s->divider & 0x00ff) | (val << 8);
        } else {
            s->ier = val;
            serial_update_irq();
        }
        break;
    case 2:
        break;
    case 3:
        s->lcr = val;
        break;
    case 4:
        s->mcr = val;
        break;
    case 5:
        break;
    case 6:
        s->msr = val;
        break;
    case 7:
        s->scr = val;
        break;
    }
}

uint32_t serial_ioport_read(CPUX86State *env, uint32_t addr)
{
    SerialState *s = &serial_ports[0];
    uint32_t ret;

    addr &= 7;
    switch(addr) {
    default:
    case 0:
        if (s->lcr & UART_LCR_DLAB) {
            ret = s->divider & 0xff; 
        } else {
            ret = s->rbr;
            s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
            serial_update_irq();
        }
        break;
    case 1:
        if (s->lcr & UART_LCR_DLAB) {
            ret = (s->divider >> 8) & 0xff;
        } else {
            ret = s->ier;
        }
        break;
    case 2:
        ret = s->iir;
        break;
    case 3:
        ret = s->lcr;
        break;
    case 4:
        ret = s->mcr;
        break;
    case 5:
        ret = s->lsr;
        break;
    case 6:
        ret = s->msr;
        break;
    case 7:
        ret = s->scr;
        break;
    }
    return ret;
}

#define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
static int term_got_escape;

void term_print_help(void)
{
    printf("\n"
           "C-a h    print this help\n"
           "C-a x    exit emulatior\n"
           "C-a b    send break (magic sysrq)\n"
           "C-a C-a  send C-a\n"
           );
}

/* called when a char is received */
void serial_received_byte(SerialState *s, int ch)
{
    if (term_got_escape) {
        term_got_escape = 0;
        switch(ch) {
        case 'h':
            term_print_help();
            break;
        case 'x':
            exit(0);
            break;
        case 'b':
            /* send break */
            s->rbr = 0;
            s->lsr |= UART_LSR_BI | UART_LSR_DR;
            serial_update_irq();
            break;
        case TERM_ESCAPE:
            goto send_char;
        }
    } else if (ch == TERM_ESCAPE) {
        term_got_escape = 1;
    } else {
    send_char:
        s->rbr = ch;
        s->lsr |= UART_LSR_DR;
        serial_update_irq();
    }
}

/* init terminal so that we can grab keys */
static struct termios oldtty;

static void term_exit(void)
{
    tcsetattr (0, TCSANOW, &oldtty);
}

static void term_init(void)
{
    struct termios tty;

    tcgetattr (0, &tty);
    oldtty = tty;

    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
                          |INLCR|IGNCR|ICRNL|IXON);
    tty.c_oflag |= OPOST;
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
    tty.c_cflag &= ~(CSIZE|PARENB);
    tty.c_cflag |= CS8;
    tty.c_cc[VMIN] = 1;
    tty.c_cc[VTIME] = 0;
    
    tcsetattr (0, TCSANOW, &tty);

    atexit(term_exit);

    fcntl(0, F_SETFL, O_NONBLOCK);
}

void serial_init(void)
{
    SerialState *s = &serial_ports[0];

    s->lsr = UART_LSR_TEMT | UART_LSR_THRE;

    register_ioport_writeb(0x3f8, 8, serial_ioport_write);
    register_ioport_readb(0x3f8, 8, serial_ioport_read);

    term_init();
}

/* cpu signal handler */
static void host_segv_handler(int host_signum, siginfo_t *info, 
                              void *puc)
{
    if (cpu_signal_handler(host_signum, info, puc))
        return;
    term_exit();
    abort();
}

static int timer_irq_pending;

static void host_alarm_handler(int host_signum, siginfo_t *info, 
                               void *puc)
{
    /* just exit from the cpu to have a change to handle timers */
    cpu_x86_interrupt(global_env);
    timer_irq_pending = 1;
}

void help(void)
{
    printf("Virtual Linux version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
           "usage: vl [-h] bzImage initrd [kernel parameters...]\n"
           "\n"
           "'bzImage' is a Linux kernel image (PAGE_OFFSET must be defined\n"
           "to 0x90000000 in asm/page.h and arch/i386/vmlinux.lds)\n"
           "'initrd' is an initrd image\n"
           "-m megs   set virtual RAM size to megs MB\n"
           "-d        output log in /tmp/vl.log\n"
           "\n"
           "During emulation, use C-a h to get terminal commands:\n"
           );
    term_print_help();
    exit(1);
}

int main(int argc, char **argv)
{
    int c, ret, initrd_size, i;
    struct linux_params *params;
    struct sigaction act;
    struct itimerval itv;
    CPUX86State *env;

    /* we never want that malloc() uses mmap() */
    mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
    
    phys_ram_size = 32 * 1024 * 1024;
    for(;;) {
        c = getopt(argc, argv, "hm:d");
        if (c == -1)
            break;
        switch(c) {
        case 'h':
            help();
            break;
        case 'm':
            phys_ram_size = atoi(optarg) * 1024 * 1024;
            if (phys_ram_size <= 0)
                help();
            break;
        case 'd':
            loglevel = 1;
            break;
        }
    }
    if (optind + 1 >= argc)
        help();

    /* init debug */
    if (loglevel) {
        logfile = fopen(DEBUG_LOGFILE, "w");
        if (!logfile) {
            perror(DEBUG_LOGFILE);
            _exit(1);
        }
        setvbuf(logfile, NULL, _IOLBF, 0);
    }

    /* init the memory */
    strcpy(phys_ram_file, "/tmp/vlXXXXXX");
    if (mkstemp(phys_ram_file) < 0) {
        fprintf(stderr, "Could not create temporary memory file\n");
        exit(1);
    }
    phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
    if (phys_ram_fd < 0) {
        fprintf(stderr, "Could not open temporary memory file\n");
        exit(1);
    }
    ftruncate(phys_ram_fd, phys_ram_size);
    unlink(phys_ram_file);
    phys_ram_base = mmap((void *)PHYS_RAM_BASE, phys_ram_size, 
                         PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED, 
                         phys_ram_fd, 0);
    if (phys_ram_base == MAP_FAILED) {
        fprintf(stderr, "Could not map physical memory\n");
        exit(1);
    }

    /* now we can load the kernel */
    ret = load_kernel(argv[optind], phys_ram_base + KERNEL_LOAD_ADDR);
    if (ret < 0) {
        fprintf(stderr, "%s: could not load kernel\n", argv[optind]);
        exit(1);
    }

    /* load initrd */
    initrd_size = load_image(argv[optind + 1], phys_ram_base + INITRD_LOAD_ADDR);
    if (initrd_size < 0) {
        fprintf(stderr, "%s: could not load initrd\n", argv[optind + 1]);
        exit(1);
    }

    /* init kernel params */
    params = (void *)(phys_ram_base + KERNEL_PARAMS_ADDR);
    memset(params, 0, sizeof(struct linux_params));
    params->mount_root_rdonly = 0;
    params->cl_magic = 0xA33F;
    params->cl_offset = params->commandline - (uint8_t *)params;
    params->ext_mem_k = (phys_ram_size / 1024) - 1024;
    for(i = optind + 2; i < argc; i++) {
        if (i != optind + 2)
            pstrcat(params->commandline, sizeof(params->commandline), " ");
        pstrcat(params->commandline, sizeof(params->commandline), argv[i]);
    }
    params->loader_type = 0x01;
    if (initrd_size > 0) {
        params->initrd_start = INITRD_LOAD_ADDR;
        params->initrd_size = initrd_size;
    }
    params->orig_video_lines = 25;
    params->orig_video_cols = 80;

    /* init basic PC hardware */
    init_ioports();
    register_ioport_writeb(0x80, 1, ioport80_write);

    register_ioport_writeb(0x3d4, 2, vga_ioport_write);

    cmos_init();
    pic_init();
    pit_init();
    serial_init();

    /* setup cpu signal handlers for MMU / self modifying code handling */
    sigfillset(&act.sa_mask);
    act.sa_flags = SA_SIGINFO;
    act.sa_sigaction = host_segv_handler;
    sigaction(SIGSEGV, &act, NULL);
    sigaction(SIGBUS, &act, NULL);

    act.sa_sigaction = host_alarm_handler;
    sigaction(SIGALRM, &act, NULL);

    /* init CPU state */
    env = cpu_init();
    global_env = env;

    /* setup basic memory access */
    env->cr[0] = 0x00000033;
    cpu_x86_init_mmu(env);
    
    memset(params->idt_table, 0, sizeof(params->idt_table));

    params->gdt_table[2] = 0x00cf9a000000ffffLL; /* KERNEL_CS */
    params->gdt_table[3] = 0x00cf92000000ffffLL; /* KERNEL_DS */
    
    env->idt.base = (void *)params->idt_table;
    env->idt.limit = sizeof(params->idt_table) - 1;
    env->gdt.base = (void *)params->gdt_table;
    env->gdt.limit = sizeof(params->gdt_table) - 1;

    cpu_x86_load_seg(env, R_CS, KERNEL_CS);
    cpu_x86_load_seg(env, R_DS, KERNEL_DS);
    cpu_x86_load_seg(env, R_ES, KERNEL_DS);
    cpu_x86_load_seg(env, R_SS, KERNEL_DS);
    cpu_x86_load_seg(env, R_FS, KERNEL_DS);
    cpu_x86_load_seg(env, R_GS, KERNEL_DS);
    
    env->eip = KERNEL_LOAD_ADDR;
    env->regs[R_ESI] = KERNEL_PARAMS_ADDR;
    env->eflags = 0x2;

    itv.it_interval.tv_sec = 0;
    itv.it_interval.tv_usec = 10 * 1000;
    itv.it_value.tv_sec = 0;
    itv.it_value.tv_usec = 10 * 1000;
    setitimer(ITIMER_REAL, &itv, NULL);

    for(;;) {
        struct pollfd ufds[1], *pf;
        int ret, n, timeout;
        uint8_t ch;

        ret = cpu_x86_exec(env);

        /* if hlt instruction, we wait until the next IRQ */
        if (ret == EXCP_HLT) 
            timeout = 10;
        else
            timeout = 0;
        /* poll any events */
        pf = ufds;
        if (!(serial_ports[0].lsr & UART_LSR_DR)) {
            pf->fd = 0;
            pf->events = POLLIN;
            pf++;
        }
        ret = poll(ufds, pf - ufds, timeout);
        if (ret > 0) {
            if (ufds[0].revents & POLLIN) {
                n = read(0, &ch, 1);
                if (n == 1) {
                    serial_received_byte(&serial_ports[0], ch);
                }
            }
        }

        /* just for testing */
        if (timer_irq_pending) {
            pic_set_irq(0, 1);
            pic_set_irq(0, 0);
            timer_irq_pending = 0;
        }

        pic_handle_irq();
    }

    return 0;
}