Commit 1d18c47c authored by Catalin Marinas's avatar Catalin Marinas

arm64: MMU fault handling and page table management

This patch adds support for the handling of the MMU faults (exception
entry code introduced by a previous patch) and page table management.

The user translation table is pointed to by TTBR0 and the kernel one
(swapper_pg_dir) by TTBR1. There is no translation information shared or
address space overlapping between user and kernel page tables.
Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
Signed-off-by: default avatarCatalin Marinas <catalin.marinas@arm.com>
Acked-by: default avatarTony Lindgren <tony@atomide.com>
Acked-by: default avatarNicolas Pitre <nico@linaro.org>
Acked-by: default avatarOlof Johansson <olof@lixom.net>
Acked-by: default avatarSantosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: default avatarArnd Bergmann <arnd@arndb.de>
parent c1cc1552
/*
* Based on arch/arm/include/asm/page.h
*
* Copyright (C) 1995-2003 Russell King
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __ASM_PAGE_H
#define __ASM_PAGE_H
/* PAGE_SHIFT determines the page size */
#ifdef CONFIG_ARM64_64K_PAGES
#define PAGE_SHIFT 16
#else
#define PAGE_SHIFT 12
#endif
#define PAGE_SIZE (_AC(1,UL) << PAGE_SHIFT)
#define PAGE_MASK (~(PAGE_SIZE-1))
/* We do define AT_SYSINFO_EHDR but don't use the gate mechanism */
#define __HAVE_ARCH_GATE_AREA 1
#ifndef __ASSEMBLY__
#ifdef CONFIG_ARM64_64K_PAGES
#include <asm/pgtable-2level-types.h>
#else
#include <asm/pgtable-3level-types.h>
#endif
extern void __cpu_clear_user_page(void *p, unsigned long user);
extern void __cpu_copy_user_page(void *to, const void *from,
unsigned long user);
extern void copy_page(void *to, const void *from);
extern void clear_page(void *to);
#define clear_user_page(addr,vaddr,pg) __cpu_clear_user_page(addr, vaddr)
#define copy_user_page(to,from,vaddr,pg) __cpu_copy_user_page(to, from, vaddr)
typedef struct page *pgtable_t;
#ifdef CONFIG_HAVE_ARCH_PFN_VALID
extern int pfn_valid(unsigned long);
#endif
#include <asm/memory.h>
#endif /* !__ASSEMBLY__ */
#define VM_DATA_DEFAULT_FLAGS \
(((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) | \
VM_READ | VM_WRITE | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
#include <asm-generic/getorder.h>
#endif
/*
* Based on arch/arm/include/asm/pgalloc.h
*
* Copyright (C) 2000-2001 Russell King
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __ASM_PGALLOC_H
#define __ASM_PGALLOC_H
#include <asm/pgtable-hwdef.h>
#include <asm/processor.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#define check_pgt_cache() do { } while (0)
#ifndef CONFIG_ARM64_64K_PAGES
static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
{
return (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_REPEAT);
}
static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
{
BUG_ON((unsigned long)pmd & (PAGE_SIZE-1));
free_page((unsigned long)pmd);
}
static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
{
set_pud(pud, __pud(__pa(pmd) | PMD_TYPE_TABLE));
}
#endif /* CONFIG_ARM64_64K_PAGES */
extern pgd_t *pgd_alloc(struct mm_struct *mm);
extern void pgd_free(struct mm_struct *mm, pgd_t *pgd);
#define PGALLOC_GFP (GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO)
static inline pte_t *
pte_alloc_one_kernel(struct mm_struct *mm, unsigned long addr)
{
return (pte_t *)__get_free_page(PGALLOC_GFP);
}
static inline pgtable_t
pte_alloc_one(struct mm_struct *mm, unsigned long addr)
{
struct page *pte;
pte = alloc_pages(PGALLOC_GFP, 0);
if (pte)
pgtable_page_ctor(pte);
return pte;
}
/*
* Free a PTE table.
*/
static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
{
if (pte)
free_page((unsigned long)pte);
}
static inline void pte_free(struct mm_struct *mm, pgtable_t pte)
{
pgtable_page_dtor(pte);
__free_page(pte);
}
static inline void __pmd_populate(pmd_t *pmdp, phys_addr_t pte,
pmdval_t prot)
{
set_pmd(pmdp, __pmd(pte | prot));
}
/*
* Populate the pmdp entry with a pointer to the pte. This pmd is part
* of the mm address space.
*/
static inline void
pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmdp, pte_t *ptep)
{
/*
* The pmd must be loaded with the physical address of the PTE table
*/
__pmd_populate(pmdp, __pa(ptep), PMD_TYPE_TABLE);
}
static inline void
pmd_populate(struct mm_struct *mm, pmd_t *pmdp, pgtable_t ptep)
{
__pmd_populate(pmdp, page_to_phys(ptep), PMD_TYPE_TABLE);
}
#define pmd_pgtable(pmd) pmd_page(pmd)
#endif
/*
* Based on arch/arm/mm/copypage.c
*
* Copyright (C) 2002 Deep Blue Solutions Ltd, All Rights Reserved.
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/mm.h>
#include <asm/page.h>
#include <asm/cacheflush.h>
void __cpu_copy_user_page(void *kto, const void *kfrom, unsigned long vaddr)
{
copy_page(kto, kfrom);
__flush_dcache_area(kto, PAGE_SIZE);
}
void __cpu_clear_user_page(void *kaddr, unsigned long vaddr)
{
clear_page(kaddr);
}
/*
* Based on arch/arm/mm/extable.c
*/
#include <linux/module.h>
#include <linux/uaccess.h>
int fixup_exception(struct pt_regs *regs)
{
const struct exception_table_entry *fixup;
fixup = search_exception_tables(instruction_pointer(regs));
if (fixup)
regs->pc = fixup->fixup;
return fixup != NULL;
}
/*
* Based on arch/arm/mm/fault.c
*
* Copyright (C) 1995 Linus Torvalds
* Copyright (C) 1995-2004 Russell King
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/module.h>
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/hardirq.h>
#include <linux/init.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/page-flags.h>
#include <linux/sched.h>
#include <linux/highmem.h>
#include <linux/perf_event.h>
#include <asm/exception.h>
#include <asm/debug-monitors.h>
#include <asm/system_misc.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
/*
* Dump out the page tables associated with 'addr' in mm 'mm'.
*/
void show_pte(struct mm_struct *mm, unsigned long addr)
{
pgd_t *pgd;
if (!mm)
mm = &init_mm;
pr_alert("pgd = %p\n", mm->pgd);
pgd = pgd_offset(mm, addr);
pr_alert("[%08lx] *pgd=%016llx", addr, pgd_val(*pgd));
do {
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
if (pgd_none_or_clear_bad(pgd))
break;
pud = pud_offset(pgd, addr);
if (pud_none_or_clear_bad(pud))
break;
pmd = pmd_offset(pud, addr);
printk(", *pmd=%016llx", pmd_val(*pmd));
if (pmd_none_or_clear_bad(pmd))
break;
pte = pte_offset_map(pmd, addr);
printk(", *pte=%016llx", pte_val(*pte));
pte_unmap(pte);
} while(0);
printk("\n");
}
/*
* The kernel tried to access some page that wasn't present.
*/
static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr,
unsigned int esr, struct pt_regs *regs)
{
/*
* Are we prepared to handle this kernel fault?
*/
if (fixup_exception(regs))
return;
/*
* No handler, we'll have to terminate things with extreme prejudice.
*/
bust_spinlocks(1);
pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
(addr < PAGE_SIZE) ? "NULL pointer dereference" :
"paging request", addr);
show_pte(mm, addr);
die("Oops", regs, esr);
bust_spinlocks(0);
do_exit(SIGKILL);
}
/*
* Something tried to access memory that isn't in our memory map. User mode
* accesses just cause a SIGSEGV
*/
static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
unsigned int esr, unsigned int sig, int code,
struct pt_regs *regs)
{
struct siginfo si;
if (show_unhandled_signals) {
pr_info("%s[%d]: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
tsk->comm, task_pid_nr(tsk), sig, addr, esr);
show_pte(tsk->mm, addr);
show_regs(regs);
}
tsk->thread.fault_address = addr;
si.si_signo = sig;
si.si_errno = 0;
si.si_code = code;
si.si_addr = (void __user *)addr;
force_sig_info(sig, &si, tsk);
}
void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
struct task_struct *tsk = current;
struct mm_struct *mm = tsk->active_mm;
/*
* If we are in kernel mode at this point, we have no context to
* handle this fault with.
*/
if (user_mode(regs))
__do_user_fault(tsk, addr, esr, SIGSEGV, SEGV_MAPERR, regs);
else
__do_kernel_fault(mm, addr, esr, regs);
}
#define VM_FAULT_BADMAP 0x010000
#define VM_FAULT_BADACCESS 0x020000
#define ESR_WRITE (1 << 6)
#define ESR_LNX_EXEC (1 << 24)
/*
* Check that the permissions on the VMA allow for the fault which occurred.
* If we encountered a write fault, we must have write permission, otherwise
* we allow any permission.
*/
static inline bool access_error(unsigned int esr, struct vm_area_struct *vma)
{
unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
if (esr & ESR_WRITE)
mask = VM_WRITE;
if (esr & ESR_LNX_EXEC)
mask = VM_EXEC;
return vma->vm_flags & mask ? false : true;
}
static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
unsigned int esr, unsigned int flags,
struct task_struct *tsk)
{
struct vm_area_struct *vma;
int fault;
vma = find_vma(mm, addr);
fault = VM_FAULT_BADMAP;
if (unlikely(!vma))
goto out;
if (unlikely(vma->vm_start > addr))
goto check_stack;
/*
* Ok, we have a good vm_area for this memory access, so we can handle
* it.
*/
good_area:
if (access_error(esr, vma)) {
fault = VM_FAULT_BADACCESS;
goto out;
}
return handle_mm_fault(mm, vma, addr & PAGE_MASK, flags);
check_stack:
if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
goto good_area;
out:
return fault;
}
static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
struct pt_regs *regs)
{
struct task_struct *tsk;
struct mm_struct *mm;
int fault, sig, code;
int write = esr & ESR_WRITE;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
(write ? FAULT_FLAG_WRITE : 0);
tsk = current;
mm = tsk->mm;
/* Enable interrupts if they were enabled in the parent context. */
if (interrupts_enabled(regs))
local_irq_enable();
/*
* If we're in an interrupt or have no user context, we must not take
* the fault.
*/
if (in_atomic() || !mm)
goto no_context;
/*
* As per x86, we may deadlock here. However, since the kernel only
* validly references user space from well defined areas of the code,
* we can bug out early if this is from code which shouldn't.
*/
if (!down_read_trylock(&mm->mmap_sem)) {
if (!user_mode(regs) && !search_exception_tables(regs->pc))
goto no_context;
retry:
down_read(&mm->mmap_sem);
} else {
/*
* The above down_read_trylock() might have succeeded in which
* case, we'll have missed the might_sleep() from down_read().
*/
might_sleep();
#ifdef CONFIG_DEBUG_VM
if (!user_mode(regs) && !search_exception_tables(regs->pc))
goto no_context;
#endif
}
fault = __do_page_fault(mm, addr, esr, flags, tsk);
/*
* If we need to retry but a fatal signal is pending, handle the
* signal first. We do not need to release the mmap_sem because it
* would already be released in __lock_page_or_retry in mm/filemap.c.
*/
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
return 0;
/*
* Major/minor page fault accounting is only done on the initial
* attempt. If we go through a retry, it is extremely likely that the
* page will be found in page cache at that point.
*/
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
if (flags & FAULT_FLAG_ALLOW_RETRY) {
if (fault & VM_FAULT_MAJOR) {
tsk->maj_flt++;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
addr);
} else {
tsk->min_flt++;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
addr);
}
if (fault & VM_FAULT_RETRY) {
/*
* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
* starvation.
*/
flags &= ~FAULT_FLAG_ALLOW_RETRY;
goto retry;
}
}
up_read(&mm->mmap_sem);
/*
* Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
*/
if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
VM_FAULT_BADACCESS))))
return 0;
if (fault & VM_FAULT_OOM) {
/*
* We ran out of memory, call the OOM killer, and return to
* userspace (which will retry the fault, or kill us if we got
* oom-killed).
*/
pagefault_out_of_memory();
return 0;
}
/*
* If we are in kernel mode at this point, we have no context to
* handle this fault with.
*/
if (!user_mode(regs))
goto no_context;
if (fault & VM_FAULT_SIGBUS) {
/*
* We had some memory, but were unable to successfully fix up
* this page fault.
*/
sig = SIGBUS;
code = BUS_ADRERR;
} else {
/*
* Something tried to access memory that isn't in our memory
* map.
*/
sig = SIGSEGV;
code = fault == VM_FAULT_BADACCESS ?
SEGV_ACCERR : SEGV_MAPERR;
}
__do_user_fault(tsk, addr, esr, sig, code, regs);
return 0;
no_context:
__do_kernel_fault(mm, addr, esr, regs);
return 0;
}
/*
* First Level Translation Fault Handler
*
* We enter here because the first level page table doesn't contain a valid
* entry for the address.
*
* If the address is in kernel space (>= TASK_SIZE), then we are probably
* faulting in the vmalloc() area.
*
* If the init_task's first level page tables contains the relevant entry, we
* copy the it to this task. If not, we send the process a signal, fixup the
* exception, or oops the kernel.
*
* NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
* or a critical region, and should only copy the information from the master
* page table, nothing more.
*/
static int __kprobes do_translation_fault(unsigned long addr,
unsigned int esr,
struct pt_regs *regs)
{
if (addr < TASK_SIZE)
return do_page_fault(addr, esr, regs);
do_bad_area(addr, esr, regs);
return 0;
}
/*
* Some section permission faults need to be handled gracefully. They can
* happen due to a __{get,put}_user during an oops.
*/
static int do_sect_fault(unsigned long addr, unsigned int esr,
struct pt_regs *regs)
{
do_bad_area(addr, esr, regs);
return 0;
}
/*
* This abort handler always returns "fault".
*/
static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
return 1;
}
static struct fault_info {
int (*fn)(unsigned long addr, unsigned int esr, struct pt_regs *regs);
int sig;
int code;
const char *name;
} fault_info[] = {
{ do_bad, SIGBUS, 0, "ttbr address size fault" },
{ do_bad, SIGBUS, 0, "level 1 address size fault" },
{ do_bad, SIGBUS, 0, "level 2 address size fault" },
{ do_bad, SIGBUS, 0, "level 3 address size fault" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "input address range fault" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
{ do_page_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
{ do_bad, SIGBUS, 0, "reserved access flag fault" },
{ do_bad, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
{ do_bad, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
{ do_bad, SIGBUS, 0, "reserved permission fault" },
{ do_bad, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
{ do_sect_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
{ do_bad, SIGBUS, 0, "synchronous external abort" },
{ do_bad, SIGBUS, 0, "asynchronous external abort" },
{ do_bad, SIGBUS, 0, "unknown 18" },
{ do_bad, SIGBUS, 0, "unknown 19" },
{ do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
{ do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
{ do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
{ do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
{ do_bad, SIGBUS, 0, "synchronous parity error" },
{ do_bad, SIGBUS, 0, "asynchronous parity error" },
{ do_bad, SIGBUS, 0, "unknown 26" },
{ do_bad, SIGBUS, 0, "unknown 27" },
{ do_bad, SIGBUS, 0, "synchronous parity error (translation table walk" },
{ do_bad, SIGBUS, 0, "synchronous parity error (translation table walk" },