Commit ad2e6329 authored by Greg Kroah-Hartman's avatar Greg Kroah-Hartman
Browse files

Merge tag 'fixes-for-v3.8-rc5' of...

Merge tag 'fixes-for-v3.8-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/balbi/usb into usb-linus

Felipe writes:

  usb: fixes for v3.8-rc5

  Finally we have a build fix for fsl-mxc-udc UDC driver.

  We also have a fix for ep0 maxburst setting on DWC3
  which could confuse the HW if we tell it we had way
  too many streams on that endpoint when it _has_ to be
  only one.

  cppi_dma support for MUSB got a fix when running as a
  module. By dropping the wrong __init annotation, the
  function will be available even when we're modules and
  we're done with .init.text section.

  Last, but not least, we have a fix on FunctionFS which
  was causing a bug on our option parsing algorithm.
parents 1ee0a224 b8100750
......@@ -116,7 +116,7 @@ my_suspend (struct pci_dev * pci_dev,
return 0; /* a negative value on error, 0 on success. */
}
static void __devexit
static void
my_remove (struct pci_dev * pci_dev)
{
my_device *my = pci_get_drvdata (pci_dev);
......@@ -124,7 +124,7 @@ my_remove (struct pci_dev * pci_dev)
/* Describe me. */
}
static int __devinit
static int
my_probe (struct pci_dev * pci_dev,
const struct pci_device_id * pci_id)
{
......@@ -157,7 +157,7 @@ my_pci_driver = {
.id_table = my_pci_device_ids,
.probe = my_probe,
.remove = __devexit_p (my_remove),
.remove = my_remove,
/* Power management functions. */
.suspend = my_suspend,
......
......@@ -76,7 +76,7 @@ To notify SR-IOV core of Virtual Function Migration:
Following piece of code illustrates the usage of the SR-IOV API.
static int __devinit dev_probe(struct pci_dev *dev, const struct pci_device_id *id)
static int dev_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
pci_enable_sriov(dev, NR_VIRTFN);
......@@ -85,7 +85,7 @@ static int __devinit dev_probe(struct pci_dev *dev, const struct pci_device_id *
return 0;
}
static void __devexit dev_remove(struct pci_dev *dev)
static void dev_remove(struct pci_dev *dev)
{
pci_disable_sriov(dev);
......@@ -131,7 +131,7 @@ static struct pci_driver dev_driver = {
.name = "SR-IOV Physical Function driver",
.id_table = dev_id_table,
.probe = dev_probe,
.remove = __devexit_p(dev_remove),
.remove = dev_remove,
.suspend = dev_suspend,
.resume = dev_resume,
.shutdown = dev_shutdown,
......
......@@ -183,12 +183,6 @@ Please mark the initialization and cleanup functions where appropriate
initializes.
__exit Exit code. Ignored for non-modular drivers.
__devinit Device initialization code.
Identical to __init if the kernel is not compiled
with CONFIG_HOTPLUG, normal function otherwise.
__devexit The same for __exit.
Tips on when/where to use the above attributes:
o The module_init()/module_exit() functions (and all
initialization functions called _only_ from these)
......@@ -196,20 +190,6 @@ Tips on when/where to use the above attributes:
o Do not mark the struct pci_driver.
o The ID table array should be marked __devinitconst; this is done
automatically if the table is declared with DEFINE_PCI_DEVICE_TABLE().
o The probe() and remove() functions should be marked __devinit
and __devexit respectively. All initialization functions
exclusively called by the probe() routine, can be marked __devinit.
Ditto for remove() and __devexit.
o If mydriver_remove() is marked with __devexit(), then all address
references to mydriver_remove must use __devexit_p(mydriver_remove)
(in the struct pci_driver declaration for example).
__devexit_p() will generate the function name _or_ NULL if the
function will be discarded. For an example, see drivers/net/tg3.c.
o Do NOT mark a function if you are not sure which mark to use.
Better to not mark the function than mark the function wrong.
......
......@@ -185,7 +185,7 @@ input driver:
.acpi_match_table ACPI_PTR(mpu3050_acpi_match),
},
.probe = mpu3050_probe,
.remove = __devexit_p(mpu3050_remove),
.remove = mpu3050_remove,
.id_table = mpu3050_ids,
};
......
......@@ -60,11 +60,6 @@ clks: clkctrl@80040000 {
compatible = "fsl,imx23-clkctrl";
reg = <0x80040000 0x2000>;
#clock-cells = <1>;
clock-output-names =
...
"uart", /* 32 */
...
"end_of_list";
};
auart0: serial@8006c000 {
......
......@@ -146,10 +146,6 @@ clks: ccm@53f80000 {
compatible = "fsl,imx25-ccm";
reg = <0x53f80000 0x4000>;
interrupts = <31>;
clock-output-names = ...
"uart_ipg",
"uart_serial",
...;
};
uart1: serial@43f90000 {
......
......@@ -83,11 +83,6 @@ clks: clkctrl@80040000 {
compatible = "fsl,imx28-clkctrl";
reg = <0x80040000 0x2000>;
#clock-cells = <1>;
clock-output-names =
...
"uart", /* 45 */
...
"end_of_list";
};
auart0: serial@8006a000 {
......
......@@ -211,10 +211,6 @@ clks: ccm@020c4000 {
reg = <0x020c4000 0x4000>;
interrupts = <0 87 0x04 0 88 0x04>;
#clock-cells = <1>;
clock-output-names = ...
"uart_ipg",
"uart_serial",
...;
};
uart1: serial@02020000 {
......
GPIO line that should be set high/low to power off a device
Driver a GPIO line that can be used to turn the power off.
The driver supports both level triggered and edge triggered power off.
At driver load time, the driver will request the given gpio line and
install a pm_power_off handler. If the optional properties 'input' is
not found, the GPIO line will be driven in the inactive
state. Otherwise its configured as an input.
When the pm_power_off is called, the gpio is configured as an output,
and drive active, so triggering a level triggered power off
condition. This will also cause an inactive->active edge condition, so
triggering positive edge triggered power off. After a delay of 100ms,
the GPIO is set to inactive, thus causing an active->inactive edge,
triggering negative edge triggered power off. After another 100ms
delay the GPIO is driver active again. If the power is still on and
the CPU still running after a 3000ms delay, a WARN_ON(1) is emitted.
Required properties:
- compatible : should be "gpio-poweroff".
......@@ -13,10 +28,9 @@ Optional properties:
property is not specified, the GPIO is initialized as an output in its
inactive state.
Examples:
gpio-poweroff {
compatible = "gpio-poweroff";
gpios = <&gpio 4 0>; /* GPIO 4 Active Low */
gpios = <&gpio 4 0>;
};
CSR SiRFprimaII pinmux controller
Required properties:
- compatible : "sirf,prima2-pinctrl"
- reg : Address range of the pinctrl registers
- interrupts : Interrupts used by every GPIO group
- gpio-controller : Indicates this device is a GPIO controller
- interrupt-controller : Marks the device node as an interrupt controller
Optional properties:
- sirf,pullups : if n-th bit of m-th bank is set, set a pullup on GPIO-n of bank m
- sirf,pulldowns : if n-th bit of m-th bank is set, set a pulldown on GPIO-n of bank m
Please refer to pinctrl-bindings.txt in this directory for details of the common
pinctrl bindings used by client devices.
SiRFprimaII's pinmux nodes act as a container for an abitrary number of subnodes.
Each of these subnodes represents some desired configuration for a group of pins.
Required subnode-properties:
- sirf,pins : An array of strings. Each string contains the name of a group.
- sirf,function: A string containing the name of the function to mux to the
group.
Valid values for group and function names can be found from looking at the
group and function arrays in driver files:
drivers/pinctrl/pinctrl-sirf.c
For example, pinctrl might have subnodes like the following:
uart2_pins_a: uart2@0 {
uart {
sirf,pins = "uart2grp";
sirf,function = "uart2";
};
};
uart2_noflow_pins_a: uart2@1 {
uart {
sirf,pins = "uart2_nostreamctrlgrp";
sirf,function = "uart2_nostreamctrl";
};
};
For a specific board, if it wants to use uart2 without hardware flow control,
it can add the following to its board-specific .dts file.
uart2: uart@0xb0070000 {
pinctrl-names = "default";
pinctrl-0 = <&uart2_noflow_pins_a>;
}
......@@ -91,7 +91,7 @@ Example (from the nxp OHCI driver):
static const unsigned short normal_i2c[] = { 0x2c, 0x2d, I2C_CLIENT_END };
static int __devinit usb_hcd_nxp_probe(struct platform_device *pdev)
static int usb_hcd_nxp_probe(struct platform_device *pdev)
{
(...)
struct i2c_adapter *i2c_adap;
......
......@@ -36,7 +36,7 @@ neigh/default/unres_qlen_bytes - INTEGER
The maximum number of bytes which may be used by packets
queued for each unresolved address by other network layers.
(added in linux 3.3)
Seting negative value is meaningless and will retrun error.
Setting negative value is meaningless and will return error.
Default: 65536 Bytes(64KB)
neigh/default/unres_qlen - INTEGER
......@@ -215,7 +215,7 @@ tcp_ecn - INTEGER
Possible values are:
0 Disable ECN. Neither initiate nor accept ECN.
1 Always request ECN on outgoing connection attempts.
2 Enable ECN when requested by incomming connections
2 Enable ECN when requested by incoming connections
but do not request ECN on outgoing connections.
Default: 2
......@@ -503,7 +503,7 @@ tcp_fastopen - INTEGER
tcp_syn_retries - INTEGER
Number of times initial SYNs for an active TCP connection attempt
will be retransmitted. Should not be higher than 255. Default value
is 6, which corresponds to 63seconds till the last restransmission
is 6, which corresponds to 63seconds till the last retransmission
with the current initial RTO of 1second. With this the final timeout
for an active TCP connection attempt will happen after 127seconds.
......@@ -1331,6 +1331,12 @@ force_tllao - BOOLEAN
race condition where the sender deletes the cached link-layer address
prior to receiving a response to a previous solicitation."
ndisc_notify - BOOLEAN
Define mode for notification of address and device changes.
0 - (default): do nothing
1 - Generate unsolicited neighbour advertisements when device is brought
up or hardware address changes.
icmp/*:
ratelimit - INTEGER
Limit the maximal rates for sending ICMPv6 packets.
......@@ -1530,7 +1536,7 @@ cookie_hmac_alg - STRING
* sha1
* none
Ability to assign md5 or sha1 as the selected alg is predicated on the
configuarion of those algorithms at build time (CONFIG_CRYPTO_MD5 and
configuration of those algorithms at build time (CONFIG_CRYPTO_MD5 and
CONFIG_CRYPTO_SHA1).
Default: Dependent on configuration. MD5 if available, else SHA1 if
......@@ -1548,7 +1554,7 @@ rcvbuf_policy - INTEGER
blocking.
1: rcvbuf space is per association
0: recbuf space is per socket
0: rcvbuf space is per socket
Default: 0
......
......@@ -642,12 +642,13 @@ out the following operations:
* During system suspend it calls pm_runtime_get_noresume() and
pm_runtime_barrier() for every device right before executing the
subsystem-level .suspend() callback for it. In addition to that it calls
pm_runtime_disable() for every device right after executing the
subsystem-level .suspend() callback for it.
__pm_runtime_disable() with 'false' as the second argument for every device
right before executing the subsystem-level .suspend_late() callback for it.
* During system resume it calls pm_runtime_enable() and pm_runtime_put_sync()
for every device right before and right after executing the subsystem-level
.resume() callback for it, respectively.
for every device right after executing the subsystem-level .resume_early()
callback and right after executing the subsystem-level .resume() callback
for it, respectively.
7. Generic subsystem callbacks
......
......@@ -236,7 +236,7 @@ static int rpmsg_sample_probe(struct rpmsg_channel *rpdev)
return 0;
}
static void __devexit rpmsg_sample_remove(struct rpmsg_channel *rpdev)
static void rpmsg_sample_remove(struct rpmsg_channel *rpdev)
{
dev_info(&rpdev->dev, "rpmsg sample client driver is removed\n");
}
......@@ -253,7 +253,7 @@ static struct rpmsg_driver rpmsg_sample_client = {
.id_table = rpmsg_driver_sample_id_table,
.probe = rpmsg_sample_probe,
.callback = rpmsg_sample_cb,
.remove = __devexit_p(rpmsg_sample_remove),
.remove = rpmsg_sample_remove,
};
static int __init init(void)
......
......@@ -345,7 +345,7 @@ SPI protocol drivers somewhat resemble platform device drivers:
},
.probe = CHIP_probe,
.remove = __devexit_p(CHIP_remove),
.remove = CHIP_remove,
.suspend = CHIP_suspend,
.resume = CHIP_resume,
};
......@@ -355,7 +355,7 @@ device whose board_info gave a modalias of "CHIP". Your probe() code
might look like this unless you're creating a device which is managing
a bus (appearing under /sys/class/spi_master).
static int __devinit CHIP_probe(struct spi_device *spi)
static int CHIP_probe(struct spi_device *spi)
{
struct CHIP *chip;
struct CHIP_platform_data *pdata;
......
......@@ -38,6 +38,7 @@ show up in /proc/sys/kernel:
- l2cr [ PPC only ]
- modprobe ==> Documentation/debugging-modules.txt
- modules_disabled
- msg_next_id [ sysv ipc ]
- msgmax
- msgmnb
- msgmni
......@@ -62,7 +63,9 @@ show up in /proc/sys/kernel:
- rtsig-max
- rtsig-nr
- sem
- sem_next_id [ sysv ipc ]
- sg-big-buff [ generic SCSI device (sg) ]
- shm_next_id [ sysv ipc ]
- shm_rmid_forced
- shmall
- shmmax [ sysv ipc ]
......@@ -320,6 +323,22 @@ to false.
==============================================================
msg_next_id, sem_next_id, and shm_next_id:
These three toggles allows to specify desired id for next allocated IPC
object: message, semaphore or shared memory respectively.
By default they are equal to -1, which means generic allocation logic.
Possible values to set are in range {0..INT_MAX}.
Notes:
1) kernel doesn't guarantee, that new object will have desired id. So,
it's up to userspace, how to handle an object with "wrong" id.
2) Toggle with non-default value will be set back to -1 by kernel after
successful IPC object allocation.
==============================================================
nmi_watchdog:
Enables/Disables the NMI watchdog on x86 systems. When the value is
......@@ -542,6 +561,19 @@ are doing anyway :)
==============================================================
shmall:
This parameter sets the total amount of shared memory pages that
can be used system wide. Hence, SHMALL should always be at least
ceil(shmmax/PAGE_SIZE).
If you are not sure what the default PAGE_SIZE is on your Linux
system, you can run the following command:
# getconf PAGE_SIZE
==============================================================
shmmax:
This value can be used to query and set the run time limit
......
......@@ -174,8 +174,7 @@ The recommended approach is as follows:
static atomic_t drv_instance = ATOMIC_INIT(0);
static int __devinit drv_probe(struct pci_dev *pdev,
const struct pci_device_id *pci_id)
static int drv_probe(struct pci_dev *pdev, const struct pci_device_id *pci_id)
{
...
state->instance = atomic_inc_return(&drv_instance) - 1;
......
......@@ -182,8 +182,7 @@ int iterate(void *p)
static atomic_t drv_instance = ATOMIC_INIT(0);
static int __devinit drv_probe(struct pci_dev *pdev,
const struct pci_device_id *pci_id)
static int drv_probe(struct pci_dev *pdev, const struct pci_device_id *pci_id)
{
...
state->instance = atomic_inc_return(&drv_instance) - 1;
......
This diff is collapsed.
VERSION = 3
PATCHLEVEL = 8
SUBLEVEL = 0
EXTRAVERSION = -rc2
EXTRAVERSION = -rc4
NAME = Terrified Chipmunk
# *DOCUMENTATION*
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment