access.c 15.9 KB
Newer Older
1
#include <linux/delay.h>
Linus Torvalds's avatar
Linus Torvalds committed
2 3
#include <linux/pci.h>
#include <linux/module.h>
4
#include <linux/sched.h>
5
#include <linux/slab.h>
Linus Torvalds's avatar
Linus Torvalds committed
6
#include <linux/ioport.h>
7
#include <linux/wait.h>
Linus Torvalds's avatar
Linus Torvalds committed
8

9 10
#include "pci.h"

Linus Torvalds's avatar
Linus Torvalds committed
11 12 13 14 15
/*
 * This interrupt-safe spinlock protects all accesses to PCI
 * configuration space.
 */

16
DEFINE_RAW_SPINLOCK(pci_lock);
Linus Torvalds's avatar
Linus Torvalds committed
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

/*
 *  Wrappers for all PCI configuration access functions.  They just check
 *  alignment, do locking and call the low-level functions pointed to
 *  by pci_dev->ops.
 */

#define PCI_byte_BAD 0
#define PCI_word_BAD (pos & 1)
#define PCI_dword_BAD (pos & 3)

#define PCI_OP_READ(size,type,len) \
int pci_bus_read_config_##size \
	(struct pci_bus *bus, unsigned int devfn, int pos, type *value)	\
{									\
	int res;							\
	unsigned long flags;						\
	u32 data = 0;							\
	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
36
	raw_spin_lock_irqsave(&pci_lock, flags);			\
Linus Torvalds's avatar
Linus Torvalds committed
37 38
	res = bus->ops->read(bus, devfn, pos, len, &data);		\
	*value = (type)data;						\
39
	raw_spin_unlock_irqrestore(&pci_lock, flags);		\
Linus Torvalds's avatar
Linus Torvalds committed
40 41 42 43 44 45 46 47 48 49
	return res;							\
}

#define PCI_OP_WRITE(size,type,len) \
int pci_bus_write_config_##size \
	(struct pci_bus *bus, unsigned int devfn, int pos, type value)	\
{									\
	int res;							\
	unsigned long flags;						\
	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
50
	raw_spin_lock_irqsave(&pci_lock, flags);			\
Linus Torvalds's avatar
Linus Torvalds committed
51
	res = bus->ops->write(bus, devfn, pos, len, value);		\
52
	raw_spin_unlock_irqrestore(&pci_lock, flags);		\
Linus Torvalds's avatar
Linus Torvalds committed
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
	return res;							\
}

PCI_OP_READ(byte, u8, 1)
PCI_OP_READ(word, u16, 2)
PCI_OP_READ(dword, u32, 4)
PCI_OP_WRITE(byte, u8, 1)
PCI_OP_WRITE(word, u16, 2)
PCI_OP_WRITE(dword, u32, 4)

EXPORT_SYMBOL(pci_bus_read_config_byte);
EXPORT_SYMBOL(pci_bus_read_config_word);
EXPORT_SYMBOL(pci_bus_read_config_dword);
EXPORT_SYMBOL(pci_bus_write_config_byte);
EXPORT_SYMBOL(pci_bus_write_config_word);
EXPORT_SYMBOL(pci_bus_write_config_dword);
69

Huang Ying's avatar
Huang Ying committed
70 71 72 73 74 75 76 77 78 79 80 81
/**
 * pci_bus_set_ops - Set raw operations of pci bus
 * @bus:	pci bus struct
 * @ops:	new raw operations
 *
 * Return previous raw operations
 */
struct pci_ops *pci_bus_set_ops(struct pci_bus *bus, struct pci_ops *ops)
{
	struct pci_ops *old_ops;
	unsigned long flags;

82
	raw_spin_lock_irqsave(&pci_lock, flags);
Huang Ying's avatar
Huang Ying committed
83 84
	old_ops = bus->ops;
	bus->ops = ops;
85
	raw_spin_unlock_irqrestore(&pci_lock, flags);
Huang Ying's avatar
Huang Ying committed
86 87 88
	return old_ops;
}
EXPORT_SYMBOL(pci_bus_set_ops);
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

/**
 * pci_read_vpd - Read one entry from Vital Product Data
 * @dev:	pci device struct
 * @pos:	offset in vpd space
 * @count:	number of bytes to read
 * @buf:	pointer to where to store result
 *
 */
ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf)
{
	if (!dev->vpd || !dev->vpd->ops)
		return -ENODEV;
	return dev->vpd->ops->read(dev, pos, count, buf);
}
EXPORT_SYMBOL(pci_read_vpd);

/**
 * pci_write_vpd - Write entry to Vital Product Data
 * @dev:	pci device struct
 * @pos:	offset in vpd space
110 111
 * @count:	number of bytes to write
 * @buf:	buffer containing write data
112 113 114 115 116 117 118 119 120 121
 *
 */
ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf)
{
	if (!dev->vpd || !dev->vpd->ops)
		return -ENODEV;
	return dev->vpd->ops->write(dev, pos, count, buf);
}
EXPORT_SYMBOL(pci_write_vpd);

122 123 124 125 126 127 128 129
/*
 * The following routines are to prevent the user from accessing PCI config
 * space when it's unsafe to do so.  Some devices require this during BIST and
 * we're required to prevent it during D-state transitions.
 *
 * We have a bit per device to indicate it's blocked and a global wait queue
 * for callers to sleep on until devices are unblocked.
 */
130
static DECLARE_WAIT_QUEUE_HEAD(pci_cfg_wait);
131

132
static noinline void pci_wait_cfg(struct pci_dev *dev)
133 134 135
{
	DECLARE_WAITQUEUE(wait, current);

136
	__add_wait_queue(&pci_cfg_wait, &wait);
137 138
	do {
		set_current_state(TASK_UNINTERRUPTIBLE);
139
		raw_spin_unlock_irq(&pci_lock);
140
		schedule();
141
		raw_spin_lock_irq(&pci_lock);
142 143
	} while (dev->block_cfg_access);
	__remove_wait_queue(&pci_cfg_wait, &wait);
144 145
}

146
/* Returns 0 on success, negative values indicate error. */
147 148 149 150 151 152
#define PCI_USER_READ_CONFIG(size,type)					\
int pci_user_read_config_##size						\
	(struct pci_dev *dev, int pos, type *val)			\
{									\
	int ret = 0;							\
	u32 data = -1;							\
153 154
	if (PCI_##size##_BAD)						\
		return -EINVAL;						\
155
	raw_spin_lock_irq(&pci_lock);				\
156 157
	if (unlikely(dev->block_cfg_access))				\
		pci_wait_cfg(dev);					\
158
	ret = dev->bus->ops->read(dev->bus, dev->devfn,			\
159
					pos, sizeof(type), &data);	\
160
	raw_spin_unlock_irq(&pci_lock);				\
161
	*val = (type)data;						\
162 163
	if (ret > 0)							\
		ret = -EINVAL;						\
164
	return ret;							\
165 166
}									\
EXPORT_SYMBOL_GPL(pci_user_read_config_##size);
167

168
/* Returns 0 on success, negative values indicate error. */
169 170 171 172 173
#define PCI_USER_WRITE_CONFIG(size,type)				\
int pci_user_write_config_##size					\
	(struct pci_dev *dev, int pos, type val)			\
{									\
	int ret = -EIO;							\
174 175
	if (PCI_##size##_BAD)						\
		return -EINVAL;						\
176
	raw_spin_lock_irq(&pci_lock);				\
177 178
	if (unlikely(dev->block_cfg_access))				\
		pci_wait_cfg(dev);					\
179
	ret = dev->bus->ops->write(dev->bus, dev->devfn,		\
180
					pos, sizeof(type), val);	\
181
	raw_spin_unlock_irq(&pci_lock);				\
182 183
	if (ret > 0)							\
		ret = -EINVAL;						\
184
	return ret;							\
185 186
}									\
EXPORT_SYMBOL_GPL(pci_user_write_config_##size);
187 188 189 190 191 192 193 194

PCI_USER_READ_CONFIG(byte, u8)
PCI_USER_READ_CONFIG(word, u16)
PCI_USER_READ_CONFIG(dword, u32)
PCI_USER_WRITE_CONFIG(byte, u8)
PCI_USER_WRITE_CONFIG(word, u16)
PCI_USER_WRITE_CONFIG(dword, u32)

195 196 197 198 199 200
/* VPD access through PCI 2.2+ VPD capability */

#define PCI_VPD_PCI22_SIZE (PCI_VPD_ADDR_MASK + 1)

struct pci_vpd_pci22 {
	struct pci_vpd base;
201 202
	struct mutex lock;
	u16	flag;
203
	bool	busy;
204
	u8	cap;
205 206
};

207 208 209 210 211
/*
 * Wait for last operation to complete.
 * This code has to spin since there is no other notification from the PCI
 * hardware. Since the VPD is often implemented by serial attachment to an
 * EEPROM, it may take many milliseconds to complete.
212 213
 *
 * Returns 0 on success, negative values indicate error.
214
 */
215 216 217 218
static int pci_vpd_pci22_wait(struct pci_dev *dev)
{
	struct pci_vpd_pci22 *vpd =
		container_of(dev->vpd, struct pci_vpd_pci22, base);
219 220
	unsigned long timeout = jiffies + HZ/20 + 2;
	u16 status;
221 222 223 224 225 226
	int ret;

	if (!vpd->busy)
		return 0;

	for (;;) {
227
		ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR,
228
						&status);
229
		if (ret < 0)
230
			return ret;
231 232

		if ((status & PCI_VPD_ADDR_F) == vpd->flag) {
233 234 235
			vpd->busy = false;
			return 0;
		}
236

237 238 239 240 241
		if (time_after(jiffies, timeout)) {
			dev_printk(KERN_DEBUG, &dev->dev,
				   "vpd r/w failed.  This is likely a firmware "
				   "bug on this device.  Contact the card "
				   "vendor for a firmware update.");
242
			return -ETIMEDOUT;
243
		}
244 245 246 247
		if (fatal_signal_pending(current))
			return -EINTR;
		if (!cond_resched())
			udelay(10);
248 249 250
	}
}

251 252
static ssize_t pci_vpd_pci22_read(struct pci_dev *dev, loff_t pos, size_t count,
				  void *arg)
253 254 255
{
	struct pci_vpd_pci22 *vpd =
		container_of(dev->vpd, struct pci_vpd_pci22, base);
256 257 258
	int ret;
	loff_t end = pos + count;
	u8 *buf = arg;
259

260
	if (pos < 0 || pos > vpd->base.len || end > vpd->base.len)
261 262
		return -EINVAL;

263 264 265
	if (mutex_lock_killable(&vpd->lock))
		return -EINTR;

266 267 268
	ret = pci_vpd_pci22_wait(dev);
	if (ret < 0)
		goto out;
269

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
	while (pos < end) {
		u32 val;
		unsigned int i, skip;

		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
						 pos & ~3);
		if (ret < 0)
			break;
		vpd->busy = true;
		vpd->flag = PCI_VPD_ADDR_F;
		ret = pci_vpd_pci22_wait(dev);
		if (ret < 0)
			break;

		ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val);
		if (ret < 0)
			break;

		skip = pos & 3;
		for (i = 0;  i < sizeof(u32); i++) {
			if (i >= skip) {
				*buf++ = val;
				if (++pos == end)
					break;
			}
			val >>= 8;
		}
	}
298
out:
299
	mutex_unlock(&vpd->lock);
300
	return ret ? ret : count;
301 302
}

303 304
static ssize_t pci_vpd_pci22_write(struct pci_dev *dev, loff_t pos, size_t count,
				   const void *arg)
305 306 307
{
	struct pci_vpd_pci22 *vpd =
		container_of(dev->vpd, struct pci_vpd_pci22, base);
308 309
	const u8 *buf = arg;
	loff_t end = pos + count;
310
	int ret = 0;
311

312
	if (pos < 0 || (pos & 3) || (count & 3) || end > vpd->base.len)
313 314
		return -EINVAL;

315 316
	if (mutex_lock_killable(&vpd->lock))
		return -EINTR;
317

318 319 320
	ret = pci_vpd_pci22_wait(dev);
	if (ret < 0)
		goto out;
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

	while (pos < end) {
		u32 val;

		val = *buf++;
		val |= *buf++ << 8;
		val |= *buf++ << 16;
		val |= *buf++ << 24;

		ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, val);
		if (ret < 0)
			break;
		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
						 pos | PCI_VPD_ADDR_F);
		if (ret < 0)
			break;

		vpd->busy = true;
		vpd->flag = 0;
		ret = pci_vpd_pci22_wait(dev);
341 342
		if (ret < 0)
			break;
343 344 345

		pos += sizeof(u32);
	}
346
out:
347
	mutex_unlock(&vpd->lock);
348
	return ret ? ret : count;
349 350 351 352 353 354 355
}

static void pci_vpd_pci22_release(struct pci_dev *dev)
{
	kfree(container_of(dev->vpd, struct pci_vpd_pci22, base));
}

356
static const struct pci_vpd_ops pci_vpd_pci22_ops = {
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
	.read = pci_vpd_pci22_read,
	.write = pci_vpd_pci22_write,
	.release = pci_vpd_pci22_release,
};

int pci_vpd_pci22_init(struct pci_dev *dev)
{
	struct pci_vpd_pci22 *vpd;
	u8 cap;

	cap = pci_find_capability(dev, PCI_CAP_ID_VPD);
	if (!cap)
		return -ENODEV;
	vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC);
	if (!vpd)
		return -ENOMEM;

374
	vpd->base.len = PCI_VPD_PCI22_SIZE;
375
	vpd->base.ops = &pci_vpd_pci22_ops;
376
	mutex_init(&vpd->lock);
377 378 379 380 381 382
	vpd->cap = cap;
	vpd->busy = false;
	dev->vpd = &vpd->base;
	return 0;
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
/**
 * pci_vpd_truncate - Set available Vital Product Data size
 * @dev:	pci device struct
 * @size:	available memory in bytes
 *
 * Adjust size of available VPD area.
 */
int pci_vpd_truncate(struct pci_dev *dev, size_t size)
{
	if (!dev->vpd)
		return -EINVAL;

	/* limited by the access method */
	if (size > dev->vpd->len)
		return -EINVAL;

	dev->vpd->len = size;
400 401
	if (dev->vpd->attr)
		dev->vpd->attr->size = size;
402 403 404 405 406

	return 0;
}
EXPORT_SYMBOL(pci_vpd_truncate);

407
/**
408
 * pci_cfg_access_lock - Lock PCI config reads/writes
409 410
 * @dev:	pci device struct
 *
411 412 413
 * When access is locked, any userspace reads or writes to config
 * space and concurrent lock requests will sleep until access is
 * allowed via pci_cfg_access_unlocked again.
414
 */
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
void pci_cfg_access_lock(struct pci_dev *dev)
{
	might_sleep();

	raw_spin_lock_irq(&pci_lock);
	if (dev->block_cfg_access)
		pci_wait_cfg(dev);
	dev->block_cfg_access = 1;
	raw_spin_unlock_irq(&pci_lock);
}
EXPORT_SYMBOL_GPL(pci_cfg_access_lock);

/**
 * pci_cfg_access_trylock - try to lock PCI config reads/writes
 * @dev:	pci device struct
 *
 * Same as pci_cfg_access_lock, but will return 0 if access is
 * already locked, 1 otherwise. This function can be used from
 * atomic contexts.
 */
bool pci_cfg_access_trylock(struct pci_dev *dev)
436 437
{
	unsigned long flags;
438
	bool locked = true;
439

440
	raw_spin_lock_irqsave(&pci_lock, flags);
441 442 443 444
	if (dev->block_cfg_access)
		locked = false;
	else
		dev->block_cfg_access = 1;
445
	raw_spin_unlock_irqrestore(&pci_lock, flags);
446

447
	return locked;
448
}
449
EXPORT_SYMBOL_GPL(pci_cfg_access_trylock);
450 451

/**
452
 * pci_cfg_access_unlock - Unlock PCI config reads/writes
453 454
 * @dev:	pci device struct
 *
455
 * This function allows PCI config accesses to resume.
456
 */
457
void pci_cfg_access_unlock(struct pci_dev *dev)
458 459 460
{
	unsigned long flags;

461
	raw_spin_lock_irqsave(&pci_lock, flags);
462 463 464

	/* This indicates a problem in the caller, but we don't need
	 * to kill them, unlike a double-block above. */
465
	WARN_ON(!dev->block_cfg_access);
466

467 468
	dev->block_cfg_access = 0;
	wake_up_all(&pci_cfg_wait);
469
	raw_spin_unlock_irqrestore(&pci_lock, flags);
470
}
471
EXPORT_SYMBOL_GPL(pci_cfg_access_unlock);
472 473 474

static inline int pcie_cap_version(const struct pci_dev *dev)
{
475
	return pcie_caps_reg(dev) & PCI_EXP_FLAGS_VERS;
476 477 478 479 480 481
}

static inline bool pcie_cap_has_lnkctl(const struct pci_dev *dev)
{
	int type = pci_pcie_type(dev);

482
	return type == PCI_EXP_TYPE_ENDPOINT ||
483 484 485 486 487 488
	       type == PCI_EXP_TYPE_LEG_END ||
	       type == PCI_EXP_TYPE_ROOT_PORT ||
	       type == PCI_EXP_TYPE_UPSTREAM ||
	       type == PCI_EXP_TYPE_DOWNSTREAM ||
	       type == PCI_EXP_TYPE_PCI_BRIDGE ||
	       type == PCI_EXP_TYPE_PCIE_BRIDGE;
489 490 491 492 493 494
}

static inline bool pcie_cap_has_sltctl(const struct pci_dev *dev)
{
	int type = pci_pcie_type(dev);

495 496 497
	return (type == PCI_EXP_TYPE_ROOT_PORT ||
		type == PCI_EXP_TYPE_DOWNSTREAM) &&
	       pcie_caps_reg(dev) & PCI_EXP_FLAGS_SLOT;
498 499 500 501 502 503
}

static inline bool pcie_cap_has_rtctl(const struct pci_dev *dev)
{
	int type = pci_pcie_type(dev);

504
	return type == PCI_EXP_TYPE_ROOT_PORT ||
505 506 507 508 509 510 511 512 513
	       type == PCI_EXP_TYPE_RC_EC;
}

static bool pcie_capability_reg_implemented(struct pci_dev *dev, int pos)
{
	if (!pci_is_pcie(dev))
		return false;

	switch (pos) {
514
	case PCI_EXP_FLAGS:
515 516 517 518
		return true;
	case PCI_EXP_DEVCAP:
	case PCI_EXP_DEVCTL:
	case PCI_EXP_DEVSTA:
519
		return true;
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
	case PCI_EXP_LNKCAP:
	case PCI_EXP_LNKCTL:
	case PCI_EXP_LNKSTA:
		return pcie_cap_has_lnkctl(dev);
	case PCI_EXP_SLTCAP:
	case PCI_EXP_SLTCTL:
	case PCI_EXP_SLTSTA:
		return pcie_cap_has_sltctl(dev);
	case PCI_EXP_RTCTL:
	case PCI_EXP_RTCAP:
	case PCI_EXP_RTSTA:
		return pcie_cap_has_rtctl(dev);
	case PCI_EXP_DEVCAP2:
	case PCI_EXP_DEVCTL2:
	case PCI_EXP_LNKCAP2:
	case PCI_EXP_LNKCTL2:
	case PCI_EXP_LNKSTA2:
		return pcie_cap_version(dev) > 1;
	default:
		return false;
	}
}

/*
 * Note that these accessor functions are only for the "PCI Express
 * Capability" (see PCIe spec r3.0, sec 7.8).  They do not apply to the
 * other "PCI Express Extended Capabilities" (AER, VC, ACS, MFVC, etc.)
 */
int pcie_capability_read_word(struct pci_dev *dev, int pos, u16 *val)
{
	int ret;

	*val = 0;
	if (pos & 1)
		return -EINVAL;

	if (pcie_capability_reg_implemented(dev, pos)) {
		ret = pci_read_config_word(dev, pci_pcie_cap(dev) + pos, val);
		/*
		 * Reset *val to 0 if pci_read_config_word() fails, it may
		 * have been written as 0xFFFF if hardware error happens
		 * during pci_read_config_word().
		 */
		if (ret)
			*val = 0;
		return ret;
	}

	/*
	 * For Functions that do not implement the Slot Capabilities,
	 * Slot Status, and Slot Control registers, these spaces must
	 * be hardwired to 0b, with the exception of the Presence Detect
	 * State bit in the Slot Status register of Downstream Ports,
	 * which must be hardwired to 1b.  (PCIe Base Spec 3.0, sec 7.8)
	 */
	if (pci_is_pcie(dev) && pos == PCI_EXP_SLTSTA &&
		 pci_pcie_type(dev) == PCI_EXP_TYPE_DOWNSTREAM) {
		*val = PCI_EXP_SLTSTA_PDS;
	}

	return 0;
}
EXPORT_SYMBOL(pcie_capability_read_word);

int pcie_capability_read_dword(struct pci_dev *dev, int pos, u32 *val)
{
	int ret;

	*val = 0;
	if (pos & 3)
		return -EINVAL;

	if (pcie_capability_reg_implemented(dev, pos)) {
		ret = pci_read_config_dword(dev, pci_pcie_cap(dev) + pos, val);
		/*
		 * Reset *val to 0 if pci_read_config_dword() fails, it may
		 * have been written as 0xFFFFFFFF if hardware error happens
		 * during pci_read_config_dword().
		 */
		if (ret)
			*val = 0;
		return ret;
	}

	if (pci_is_pcie(dev) && pos == PCI_EXP_SLTCTL &&
		 pci_pcie_type(dev) == PCI_EXP_TYPE_DOWNSTREAM) {
		*val = PCI_EXP_SLTSTA_PDS;
	}

	return 0;
}
EXPORT_SYMBOL(pcie_capability_read_dword);

int pcie_capability_write_word(struct pci_dev *dev, int pos, u16 val)
{
	if (pos & 1)
		return -EINVAL;

	if (!pcie_capability_reg_implemented(dev, pos))
		return 0;

	return pci_write_config_word(dev, pci_pcie_cap(dev) + pos, val);
}
EXPORT_SYMBOL(pcie_capability_write_word);

int pcie_capability_write_dword(struct pci_dev *dev, int pos, u32 val)
{
	if (pos & 3)
		return -EINVAL;

	if (!pcie_capability_reg_implemented(dev, pos))
		return 0;

	return pci_write_config_dword(dev, pci_pcie_cap(dev) + pos, val);
}
EXPORT_SYMBOL(pcie_capability_write_dword);

int pcie_capability_clear_and_set_word(struct pci_dev *dev, int pos,
				       u16 clear, u16 set)
{
	int ret;
	u16 val;

	ret = pcie_capability_read_word(dev, pos, &val);
	if (!ret) {
		val &= ~clear;
		val |= set;
		ret = pcie_capability_write_word(dev, pos, val);
	}

	return ret;
}
EXPORT_SYMBOL(pcie_capability_clear_and_set_word);

int pcie_capability_clear_and_set_dword(struct pci_dev *dev, int pos,
					u32 clear, u32 set)
{
	int ret;
	u32 val;

	ret = pcie_capability_read_dword(dev, pos, &val);
	if (!ret) {
		val &= ~clear;
		val |= set;
		ret = pcie_capability_write_dword(dev, pos, val);
	}

	return ret;
}
EXPORT_SYMBOL(pcie_capability_clear_and_set_dword);