clkt_dpll.c 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * OMAP2/3/4 DPLL clock functions
 *
 * Copyright (C) 2005-2008 Texas Instruments, Inc.
 * Copyright (C) 2004-2010 Nokia Corporation
 *
 * Contacts:
 * Richard Woodruff <r-woodruff2@ti.com>
 * Paul Walmsley
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#undef DEBUG

#include <linux/kernel.h>
#include <linux/errno.h>
19
#include <linux/clk.h>
20
#include <linux/clk-provider.h>
21
#include <linux/io.h>
22
#include <linux/clk/ti.h>
23 24 25 26 27 28

#include <asm/div64.h>

#include "clock.h"

/* DPLL rate rounding: minimum DPLL multiplier, divider values */
29
#define DPLL_MIN_MULTIPLIER		2
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#define DPLL_MIN_DIVIDER		1

/* Possible error results from _dpll_test_mult */
#define DPLL_MULT_UNDERFLOW		-1

/*
 * Scale factor to mitigate roundoff errors in DPLL rate rounding.
 * The higher the scale factor, the greater the risk of arithmetic overflow,
 * but the closer the rounded rate to the target rate.  DPLL_SCALE_FACTOR
 * must be a power of DPLL_SCALE_BASE.
 */
#define DPLL_SCALE_FACTOR		64
#define DPLL_SCALE_BASE			2
#define DPLL_ROUNDING_VAL		((DPLL_SCALE_BASE / 2) * \
					 (DPLL_SCALE_FACTOR / DPLL_SCALE_BASE))

46 47 48 49 50 51
/*
 * DPLL valid Fint frequency range for OMAP36xx and OMAP4xxx.
 * From device data manual section 4.3 "DPLL and DLL Specifications".
 */
#define OMAP3PLUS_DPLL_FINT_JTYPE_MIN	500000
#define OMAP3PLUS_DPLL_FINT_JTYPE_MAX	2500000
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

/* _dpll_test_fint() return codes */
#define DPLL_FINT_UNDERFLOW		-1
#define DPLL_FINT_INVALID		-2

/* Private functions */

/*
 * _dpll_test_fint - test whether an Fint value is valid for the DPLL
 * @clk: DPLL struct clk to test
 * @n: divider value (N) to test
 *
 * Tests whether a particular divider @n will result in a valid DPLL
 * internal clock frequency Fint. See the 34xx TRM 4.7.6.2 "DPLL Jitter
 * Correction".  Returns 0 if OK, -1 if the enclosing loop can terminate
 * (assuming that it is counting N upwards), or -2 if the enclosing loop
 * should skip to the next iteration (again assuming N is increasing).
 */
70
static int _dpll_test_fint(struct clk_hw_omap *clk, unsigned int n)
71 72
{
	struct dpll_data *dd;
73
	long fint, fint_min, fint_max;
74 75 76 77 78
	int ret = 0;

	dd = clk->dpll_data;

	/* DPLL divider must result in a valid jitter correction val */
79
	fint = clk_hw_get_rate(clk_hw_get_parent(&clk->hw)) / n;
80

81
	if (dd->flags & DPLL_J_TYPE) {
82 83 84
		fint_min = OMAP3PLUS_DPLL_FINT_JTYPE_MIN;
		fint_max = OMAP3PLUS_DPLL_FINT_JTYPE_MAX;
	} else {
85 86
		fint_min = ti_clk_get_features()->fint_min;
		fint_max = ti_clk_get_features()->fint_max;
87 88
	}

89 90 91
	if (!fint_min || !fint_max) {
		WARN(1, "No fint limits available!\n");
		return DPLL_FINT_INVALID;
92 93
	}

94
	if (fint < ti_clk_get_features()->fint_min) {
95 96
		pr_debug("rejecting n=%d due to Fint failure, lowering max_divider\n",
			 n);
97 98
		dd->max_divider = n;
		ret = DPLL_FINT_UNDERFLOW;
99
	} else if (fint > ti_clk_get_features()->fint_max) {
100 101
		pr_debug("rejecting n=%d due to Fint failure, boosting min_divider\n",
			 n);
102 103
		dd->min_divider = n;
		ret = DPLL_FINT_INVALID;
104 105
	} else if (fint > ti_clk_get_features()->fint_band1_max &&
		   fint < ti_clk_get_features()->fint_band2_min) {
106 107
		pr_debug("rejecting n=%d due to Fint failure\n", n);
		ret = DPLL_FINT_INVALID;
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
	}

	return ret;
}

static unsigned long _dpll_compute_new_rate(unsigned long parent_rate,
					    unsigned int m, unsigned int n)
{
	unsigned long long num;

	num = (unsigned long long)parent_rate * m;
	do_div(num, n);
	return num;
}

/*
 * _dpll_test_mult - test a DPLL multiplier value
 * @m: pointer to the DPLL m (multiplier) value under test
 * @n: current DPLL n (divider) value under test
 * @new_rate: pointer to storage for the resulting rounded rate
 * @target_rate: the desired DPLL rate
 * @parent_rate: the DPLL's parent clock rate
 *
 * This code tests a DPLL multiplier value, ensuring that the
 * resulting rate will not be higher than the target_rate, and that
 * the multiplier value itself is valid for the DPLL.  Initially, the
 * integer pointed to by the m argument should be prescaled by
 * multiplying by DPLL_SCALE_FACTOR.  The code will replace this with
 * a non-scaled m upon return.  This non-scaled m will result in a
 * new_rate as close as possible to target_rate (but not greater than
 * target_rate) given the current (parent_rate, n, prescaled m)
 * triple. Returns DPLL_MULT_UNDERFLOW in the event that the
 * non-scaled m attempted to underflow, which can allow the calling
 * function to bail out early; or 0 upon success.
 */
static int _dpll_test_mult(int *m, int n, unsigned long *new_rate,
			   unsigned long target_rate,
			   unsigned long parent_rate)
{
	int r = 0, carry = 0;

	/* Unscale m and round if necessary */
	if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL)
		carry = 1;
	*m = (*m / DPLL_SCALE_FACTOR) + carry;

	/*
	 * The new rate must be <= the target rate to avoid programming
	 * a rate that is impossible for the hardware to handle
	 */
	*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
	if (*new_rate > target_rate) {
		(*m)--;
		*new_rate = 0;
	}

	/* Guard against m underflow */
	if (*m < DPLL_MIN_MULTIPLIER) {
		*m = DPLL_MIN_MULTIPLIER;
		*new_rate = 0;
		r = DPLL_MULT_UNDERFLOW;
	}

	if (*new_rate == 0)
		*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);

	return r;
}

177 178 179 180 181 182 183 184 185
/**
 * _omap2_dpll_is_in_bypass - check if DPLL is in bypass mode or not
 * @v: bitfield value of the DPLL enable
 *
 * Checks given DPLL enable bitfield to see whether the DPLL is in bypass
 * mode or not. Returns 1 if the DPLL is in bypass, 0 otherwise.
 */
static int _omap2_dpll_is_in_bypass(u32 v)
{
186 187
	u8 mask, val;

188
	mask = ti_clk_get_features()->dpll_bypass_vals;
189 190 191 192 193 194 195 196 197 198

	/*
	 * Each set bit in the mask corresponds to a bypass value equal
	 * to the bitshift. Go through each set-bit in the mask and
	 * compare against the given register value.
	 */
	while (mask) {
		val = __ffs(mask);
		mask ^= (1 << val);
		if (v == val)
199 200 201 202 203 204
			return 1;
	}

	return 0;
}

205
/* Public functions */
206 207 208
u8 omap2_init_dpll_parent(struct clk_hw *hw)
{
	struct clk_hw_omap *clk = to_clk_hw_omap(hw);
209 210 211 212 213
	u32 v;
	struct dpll_data *dd;

	dd = clk->dpll_data;
	if (!dd)
214
		return -EINVAL;
215

216
	v = ti_clk_ll_ops->clk_readl(dd->control_reg);
217 218 219
	v &= dd->enable_mask;
	v >>= __ffs(dd->enable_mask);

220
	/* Reparent the struct clk in case the dpll is in bypass */
221 222 223
	if (_omap2_dpll_is_in_bypass(v))
		return 1;

224
	return 0;
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
}

/**
 * omap2_get_dpll_rate - returns the current DPLL CLKOUT rate
 * @clk: struct clk * of a DPLL
 *
 * DPLLs can be locked or bypassed - basically, enabled or disabled.
 * When locked, the DPLL output depends on the M and N values.  When
 * bypassed, on OMAP2xxx, the output rate is either the 32KiHz clock
 * or sys_clk.  Bypass rates on OMAP3 depend on the DPLL: DPLLs 1 and
 * 2 are bypassed with dpll1_fclk and dpll2_fclk respectively
 * (generated by DPLL3), while DPLL 3, 4, and 5 bypass rates are sys_clk.
 * Returns the current DPLL CLKOUT rate (*not* CLKOUTX2) if the DPLL is
 * locked, or the appropriate bypass rate if the DPLL is bypassed, or 0
 * if the clock @clk is not a DPLL.
 */
241
unsigned long omap2_get_dpll_rate(struct clk_hw_omap *clk)
242
{
243
	u64 dpll_clk;
244 245 246 247 248 249 250 251
	u32 dpll_mult, dpll_div, v;
	struct dpll_data *dd;

	dd = clk->dpll_data;
	if (!dd)
		return 0;

	/* Return bypass rate if DPLL is bypassed */
252
	v = ti_clk_ll_ops->clk_readl(dd->control_reg);
253 254 255
	v &= dd->enable_mask;
	v >>= __ffs(dd->enable_mask);

256
	if (_omap2_dpll_is_in_bypass(v))
257
		return clk_hw_get_rate(dd->clk_bypass);
258

259
	v = ti_clk_ll_ops->clk_readl(dd->mult_div1_reg);
260 261 262 263 264
	dpll_mult = v & dd->mult_mask;
	dpll_mult >>= __ffs(dd->mult_mask);
	dpll_div = v & dd->div1_mask;
	dpll_div >>= __ffs(dd->div1_mask);

265
	dpll_clk = (u64)clk_hw_get_rate(dd->clk_ref) * dpll_mult;
266 267 268 269 270 271 272 273 274 275 276 277
	do_div(dpll_clk, dpll_div + 1);

	return dpll_clk;
}

/* DPLL rate rounding code */

/**
 * omap2_dpll_round_rate - round a target rate for an OMAP DPLL
 * @clk: struct clk * for a DPLL
 * @target_rate: desired DPLL clock rate
 *
278 279 280 281 282 283
 * Given a DPLL and a desired target rate, round the target rate to a
 * possible, programmable rate for this DPLL.  Attempts to select the
 * minimum possible n.  Stores the computed (m, n) in the DPLL's
 * dpll_data structure so set_rate() will not need to call this
 * (expensive) function again.  Returns ~0 if the target rate cannot
 * be rounded, or the rounded rate upon success.
284
 */
285
long omap2_dpll_round_rate(struct clk_hw *hw, unsigned long target_rate,
286
			   unsigned long *parent_rate)
287 288
{
	struct clk_hw_omap *clk = to_clk_hw_omap(hw);
289
	int m, n, r, scaled_max_m;
290
	int min_delta_m = INT_MAX, min_delta_n = INT_MAX;
291 292
	unsigned long scaled_rt_rp;
	unsigned long new_rate = 0;
293
	struct dpll_data *dd;
294
	unsigned long ref_rate;
295 296
	long delta;
	long prev_min_delta = LONG_MAX;
297
	const char *clk_name;
298 299 300 301 302 303

	if (!clk || !clk->dpll_data)
		return ~0;

	dd = clk->dpll_data;

304 305 306
	if (dd->max_rate && target_rate > dd->max_rate)
		target_rate = dd->max_rate;

307
	ref_rate = clk_hw_get_rate(dd->clk_ref);
308
	clk_name = clk_hw_get_name(hw);
309
	pr_debug("clock: %s: starting DPLL round_rate, target rate %lu\n",
310
		 clk_name, target_rate);
311

312
	scaled_rt_rp = target_rate / (ref_rate / DPLL_SCALE_FACTOR);
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
	scaled_max_m = dd->max_multiplier * DPLL_SCALE_FACTOR;

	dd->last_rounded_rate = 0;

	for (n = dd->min_divider; n <= dd->max_divider; n++) {
		/* Is the (input clk, divider) pair valid for the DPLL? */
		r = _dpll_test_fint(clk, n);
		if (r == DPLL_FINT_UNDERFLOW)
			break;
		else if (r == DPLL_FINT_INVALID)
			continue;

		/* Compute the scaled DPLL multiplier, based on the divider */
		m = scaled_rt_rp * n;

		/*
		 * Since we're counting n up, a m overflow means we
		 * can bail out completely (since as n increases in
		 * the next iteration, there's no way that m can
		 * increase beyond the current m)
		 */
		if (m > scaled_max_m)
			break;

		r = _dpll_test_mult(&m, n, &new_rate, target_rate,
338
				    ref_rate);
339 340 341 342 343

		/* m can't be set low enough for this n - try with a larger n */
		if (r == DPLL_MULT_UNDERFLOW)
			continue;

344 345 346 347 348 349 350 351 352 353 354
		/* skip rates above our target rate */
		delta = target_rate - new_rate;
		if (delta < 0)
			continue;

		if (delta < prev_min_delta) {
			prev_min_delta = delta;
			min_delta_m = m;
			min_delta_n = n;
		}

355
		pr_debug("clock: %s: m = %d: n = %d: new_rate = %lu\n",
356
			 clk_name, m, n, new_rate);
357

358
		if (delta == 0)
359
			break;
360 361
	}

362
	if (prev_min_delta == LONG_MAX) {
363
		pr_debug("clock: %s: cannot round to rate %lu\n",
364
			 clk_name, target_rate);
365 366 367
		return ~0;
	}

368 369 370 371 372
	dd->last_rounded_m = min_delta_m;
	dd->last_rounded_n = min_delta_n;
	dd->last_rounded_rate = target_rate - prev_min_delta;

	return dd->last_rounded_rate;
373
}