blk-settings.c 27 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Functions related to setting various queue properties from drivers
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10
#include <linux/gcd.h>
11
#include <linux/lcm.h>
Randy Dunlap's avatar
Randy Dunlap committed
12
#include <linux/jiffies.h>
13
#include <linux/gfp.h>
14 15 16

#include "blk.h"

17
unsigned long blk_max_low_pfn;
18
EXPORT_SYMBOL(blk_max_low_pfn);
19 20

unsigned long blk_max_pfn;
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

/**
 * blk_queue_prep_rq - set a prepare_request function for queue
 * @q:		queue
 * @pfn:	prepare_request function
 *
 * It's possible for a queue to register a prepare_request callback which
 * is invoked before the request is handed to the request_fn. The goal of
 * the function is to prepare a request for I/O, it can be used to build a
 * cdb from the request data for instance.
 *
 */
void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
{
	q->prep_rq_fn = pfn;
}
EXPORT_SYMBOL(blk_queue_prep_rq);

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/**
 * blk_queue_unprep_rq - set an unprepare_request function for queue
 * @q:		queue
 * @ufn:	unprepare_request function
 *
 * It's possible for a queue to register an unprepare_request callback
 * which is invoked before the request is finally completed. The goal
 * of the function is to deallocate any data that was allocated in the
 * prepare_request callback.
 *
 */
void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
{
	q->unprep_rq_fn = ufn;
}
EXPORT_SYMBOL(blk_queue_unprep_rq);

56 57 58 59 60 61
void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
{
	q->softirq_done_fn = fn;
}
EXPORT_SYMBOL(blk_queue_softirq_done);

62 63 64 65 66 67 68 69 70 71 72 73
void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
{
	q->rq_timeout = timeout;
}
EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);

void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
{
	q->rq_timed_out_fn = fn;
}
EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);

74 75 76 77 78 79
void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
{
	q->lld_busy_fn = fn;
}
EXPORT_SYMBOL_GPL(blk_queue_lld_busy);

80 81
/**
 * blk_set_default_limits - reset limits to default values
82
 * @lim:  the queue_limits structure to reset
83 84
 *
 * Description:
85
 *   Returns a queue_limit struct to its default state.
86 87 88
 */
void blk_set_default_limits(struct queue_limits *lim)
{
89
	lim->max_segments = BLK_MAX_SEGMENTS;
90
	lim->max_integrity_segments = 0;
91
	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
92
	lim->virt_boundary_mask = 0;
93
	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
94 95
	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
	lim->max_dev_sectors = 0;
96
	lim->chunk_sectors = 0;
97
	lim->max_write_same_sectors = 0;
98
	lim->max_discard_sectors = 0;
99
	lim->max_hw_discard_sectors = 0;
100 101 102
	lim->discard_granularity = 0;
	lim->discard_alignment = 0;
	lim->discard_misaligned = 0;
103
	lim->discard_zeroes_data = 0;
104
	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
105
	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
106 107 108
	lim->alignment_offset = 0;
	lim->io_opt = 0;
	lim->misaligned = 0;
109
	lim->cluster = 1;
110 111 112
}
EXPORT_SYMBOL(blk_set_default_limits);

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/**
 * blk_set_stacking_limits - set default limits for stacking devices
 * @lim:  the queue_limits structure to reset
 *
 * Description:
 *   Returns a queue_limit struct to its default state. Should be used
 *   by stacking drivers like DM that have no internal limits.
 */
void blk_set_stacking_limits(struct queue_limits *lim)
{
	blk_set_default_limits(lim);

	/* Inherit limits from component devices */
	lim->discard_zeroes_data = 1;
	lim->max_segments = USHRT_MAX;
	lim->max_hw_sectors = UINT_MAX;
129
	lim->max_segment_size = UINT_MAX;
130
	lim->max_sectors = UINT_MAX;
131
	lim->max_dev_sectors = UINT_MAX;
132
	lim->max_write_same_sectors = UINT_MAX;
133 134 135
}
EXPORT_SYMBOL(blk_set_stacking_limits);

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/**
 * blk_queue_make_request - define an alternate make_request function for a device
 * @q:  the request queue for the device to be affected
 * @mfn: the alternate make_request function
 *
 * Description:
 *    The normal way for &struct bios to be passed to a device
 *    driver is for them to be collected into requests on a request
 *    queue, and then to allow the device driver to select requests
 *    off that queue when it is ready.  This works well for many block
 *    devices. However some block devices (typically virtual devices
 *    such as md or lvm) do not benefit from the processing on the
 *    request queue, and are served best by having the requests passed
 *    directly to them.  This can be achieved by providing a function
 *    to blk_queue_make_request().
 *
 * Caveat:
 *    The driver that does this *must* be able to deal appropriately
 *    with buffers in "highmemory". This can be accomplished by either calling
 *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
 *    blk_queue_bounce() to create a buffer in normal memory.
 **/
158
void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
159 160 161 162 163
{
	/*
	 * set defaults
	 */
	q->nr_requests = BLKDEV_MAX_RQ;
164

165 166 167 168 169
	q->make_request_fn = mfn;
	blk_queue_dma_alignment(q, 511);
	blk_queue_congestion_threshold(q);
	q->nr_batching = BLK_BATCH_REQ;

170 171
	blk_set_default_limits(&q->limits);

172 173 174 175 176 177 178 179 180
	/*
	 * by default assume old behaviour and bounce for any highmem page
	 */
	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
}
EXPORT_SYMBOL(blk_queue_make_request);

/**
 * blk_queue_bounce_limit - set bounce buffer limit for queue
181
 * @q: the request queue for the device
182
 * @max_addr: the maximum address the device can handle
183 184 185 186 187
 *
 * Description:
 *    Different hardware can have different requirements as to what pages
 *    it can do I/O directly to. A low level driver can call
 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
188
 *    buffers for doing I/O to pages residing above @max_addr.
189
 **/
190
void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
191
{
192
	unsigned long b_pfn = max_addr >> PAGE_SHIFT;
193 194 195 196
	int dma = 0;

	q->bounce_gfp = GFP_NOIO;
#if BITS_PER_LONG == 64
197 198 199 200 201 202
	/*
	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
	 * some IOMMUs can handle everything, but I don't know of a
	 * way to test this here.
	 */
	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
203
		dma = 1;
204
	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
205
#else
206
	if (b_pfn < blk_max_low_pfn)
207
		dma = 1;
208
	q->limits.bounce_pfn = b_pfn;
209
#endif
210 211 212
	if (dma) {
		init_emergency_isa_pool();
		q->bounce_gfp = GFP_NOIO | GFP_DMA;
213
		q->limits.bounce_pfn = b_pfn;
214 215 216 217 218
	}
}
EXPORT_SYMBOL(blk_queue_bounce_limit);

/**
219 220
 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
 * @q:  the request queue for the device
221
 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
222 223
 *
 * Description:
224 225
 *    Enables a low level driver to set a hard upper limit,
 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
226 227
 *    the device driver based upon the capabilities of the I/O
 *    controller.
228
 *
229 230 231
 *    max_dev_sectors is a hard limit imposed by the storage device for
 *    READ/WRITE requests. It is set by the disk driver.
 *
232 233 234 235
 *    max_sectors is a soft limit imposed by the block layer for
 *    filesystem type requests.  This value can be overridden on a
 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
 *    The soft limit can not exceed max_hw_sectors.
236
 **/
237
void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
238
{
239 240 241
	struct queue_limits *limits = &q->limits;
	unsigned int max_sectors;

242 243
	if ((max_hw_sectors << 9) < PAGE_SIZE) {
		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
244
		printk(KERN_INFO "%s: set to minimum %d\n",
245
		       __func__, max_hw_sectors);
246 247
	}

248
	limits->max_hw_sectors = max_hw_sectors;
249 250 251
	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
	max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
	limits->max_sectors = max_sectors;
252
}
253
EXPORT_SYMBOL(blk_queue_max_hw_sectors);
254

255 256 257 258 259 260 261 262
/**
 * blk_queue_chunk_sectors - set size of the chunk for this queue
 * @q:  the request queue for the device
 * @chunk_sectors:  chunk sectors in the usual 512b unit
 *
 * Description:
 *    If a driver doesn't want IOs to cross a given chunk size, it can set
 *    this limit and prevent merging across chunks. Note that the chunk size
263 264 265 266
 *    must currently be a power-of-2 in sectors. Also note that the block
 *    layer must accept a page worth of data at any offset. So if the
 *    crossing of chunks is a hard limitation in the driver, it must still be
 *    prepared to split single page bios.
267 268 269 270 271 272 273 274
 **/
void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
{
	BUG_ON(!is_power_of_2(chunk_sectors));
	q->limits.chunk_sectors = chunk_sectors;
}
EXPORT_SYMBOL(blk_queue_chunk_sectors);

275 276 277
/**
 * blk_queue_max_discard_sectors - set max sectors for a single discard
 * @q:  the request queue for the device
278
 * @max_discard_sectors: maximum number of sectors to discard
279 280 281 282
 **/
void blk_queue_max_discard_sectors(struct request_queue *q,
		unsigned int max_discard_sectors)
{
283
	q->limits.max_hw_discard_sectors = max_discard_sectors;
284 285 286 287
	q->limits.max_discard_sectors = max_discard_sectors;
}
EXPORT_SYMBOL(blk_queue_max_discard_sectors);

288 289 290 291 292 293 294 295 296 297 298 299
/**
 * blk_queue_max_write_same_sectors - set max sectors for a single write same
 * @q:  the request queue for the device
 * @max_write_same_sectors: maximum number of sectors to write per command
 **/
void blk_queue_max_write_same_sectors(struct request_queue *q,
				      unsigned int max_write_same_sectors)
{
	q->limits.max_write_same_sectors = max_write_same_sectors;
}
EXPORT_SYMBOL(blk_queue_max_write_same_sectors);

300
/**
301
 * blk_queue_max_segments - set max hw segments for a request for this queue
302 303 304 305 306
 * @q:  the request queue for the device
 * @max_segments:  max number of segments
 *
 * Description:
 *    Enables a low level driver to set an upper limit on the number of
307
 *    hw data segments in a request.
308
 **/
309
void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
310 311 312
{
	if (!max_segments) {
		max_segments = 1;
313 314
		printk(KERN_INFO "%s: set to minimum %d\n",
		       __func__, max_segments);
315 316
	}

317
	q->limits.max_segments = max_segments;
318
}
319
EXPORT_SYMBOL(blk_queue_max_segments);
320 321 322 323 324 325 326 327 328 329 330 331

/**
 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
 * @q:  the request queue for the device
 * @max_size:  max size of segment in bytes
 *
 * Description:
 *    Enables a low level driver to set an upper limit on the size of a
 *    coalesced segment
 **/
void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
{
332 333
	if (max_size < PAGE_SIZE) {
		max_size = PAGE_SIZE;
334 335
		printk(KERN_INFO "%s: set to minimum %d\n",
		       __func__, max_size);
336 337
	}

338
	q->limits.max_segment_size = max_size;
339 340 341 342
}
EXPORT_SYMBOL(blk_queue_max_segment_size);

/**
343
 * blk_queue_logical_block_size - set logical block size for the queue
344
 * @q:  the request queue for the device
345
 * @size:  the logical block size, in bytes
346 347
 *
 * Description:
348 349 350
 *   This should be set to the lowest possible block size that the
 *   storage device can address.  The default of 512 covers most
 *   hardware.
351
 **/
352
void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
353
{
354
	q->limits.logical_block_size = size;
355 356 357 358 359 360

	if (q->limits.physical_block_size < size)
		q->limits.physical_block_size = size;

	if (q->limits.io_min < q->limits.physical_block_size)
		q->limits.io_min = q->limits.physical_block_size;
361
}
362
EXPORT_SYMBOL(blk_queue_logical_block_size);
363

364 365 366 367 368 369 370 371 372 373
/**
 * blk_queue_physical_block_size - set physical block size for the queue
 * @q:  the request queue for the device
 * @size:  the physical block size, in bytes
 *
 * Description:
 *   This should be set to the lowest possible sector size that the
 *   hardware can operate on without reverting to read-modify-write
 *   operations.
 */
374
void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
375 376 377 378 379 380 381 382 383 384 385 386 387 388
{
	q->limits.physical_block_size = size;

	if (q->limits.physical_block_size < q->limits.logical_block_size)
		q->limits.physical_block_size = q->limits.logical_block_size;

	if (q->limits.io_min < q->limits.physical_block_size)
		q->limits.io_min = q->limits.physical_block_size;
}
EXPORT_SYMBOL(blk_queue_physical_block_size);

/**
 * blk_queue_alignment_offset - set physical block alignment offset
 * @q:	the request queue for the device
389
 * @offset: alignment offset in bytes
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
 *
 * Description:
 *   Some devices are naturally misaligned to compensate for things like
 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
 *   should call this function for devices whose first sector is not
 *   naturally aligned.
 */
void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
{
	q->limits.alignment_offset =
		offset & (q->limits.physical_block_size - 1);
	q->limits.misaligned = 0;
}
EXPORT_SYMBOL(blk_queue_alignment_offset);

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
/**
 * blk_limits_io_min - set minimum request size for a device
 * @limits: the queue limits
 * @min:  smallest I/O size in bytes
 *
 * Description:
 *   Some devices have an internal block size bigger than the reported
 *   hardware sector size.  This function can be used to signal the
 *   smallest I/O the device can perform without incurring a performance
 *   penalty.
 */
void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
{
	limits->io_min = min;

	if (limits->io_min < limits->logical_block_size)
		limits->io_min = limits->logical_block_size;

	if (limits->io_min < limits->physical_block_size)
		limits->io_min = limits->physical_block_size;
}
EXPORT_SYMBOL(blk_limits_io_min);

428 429 430
/**
 * blk_queue_io_min - set minimum request size for the queue
 * @q:	the request queue for the device
431
 * @min:  smallest I/O size in bytes
432 433
 *
 * Description:
434 435 436 437 438 439 440
 *   Storage devices may report a granularity or preferred minimum I/O
 *   size which is the smallest request the device can perform without
 *   incurring a performance penalty.  For disk drives this is often the
 *   physical block size.  For RAID arrays it is often the stripe chunk
 *   size.  A properly aligned multiple of minimum_io_size is the
 *   preferred request size for workloads where a high number of I/O
 *   operations is desired.
441 442 443
 */
void blk_queue_io_min(struct request_queue *q, unsigned int min)
{
444
	blk_limits_io_min(&q->limits, min);
445 446 447
}
EXPORT_SYMBOL(blk_queue_io_min);

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
/**
 * blk_limits_io_opt - set optimal request size for a device
 * @limits: the queue limits
 * @opt:  smallest I/O size in bytes
 *
 * Description:
 *   Storage devices may report an optimal I/O size, which is the
 *   device's preferred unit for sustained I/O.  This is rarely reported
 *   for disk drives.  For RAID arrays it is usually the stripe width or
 *   the internal track size.  A properly aligned multiple of
 *   optimal_io_size is the preferred request size for workloads where
 *   sustained throughput is desired.
 */
void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
{
	limits->io_opt = opt;
}
EXPORT_SYMBOL(blk_limits_io_opt);

467 468 469
/**
 * blk_queue_io_opt - set optimal request size for the queue
 * @q:	the request queue for the device
470
 * @opt:  optimal request size in bytes
471 472
 *
 * Description:
473 474 475 476 477 478
 *   Storage devices may report an optimal I/O size, which is the
 *   device's preferred unit for sustained I/O.  This is rarely reported
 *   for disk drives.  For RAID arrays it is usually the stripe width or
 *   the internal track size.  A properly aligned multiple of
 *   optimal_io_size is the preferred request size for workloads where
 *   sustained throughput is desired.
479 480 481
 */
void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
{
482
	blk_limits_io_opt(&q->limits, opt);
483 484 485
}
EXPORT_SYMBOL(blk_queue_io_opt);

486 487 488 489 490 491 492
/**
 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
 * @t:	the stacking driver (top)
 * @b:  the underlying device (bottom)
 **/
void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
{
493
	blk_stack_limits(&t->limits, &b->limits, 0);
494 495 496
}
EXPORT_SYMBOL(blk_queue_stack_limits);

497 498
/**
 * blk_stack_limits - adjust queue_limits for stacked devices
499 500
 * @t:	the stacking driver limits (top device)
 * @b:  the underlying queue limits (bottom, component device)
501
 * @start:  first data sector within component device
502 503
 *
 * Description:
504 505 506 507 508 509 510 511 512 513 514 515 516
 *    This function is used by stacking drivers like MD and DM to ensure
 *    that all component devices have compatible block sizes and
 *    alignments.  The stacking driver must provide a queue_limits
 *    struct (top) and then iteratively call the stacking function for
 *    all component (bottom) devices.  The stacking function will
 *    attempt to combine the values and ensure proper alignment.
 *
 *    Returns 0 if the top and bottom queue_limits are compatible.  The
 *    top device's block sizes and alignment offsets may be adjusted to
 *    ensure alignment with the bottom device. If no compatible sizes
 *    and alignments exist, -1 is returned and the resulting top
 *    queue_limits will have the misaligned flag set to indicate that
 *    the alignment_offset is undefined.
517 518
 */
int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
519
		     sector_t start)
520
{
521
	unsigned int top, bottom, alignment, ret = 0;
522

523 524
	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
525
	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
526 527
	t->max_write_same_sectors = min(t->max_write_same_sectors,
					b->max_write_same_sectors);
528
	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
529 530 531

	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
					    b->seg_boundary_mask);
532 533
	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
					    b->virt_boundary_mask);
534

535
	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
536 537
	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
						 b->max_integrity_segments);
538 539 540 541

	t->max_segment_size = min_not_zero(t->max_segment_size,
					   b->max_segment_size);

542 543
	t->misaligned |= b->misaligned;

544
	alignment = queue_limit_alignment_offset(b, start);
545

546 547 548
	/* Bottom device has different alignment.  Check that it is
	 * compatible with the current top alignment.
	 */
549 550 551 552
	if (t->alignment_offset != alignment) {

		top = max(t->physical_block_size, t->io_min)
			+ t->alignment_offset;
553
		bottom = max(b->physical_block_size, b->io_min) + alignment;
554

555
		/* Verify that top and bottom intervals line up */
556
		if (max(top, bottom) % min(top, bottom)) {
557
			t->misaligned = 1;
558 559
			ret = -1;
		}
560 561
	}

562 563 564 565 566 567 568
	t->logical_block_size = max(t->logical_block_size,
				    b->logical_block_size);

	t->physical_block_size = max(t->physical_block_size,
				     b->physical_block_size);

	t->io_min = max(t->io_min, b->io_min);
569
	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
570

571
	t->cluster &= b->cluster;
572
	t->discard_zeroes_data &= b->discard_zeroes_data;
573

574
	/* Physical block size a multiple of the logical block size? */
575 576
	if (t->physical_block_size & (t->logical_block_size - 1)) {
		t->physical_block_size = t->logical_block_size;
577
		t->misaligned = 1;
578
		ret = -1;
579 580
	}

581
	/* Minimum I/O a multiple of the physical block size? */
582 583 584
	if (t->io_min & (t->physical_block_size - 1)) {
		t->io_min = t->physical_block_size;
		t->misaligned = 1;
585
		ret = -1;
586 587
	}

588
	/* Optimal I/O a multiple of the physical block size? */
589 590 591
	if (t->io_opt & (t->physical_block_size - 1)) {
		t->io_opt = 0;
		t->misaligned = 1;
592
		ret = -1;
593
	}
594

595 596 597 598
	t->raid_partial_stripes_expensive =
		max(t->raid_partial_stripes_expensive,
		    b->raid_partial_stripes_expensive);

599
	/* Find lowest common alignment_offset */
600
	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
601
		% max(t->physical_block_size, t->io_min);
602

603
	/* Verify that new alignment_offset is on a logical block boundary */
604
	if (t->alignment_offset & (t->logical_block_size - 1)) {
605
		t->misaligned = 1;
606 607
		ret = -1;
	}
608

609 610
	/* Discard alignment and granularity */
	if (b->discard_granularity) {
611
		alignment = queue_limit_discard_alignment(b, start);
612 613 614 615 616

		if (t->discard_granularity != 0 &&
		    t->discard_alignment != alignment) {
			top = t->discard_granularity + t->discard_alignment;
			bottom = b->discard_granularity + alignment;
617

618
			/* Verify that top and bottom intervals line up */
619
			if ((max(top, bottom) % min(top, bottom)) != 0)
620 621 622
				t->discard_misaligned = 1;
		}

623 624
		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
						      b->max_discard_sectors);
625 626
		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
							 b->max_hw_discard_sectors);
627 628
		t->discard_granularity = max(t->discard_granularity,
					     b->discard_granularity);
629
		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
630
			t->discard_granularity;
631
	}
632

633
	return ret;
634
}
635
EXPORT_SYMBOL(blk_stack_limits);
636

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
/**
 * bdev_stack_limits - adjust queue limits for stacked drivers
 * @t:	the stacking driver limits (top device)
 * @bdev:  the component block_device (bottom)
 * @start:  first data sector within component device
 *
 * Description:
 *    Merges queue limits for a top device and a block_device.  Returns
 *    0 if alignment didn't change.  Returns -1 if adding the bottom
 *    device caused misalignment.
 */
int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
		      sector_t start)
{
	struct request_queue *bq = bdev_get_queue(bdev);

	start += get_start_sect(bdev);

655
	return blk_stack_limits(t, &bq->limits, start);
656 657 658
}
EXPORT_SYMBOL(bdev_stack_limits);

659 660
/**
 * disk_stack_limits - adjust queue limits for stacked drivers
661
 * @disk:  MD/DM gendisk (top)
662 663 664 665
 * @bdev:  the underlying block device (bottom)
 * @offset:  offset to beginning of data within component device
 *
 * Description:
666 667
 *    Merges the limits for a top level gendisk and a bottom level
 *    block_device.
668 669 670 671 672 673
 */
void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
		       sector_t offset)
{
	struct request_queue *t = disk->queue;

674
	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
675 676 677 678 679 680 681 682 683 684 685
		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];

		disk_name(disk, 0, top);
		bdevname(bdev, bottom);

		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
		       top, bottom);
	}
}
EXPORT_SYMBOL(disk_stack_limits);

686 687 688 689 690
/**
 * blk_queue_dma_pad - set pad mask
 * @q:     the request queue for the device
 * @mask:  pad mask
 *
691
 * Set dma pad mask.
692
 *
693 694
 * Appending pad buffer to a request modifies the last entry of a
 * scatter list such that it includes the pad buffer.
695 696 697 698 699 700 701
 **/
void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
{
	q->dma_pad_mask = mask;
}
EXPORT_SYMBOL(blk_queue_dma_pad);

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
/**
 * blk_queue_update_dma_pad - update pad mask
 * @q:     the request queue for the device
 * @mask:  pad mask
 *
 * Update dma pad mask.
 *
 * Appending pad buffer to a request modifies the last entry of a
 * scatter list such that it includes the pad buffer.
 **/
void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
{
	if (mask > q->dma_pad_mask)
		q->dma_pad_mask = mask;
}
EXPORT_SYMBOL(blk_queue_update_dma_pad);

719 720 721
/**
 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
 * @q:  the request queue for the device
722
 * @dma_drain_needed: fn which returns non-zero if drain is necessary
723 724 725 726 727 728 729 730 731 732 733 734
 * @buf:	physically contiguous buffer
 * @size:	size of the buffer in bytes
 *
 * Some devices have excess DMA problems and can't simply discard (or
 * zero fill) the unwanted piece of the transfer.  They have to have a
 * real area of memory to transfer it into.  The use case for this is
 * ATAPI devices in DMA mode.  If the packet command causes a transfer
 * bigger than the transfer size some HBAs will lock up if there
 * aren't DMA elements to contain the excess transfer.  What this API
 * does is adjust the queue so that the buf is always appended
 * silently to the scatterlist.
 *
735 736 737 738
 * Note: This routine adjusts max_hw_segments to make room for appending
 * the drain buffer.  If you call blk_queue_max_segments() after calling
 * this routine, you must set the limit to one fewer than your device
 * can support otherwise there won't be room for the drain buffer.
739
 */
740
int blk_queue_dma_drain(struct request_queue *q,
741 742
			       dma_drain_needed_fn *dma_drain_needed,
			       void *buf, unsigned int size)
743
{
744
	if (queue_max_segments(q) < 2)
745 746
		return -EINVAL;
	/* make room for appending the drain */
747
	blk_queue_max_segments(q, queue_max_segments(q) - 1);
748
	q->dma_drain_needed = dma_drain_needed;
749 750 751 752 753 754 755 756 757 758 759 760 761 762
	q->dma_drain_buffer = buf;
	q->dma_drain_size = size;

	return 0;
}
EXPORT_SYMBOL_GPL(blk_queue_dma_drain);

/**
 * blk_queue_segment_boundary - set boundary rules for segment merging
 * @q:  the request queue for the device
 * @mask:  the memory boundary mask
 **/
void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
{
763 764
	if (mask < PAGE_SIZE - 1) {
		mask = PAGE_SIZE - 1;
765 766
		printk(KERN_INFO "%s: set to minimum %lx\n",
		       __func__, mask);
767 768
	}

769
	q->limits.seg_boundary_mask = mask;
770 771 772
}
EXPORT_SYMBOL(blk_queue_segment_boundary);

773 774 775 776 777 778 779 780 781 782 783
/**
 * blk_queue_virt_boundary - set boundary rules for bio merging
 * @q:  the request queue for the device
 * @mask:  the memory boundary mask
 **/
void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
{
	q->limits.virt_boundary_mask = mask;
}
EXPORT_SYMBOL(blk_queue_virt_boundary);

784 785 786 787 788 789
/**
 * blk_queue_dma_alignment - set dma length and memory alignment
 * @q:     the request queue for the device
 * @mask:  alignment mask
 *
 * description:
790
 *    set required memory and length alignment for direct dma transactions.
Alan Cox's avatar
Alan Cox committed
791
 *    this is used when building direct io requests for the queue.
792 793 794 795 796 797 798 799 800 801 802 803 804 805
 *
 **/
void blk_queue_dma_alignment(struct request_queue *q, int mask)
{
	q->dma_alignment = mask;
}
EXPORT_SYMBOL(blk_queue_dma_alignment);

/**
 * blk_queue_update_dma_alignment - update dma length and memory alignment
 * @q:     the request queue for the device
 * @mask:  alignment mask
 *
 * description:
806
 *    update required memory and length alignment for direct dma transactions.
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
 *    If the requested alignment is larger than the current alignment, then
 *    the current queue alignment is updated to the new value, otherwise it
 *    is left alone.  The design of this is to allow multiple objects
 *    (driver, device, transport etc) to set their respective
 *    alignments without having them interfere.
 *
 **/
void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
{
	BUG_ON(mask > PAGE_SIZE);

	if (mask > q->dma_alignment)
		q->dma_alignment = mask;
}
EXPORT_SYMBOL(blk_queue_update_dma_alignment);

823 824
void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
{
825 826 827 828 829 830
	spin_lock_irq(q->queue_lock);
	if (queueable)
		clear_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
	else
		set_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
	spin_unlock_irq(q->queue_lock);
831 832 833
}
EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);

834 835 836 837 838 839 840 841 842 843 844
/**
 * blk_queue_write_cache - configure queue's write cache
 * @q:		the request queue for the device
 * @wc:		write back cache on or off
 * @fua:	device supports FUA writes, if true
 *
 * Tell the block layer about the write cache of @q.
 */
void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
{
	spin_lock_irq(q->queue_lock);
845
	if (wc)
846
		queue_flag_set(QUEUE_FLAG_WC, q);
847
	else
848
		queue_flag_clear(QUEUE_FLAG_WC, q);
849
	if (fua)
850
		queue_flag_set(QUEUE_FLAG_FUA, q);
851
	else
852 853 854 855 856
		queue_flag_clear(QUEUE_FLAG_FUA, q);
	spin_unlock_irq(q->queue_lock);
}
EXPORT_SYMBOL_GPL(blk_queue_write_cache);

857
static int __init blk_settings_init(void)
858 859 860 861 862 863
{
	blk_max_low_pfn = max_low_pfn - 1;
	blk_max_pfn = max_pfn - 1;
	return 0;
}
subsys_initcall(blk_settings_init);