nandbiterrs.c 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/*
 * Copyright © 2012 NetCommWireless
 * Iwo Mergler <Iwo.Mergler@netcommwireless.com.au>
 *
 * Test for multi-bit error recovery on a NAND page This mostly tests the
 * ECC controller / driver.
 *
 * There are two test modes:
 *
 *	0 - artificially inserting bit errors until the ECC fails
 *	    This is the default method and fairly quick. It should
 *	    be independent of the quality of the FLASH.
 *
 *	1 - re-writing the same pattern repeatedly until the ECC fails.
 *	    This method relies on the physics of NAND FLASH to eventually
 *	    generate '0' bits if '1' has been written sufficient times.
 *	    Depending on the NAND, the first bit errors will appear after
 *	    1000 or more writes and then will usually snowball, reaching the
 *	    limits of the ECC quickly.
 *
 *	    The test stops after 10000 cycles, should your FLASH be
 *	    exceptionally good and not generate bit errors before that. Try
 *	    a different page in that case.
 *
 * Please note that neither of these tests will significantly 'use up' any
 * FLASH endurance. Only a maximum of two erase operations will be performed.
 *
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; see the file COPYING. If not, write to the Free Software
 * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */
42 43 44

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

45 46 47 48 49 50 51
#include <linux/init.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mtd/mtd.h>
#include <linux/err.h>
#include <linux/mtd/nand.h>
#include <linux/slab.h>
52
#include "mtd_test.h"
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

static int dev;
module_param(dev, int, S_IRUGO);
MODULE_PARM_DESC(dev, "MTD device number to use");

static unsigned page_offset;
module_param(page_offset, uint, S_IRUGO);
MODULE_PARM_DESC(page_offset, "Page number relative to dev start");

static unsigned seed;
module_param(seed, uint, S_IRUGO);
MODULE_PARM_DESC(seed, "Random seed");

static int mode;
module_param(mode, int, S_IRUGO);
MODULE_PARM_DESC(mode, "0=incremental errors, 1=overwrite test");

static unsigned max_overwrite = 10000;

static loff_t   offset;     /* Offset of the page we're using. */
static unsigned eraseblock; /* Eraseblock number for our page. */

/* We assume that the ECC can correct up to a certain number
 * of biterrors per subpage. */
static unsigned subsize;  /* Size of subpages */
static unsigned subcount; /* Number of subpages per page */

static struct mtd_info *mtd;   /* MTD device */

static uint8_t *wbuffer; /* One page write / compare buffer */
static uint8_t *rbuffer; /* One page read buffer */

/* 'random' bytes from known offsets */
static uint8_t hash(unsigned offset)
{
	unsigned v = offset;
	unsigned char c;
	v ^= 0x7f7edfd3;
	v = v ^ (v >> 3);
	v = v ^ (v >> 5);
	v = v ^ (v >> 13);
	c = v & 0xFF;
	/* Reverse bits of result. */
	c = (c & 0x0F) << 4 | (c & 0xF0) >> 4;
	c = (c & 0x33) << 2 | (c & 0xCC) >> 2;
	c = (c & 0x55) << 1 | (c & 0xAA) >> 1;
	return c;
}

/* Writes wbuffer to page */
static int write_page(int log)
{
	if (log)
106
		pr_info("write_page\n");
107

108
	return mtdtest_write(mtd, offset, mtd->writesize, wbuffer);
109 110 111 112 113 114 115 116 117
}

/* Re-writes the data area while leaving the OOB alone. */
static int rewrite_page(int log)
{
	int err = 0;
	struct mtd_oob_ops ops;

	if (log)
118
		pr_info("rewrite page\n");
119 120 121 122 123 124 125 126 127 128 129 130

	ops.mode      = MTD_OPS_RAW; /* No ECC */
	ops.len       = mtd->writesize;
	ops.retlen    = 0;
	ops.ooblen    = 0;
	ops.oobretlen = 0;
	ops.ooboffs   = 0;
	ops.datbuf    = wbuffer;
	ops.oobbuf    = NULL;

	err = mtd_write_oob(mtd, offset, &ops);
	if (err || ops.retlen != mtd->writesize) {
131
		pr_err("error: write_oob failed (%d)\n", err);
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
		if (!err)
			err = -EIO;
	}

	return err;
}

/* Reads page into rbuffer. Returns number of corrected bit errors (>=0)
 * or error (<0) */
static int read_page(int log)
{
	int err = 0;
	size_t read;
	struct mtd_ecc_stats oldstats;

	if (log)
148
		pr_info("read_page\n");
149 150 151 152 153 154 155 156 157

	/* Saving last mtd stats */
	memcpy(&oldstats, &mtd->ecc_stats, sizeof(oldstats));

	err = mtd_read(mtd, offset, mtd->writesize, &read, rbuffer);
	if (err == -EUCLEAN)
		err = mtd->ecc_stats.corrected - oldstats.corrected;

	if (err < 0 || read != mtd->writesize) {
158
		pr_err("error: read failed at %#llx\n", (long long)offset);
159 160 161 162 163 164 165 166 167 168 169 170 171
		if (err >= 0)
			err = -EIO;
	}

	return err;
}

/* Verifies rbuffer against random sequence */
static int verify_page(int log)
{
	unsigned i, errs = 0;

	if (log)
172
		pr_info("verify_page\n");
173 174 175

	for (i = 0; i < mtd->writesize; i++) {
		if (rbuffer[i] != hash(i+seed)) {
176
			pr_err("Error: page offset %u, expected %02x, got %02x\n",
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
				i, hash(i+seed), rbuffer[i]);
			errs++;
		}
	}

	if (errs)
		return -EIO;
	else
		return 0;
}

#define CBIT(v, n) ((v) & (1 << (n)))
#define BCLR(v, n) ((v) = (v) & ~(1 << (n)))

/* Finds the first '1' bit in wbuffer starting at offset 'byte'
 * and sets it to '0'. */
static int insert_biterror(unsigned byte)
{
	int bit;

	while (byte < mtd->writesize) {
		for (bit = 7; bit >= 0; bit--) {
			if (CBIT(wbuffer[byte], bit)) {
				BCLR(wbuffer[byte], bit);
201
				pr_info("Inserted biterror @ %u/%u\n", byte, bit);
202 203 204 205 206
				return 0;
			}
		}
		byte++;
	}
207
	pr_err("biterror: Failed to find a '1' bit\n");
208 209 210 211 212 213 214 215 216 217 218
	return -EIO;
}

/* Writes 'random' data to page and then introduces deliberate bit
 * errors into the page, while verifying each step. */
static int incremental_errors_test(void)
{
	int err = 0;
	unsigned i;
	unsigned errs_per_subpage = 0;

219
	pr_info("incremental biterrors test\n");
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

	for (i = 0; i < mtd->writesize; i++)
		wbuffer[i] = hash(i+seed);

	err = write_page(1);
	if (err)
		goto exit;

	while (1) {

		err = rewrite_page(1);
		if (err)
			goto exit;

		err = read_page(1);
		if (err > 0)
236
			pr_info("Read reported %d corrected bit errors\n", err);
237
		if (err < 0) {
238
			pr_err("After %d biterrors per subpage, read reported error %d\n",
239 240 241 242 243 244 245
				errs_per_subpage, err);
			err = 0;
			goto exit;
		}

		err = verify_page(1);
		if (err) {
246
			pr_err("ECC failure, read data is incorrect despite read success\n");
247 248 249
			goto exit;
		}

250
		pr_info("Successfully corrected %d bit errors per subpage\n",
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
			errs_per_subpage);

		for (i = 0; i < subcount; i++) {
			err = insert_biterror(i * subsize);
			if (err < 0)
				goto exit;
		}
		errs_per_subpage++;
	}

exit:
	return err;
}


/* Writes 'random' data to page and then re-writes that same data repeatedly.
   This eventually develops bit errors (bits written as '1' will slowly become
   '0'), which are corrected as far as the ECC is capable of. */
static int overwrite_test(void)
{
	int err = 0;
	unsigned i;
	unsigned max_corrected = 0;
	unsigned opno = 0;
	/* We don't expect more than this many correctable bit errors per
	 * page. */
	#define MAXBITS 512
	static unsigned bitstats[MAXBITS]; /* bit error histogram. */

	memset(bitstats, 0, sizeof(bitstats));

282
	pr_info("overwrite biterrors test\n");
283 284 285 286 287 288 289 290 291 292

	for (i = 0; i < mtd->writesize; i++)
		wbuffer[i] = hash(i+seed);

	err = write_page(1);
	if (err)
		goto exit;

	while (opno < max_overwrite) {

293
		err = write_page(0);
294 295 296 297 298 299
		if (err)
			break;

		err = read_page(0);
		if (err >= 0) {
			if (err >= MAXBITS) {
300
				pr_info("Implausible number of bit errors corrected\n");
301 302 303 304 305 306
				err = -EIO;
				break;
			}
			bitstats[err]++;
			if (err > max_corrected) {
				max_corrected = err;
307
				pr_info("Read reported %d corrected bit errors\n",
308 309 310
					err);
			}
		} else { /* err < 0 */
311
			pr_info("Read reported error %d\n", err);
312 313 314 315 316 317 318
			err = 0;
			break;
		}

		err = verify_page(0);
		if (err) {
			bitstats[max_corrected] = opno;
319
			pr_info("ECC failure, read data is incorrect despite read success\n");
320 321 322
			break;
		}

323 324 325 326
		err = mtdtest_relax();
		if (err)
			break;

327 328 329 330 331
		opno++;
	}

	/* At this point bitstats[0] contains the number of ops with no bit
	 * errors, bitstats[1] the number of ops with 1 bit error, etc. */
332
	pr_info("Bit error histogram (%d operations total):\n", opno);
333
	for (i = 0; i < max_corrected; i++)
334
		pr_info("Page reads with %3d corrected bit errors: %d\n",
335 336 337 338 339 340 341 342 343 344
			i, bitstats[i]);

exit:
	return err;
}

static int __init mtd_nandbiterrs_init(void)
{
	int err = 0;

345 346 347
	printk("\n");
	printk(KERN_INFO "==================================================\n");
	pr_info("MTD device: %d\n", dev);
348 349 350 351

	mtd = get_mtd_device(NULL, dev);
	if (IS_ERR(mtd)) {
		err = PTR_ERR(mtd);
352
		pr_err("error: cannot get MTD device\n");
353 354 355
		goto exit_mtddev;
	}

356
	if (!mtd_type_is_nand(mtd)) {
357
		pr_info("this test requires NAND flash\n");
358 359 360 361
		err = -ENODEV;
		goto exit_nand;
	}

362
	pr_info("MTD device size %llu, eraseblock=%u, page=%u, oob=%u\n",
363 364 365 366 367 368
		(unsigned long long)mtd->size, mtd->erasesize,
		mtd->writesize, mtd->oobsize);

	subsize  = mtd->writesize >> mtd->subpage_sft;
	subcount = mtd->writesize / subsize;

369
	pr_info("Device uses %d subpages of %d bytes\n", subcount, subsize);
370

371
	offset     = (loff_t)page_offset * mtd->writesize;
372 373
	eraseblock = mtd_div_by_eb(offset, mtd);

374
	pr_info("Using page=%u, offset=%llu, eraseblock=%u\n",
375 376 377 378 379 380 381 382 383 384 385 386 387 388
		page_offset, offset, eraseblock);

	wbuffer = kmalloc(mtd->writesize, GFP_KERNEL);
	if (!wbuffer) {
		err = -ENOMEM;
		goto exit_wbuffer;
	}

	rbuffer = kmalloc(mtd->writesize, GFP_KERNEL);
	if (!rbuffer) {
		err = -ENOMEM;
		goto exit_rbuffer;
	}

389
	err = mtdtest_erase_eraseblock(mtd, eraseblock);
390 391 392 393 394 395 396 397 398 399 400 401
	if (err)
		goto exit_error;

	if (mode == 0)
		err = incremental_errors_test();
	else
		err = overwrite_test();

	if (err)
		goto exit_error;

	/* We leave the block un-erased in case of test failure. */
402
	err = mtdtest_erase_eraseblock(mtd, eraseblock);
403 404 405 406
	if (err)
		goto exit_error;

	err = -EIO;
407 408
	pr_info("finished successfully.\n");
	printk(KERN_INFO "==================================================\n");
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

exit_error:
	kfree(rbuffer);
exit_rbuffer:
	kfree(wbuffer);
exit_wbuffer:
	/* Nothing */
exit_nand:
	put_mtd_device(mtd);
exit_mtddev:
	return err;
}

static void __exit mtd_nandbiterrs_exit(void)
{
	return;
}

module_init(mtd_nandbiterrs_init);
module_exit(mtd_nandbiterrs_exit);

MODULE_DESCRIPTION("NAND bit error recovery test");
MODULE_AUTHOR("Iwo Mergler");
MODULE_LICENSE("GPL");