tcb_clksrc.c 9.83 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#include <linux/init.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/irq.h>

#include <linux/clk.h>
#include <linux/err.h>
#include <linux/ioport.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/atmel_tc.h>


/*
 * We're configured to use a specific TC block, one that's not hooked
 * up to external hardware, to provide a time solution:
 *
 *   - Two channels combine to create a free-running 32 bit counter
 *     with a base rate of 5+ MHz, packaged as a clocksource (with
 *     resolution better than 200 nsec).
22 23
 *   - Some chips support 32 bit counter. A single channel is used for
 *     this 32 bit free-running counter. the second channel is not used.
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 *   - The third channel may be used to provide a 16-bit clockevent
 *     source, used in either periodic or oneshot mode.  This runs
 *     at 32 KiHZ, and can handle delays of up to two seconds.
 *
 * A boot clocksource and clockevent source are also currently needed,
 * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
 * this code can be used when init_timers() is called, well before most
 * devices are set up.  (Some low end AT91 parts, which can run uClinux,
 * have only the timers in one TC block... they currently don't support
 * the tclib code, because of that initialization issue.)
 *
 * REVISIT behavior during system suspend states... we should disable
 * all clocks and save the power.  Easily done for clockevent devices,
 * but clocksources won't necessarily get the needed notifications.
 * For deeper system sleep states, this will be mandatory...
 */

static void __iomem *tcaddr;

44
static cycle_t tc_get_cycles(struct clocksource *cs)
45 46 47 48 49 50 51 52 53 54 55 56 57 58
{
	unsigned long	flags;
	u32		lower, upper;

	raw_local_irq_save(flags);
	do {
		upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
		lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
	} while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));

	raw_local_irq_restore(flags);
	return (upper << 16) | lower;
}

59 60 61 62 63
static cycle_t tc_get_cycles32(struct clocksource *cs)
{
	return __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
}

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
static struct clocksource clksrc = {
	.name           = "tcb_clksrc",
	.rating         = 200,
	.read           = tc_get_cycles,
	.mask           = CLOCKSOURCE_MASK(32),
	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
};

#ifdef CONFIG_GENERIC_CLOCKEVENTS

struct tc_clkevt_device {
	struct clock_event_device	clkevt;
	struct clk			*clk;
	void __iomem			*regs;
};

static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
{
	return container_of(clkevt, struct tc_clkevt_device, clkevt);
}

/* For now, we always use the 32K clock ... this optimizes for NO_HZ,
 * because using one of the divided clocks would usually mean the
 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
 *
 * A divided clock could be good for high resolution timers, since
 * 30.5 usec resolution can seem "low".
 */
static u32 timer_clock;

static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
{
	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
	void __iomem		*regs = tcd->regs;

	if (tcd->clkevt.mode == CLOCK_EVT_MODE_PERIODIC
			|| tcd->clkevt.mode == CLOCK_EVT_MODE_ONESHOT) {
		__raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
		__raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
103
		clk_disable(tcd->clk);
104 105 106 107 108 109 110 111
	}

	switch (m) {

	/* By not making the gentime core emulate periodic mode on top
	 * of oneshot, we get lower overhead and improved accuracy.
	 */
	case CLOCK_EVT_MODE_PERIODIC:
112
		clk_enable(tcd->clk);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

		/* slow clock, count up to RC, then irq and restart */
		__raw_writel(timer_clock
				| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
				regs + ATMEL_TC_REG(2, CMR));
		__raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));

		/* Enable clock and interrupts on RC compare */
		__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));

		/* go go gadget! */
		__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
				regs + ATMEL_TC_REG(2, CCR));
		break;

	case CLOCK_EVT_MODE_ONESHOT:
129
		clk_enable(tcd->clk);
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

		/* slow clock, count up to RC, then irq and stop */
		__raw_writel(timer_clock | ATMEL_TC_CPCSTOP
				| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
				regs + ATMEL_TC_REG(2, CMR));
		__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));

		/* set_next_event() configures and starts the timer */
		break;

	default:
		break;
	}
}

static int tc_next_event(unsigned long delta, struct clock_event_device *d)
{
	__raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));

	/* go go gadget! */
	__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
			tcaddr + ATMEL_TC_REG(2, CCR));
	return 0;
}

static struct tc_clkevt_device clkevt = {
	.clkevt	= {
		.name		= "tc_clkevt",
		.features	= CLOCK_EVT_FEAT_PERIODIC
					| CLOCK_EVT_FEAT_ONESHOT,
		/* Should be lower than at91rm9200's system timer */
		.rating		= 125,
		.set_next_event	= tc_next_event,
		.set_mode	= tc_mode,
	},
};

static irqreturn_t ch2_irq(int irq, void *handle)
{
	struct tc_clkevt_device	*dev = handle;
	unsigned int		sr;

	sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
	if (sr & ATMEL_TC_CPCS) {
		dev->clkevt.event_handler(&dev->clkevt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

181
static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
182
{
183
	int ret;
184 185 186
	struct clk *t2_clk = tc->clk[2];
	int irq = tc->irq[2];

187 188 189 190
	/* try to enable t2 clk to avoid future errors in mode change */
	ret = clk_prepare_enable(t2_clk);
	if (ret)
		return ret;
191
	clk_disable(t2_clk);
192

193 194 195 196 197
	clkevt.regs = tc->regs;
	clkevt.clk = t2_clk;

	timer_clock = clk32k_divisor_idx;

198
	clkevt.clkevt.cpumask = cpumask_of(0);
199

200 201 202
	ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
	if (ret) {
		clk_disable_unprepare(t2_clk);
203
		return ret;
204
	}
205

206
	clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff);
207

208
	return ret;
209 210 211 212
}

#else /* !CONFIG_GENERIC_CLOCKEVENTS */

213
static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
214 215
{
	/* NOTHING */
216
	return 0;
217 218 219 220
}

#endif

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
{
	/* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
	__raw_writel(mck_divisor_idx			/* likely divide-by-8 */
			| ATMEL_TC_WAVE
			| ATMEL_TC_WAVESEL_UP		/* free-run */
			| ATMEL_TC_ACPA_SET		/* TIOA0 rises at 0 */
			| ATMEL_TC_ACPC_CLEAR,		/* (duty cycle 50%) */
			tcaddr + ATMEL_TC_REG(0, CMR));
	__raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
	__raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
	__raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
	__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));

	/* channel 1:  waveform mode, input TIOA0 */
	__raw_writel(ATMEL_TC_XC1			/* input: TIOA0 */
			| ATMEL_TC_WAVE
			| ATMEL_TC_WAVESEL_UP,		/* free-run */
			tcaddr + ATMEL_TC_REG(1, CMR));
	__raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));	/* no irqs */
	__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));

	/* chain channel 0 to channel 1*/
	__raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
	/* then reset all the timers */
	__raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
}

static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
{
	/* channel 0:  waveform mode, input mclk/8 */
	__raw_writel(mck_divisor_idx			/* likely divide-by-8 */
			| ATMEL_TC_WAVE
			| ATMEL_TC_WAVESEL_UP,		/* free-run */
			tcaddr + ATMEL_TC_REG(0, CMR));
	__raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
	__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));

	/* then reset all the timers */
	__raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
}

263 264 265 266 267 268 269
static int __init tcb_clksrc_init(void)
{
	static char bootinfo[] __initdata
		= KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";

	struct platform_device *pdev;
	struct atmel_tc *tc;
270
	struct clk *t0_clk;
271 272 273 274
	u32 rate, divided_rate = 0;
	int best_divisor_idx = -1;
	int clk32k_divisor_idx = -1;
	int i;
275
	int ret;
276

277
	tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK);
278 279 280 281 282 283 284 285
	if (!tc) {
		pr_debug("can't alloc TC for clocksource\n");
		return -ENODEV;
	}
	tcaddr = tc->regs;
	pdev = tc->pdev;

	t0_clk = tc->clk[0];
286 287 288 289 290
	ret = clk_prepare_enable(t0_clk);
	if (ret) {
		pr_debug("can't enable T0 clk\n");
		goto err_free_tc;
	}
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

	/* How fast will we be counting?  Pick something over 5 MHz.  */
	rate = (u32) clk_get_rate(t0_clk);
	for (i = 0; i < 5; i++) {
		unsigned divisor = atmel_tc_divisors[i];
		unsigned tmp;

		/* remember 32 KiHz clock for later */
		if (!divisor) {
			clk32k_divisor_idx = i;
			continue;
		}

		tmp = rate / divisor;
		pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
		if (best_divisor_idx > 0) {
			if (tmp < 5 * 1000 * 1000)
				continue;
		}
		divided_rate = tmp;
		best_divisor_idx = i;
	}


	printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
			divided_rate / 1000000,
			((divided_rate + 500000) % 1000000) / 1000);

319 320 321 322 323 324 325 326 327
	if (tc->tcb_config && tc->tcb_config->counter_width == 32) {
		/* use apropriate function to read 32 bit counter */
		clksrc.read = tc_get_cycles32;
		/* setup ony channel 0 */
		tcb_setup_single_chan(tc, best_divisor_idx);
	} else {
		/* tclib will give us three clocks no matter what the
		 * underlying platform supports.
		 */
328 329 330 331 332
		ret = clk_prepare_enable(tc->clk[1]);
		if (ret) {
			pr_debug("can't enable T1 clk\n");
			goto err_disable_t0;
		}
333 334 335
		/* setup both channel 0 & 1 */
		tcb_setup_dual_chan(tc, best_divisor_idx);
	}
336 337

	/* and away we go! */
338 339 340
	ret = clocksource_register_hz(&clksrc, divided_rate);
	if (ret)
		goto err_disable_t1;
341 342

	/* channel 2:  periodic and oneshot timer support */
343 344 345
	ret = setup_clkevents(tc, clk32k_divisor_idx);
	if (ret)
		goto err_unregister_clksrc;
346 347

	return 0;
348

349 350 351 352 353 354 355
err_unregister_clksrc:
	clocksource_unregister(&clksrc);

err_disable_t1:
	if (!tc->tcb_config || tc->tcb_config->counter_width != 32)
		clk_disable_unprepare(tc->clk[1]);

356 357 358 359 360 361
err_disable_t0:
	clk_disable_unprepare(t0_clk);

err_free_tc:
	atmel_tc_free(tc);
	return ret;
362 363
}
arch_initcall(tcb_clksrc_init);