Commit 125b79d7 authored by Linus Torvalds's avatar Linus Torvalds
Browse files

Merge branch 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux

Pull SLAB changes from Pekka Enberg:
 "New and noteworthy:

  * More SLAB allocator unification patches from Christoph Lameter and
    others.  This paves the way for slab memcg patches that hopefully
    will land in v3.8.

  * SLAB tracing improvements from Ezequiel Garcia.

  * Kernel tainting upon SLAB corruption from Dave Jones.

  * Miscellanous SLAB allocator bug fixes and improvements from various
    people."

* 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux: (43 commits)
  slab: Fix build failure in __kmem_cache_create()
  slub: init_kmem_cache_cpus() and put_cpu_partial() can be static
  mm/slab: Fix kmem_cache_alloc_node_trace() declaration
  Revert "mm/slab: Fix kmem_cache_alloc_node_trace() declaration"
  mm, slob: fix build breakage in __kmalloc_node_track_caller
  mm/slab: Fix kmem_cache_alloc_node_trace() declaration
  mm/slab: Fix typo _RET_IP -> _RET_IP_
  mm, slub: Rename slab_alloc() -> slab_alloc_node() to match SLAB
  mm, slab: Rename __cache_alloc() -> slab_alloc()
  mm, slab: Match SLAB and SLUB kmem_cache_alloc_xxx_trace() prototype
  mm, slab: Replace 'caller' type, void* -> unsigned long
  mm, slob: Add support for kmalloc_track_caller()
  mm, slab: Remove silly function slab_buffer_size()
  mm, slob: Use NUMA_NO_NODE instead of -1
  mm, sl[au]b: Taint kernel when we detect a corrupted slab
  slab: Only define slab_error for DEBUG
  slab: fix the DEADLOCK issue on l3 alien lock
  slub: Zero initial memory segment for kmem_cache and kmem_cache_node
  Revert "mm/sl[aou]b: Move sysfs_slab_add to common"
  mm/sl[aou]b: Move kmem_cache refcounting to common code
  ...
parents f1c6872e e2087be3
......@@ -321,7 +321,8 @@ static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
* request comes from.
*/
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
(defined(CONFIG_SLAB) && defined(CONFIG_TRACING))
(defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
(defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
#define kmalloc_track_caller(size, flags) \
__kmalloc_track_caller(size, flags, _RET_IP_)
......@@ -340,7 +341,8 @@ extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
* allocation request comes from.
*/
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
(defined(CONFIG_SLAB) && defined(CONFIG_TRACING))
(defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
(defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
#define kmalloc_node_track_caller(size, flags, node) \
__kmalloc_node_track_caller(size, flags, node, \
......
......@@ -45,7 +45,6 @@ struct kmem_cache {
unsigned int colour_off; /* colour offset */
struct kmem_cache *slabp_cache;
unsigned int slab_size;
unsigned int dflags; /* dynamic flags */
/* constructor func */
void (*ctor)(void *obj);
......@@ -112,19 +111,13 @@ void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
void *__kmalloc(size_t size, gfp_t flags);
#ifdef CONFIG_TRACING
extern void *kmem_cache_alloc_trace(size_t size,
struct kmem_cache *cachep, gfp_t flags);
extern size_t slab_buffer_size(struct kmem_cache *cachep);
extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t);
#else
static __always_inline void *
kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
{
return kmem_cache_alloc(cachep, flags);
}
static inline size_t slab_buffer_size(struct kmem_cache *cachep)
{
return 0;
}
#endif
static __always_inline void *kmalloc(size_t size, gfp_t flags)
......@@ -154,7 +147,7 @@ found:
#endif
cachep = malloc_sizes[i].cs_cachep;
ret = kmem_cache_alloc_trace(size, cachep, flags);
ret = kmem_cache_alloc_trace(cachep, flags, size);
return ret;
}
......@@ -166,16 +159,16 @@ extern void *__kmalloc_node(size_t size, gfp_t flags, int node);
extern void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
#ifdef CONFIG_TRACING
extern void *kmem_cache_alloc_node_trace(size_t size,
struct kmem_cache *cachep,
extern void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
gfp_t flags,
int nodeid);
int nodeid,
size_t size);
#else
static __always_inline void *
kmem_cache_alloc_node_trace(size_t size,
struct kmem_cache *cachep,
kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
gfp_t flags,
int nodeid)
int nodeid,
size_t size)
{
return kmem_cache_alloc_node(cachep, flags, nodeid);
}
......@@ -207,7 +200,7 @@ found:
#endif
cachep = malloc_sizes[i].cs_cachep;
return kmem_cache_alloc_node_trace(size, cachep, flags, node);
return kmem_cache_alloc_node_trace(cachep, flags, node, size);
}
return __kmalloc_node(size, flags, node);
}
......
#ifndef __LINUX_SLOB_DEF_H
#define __LINUX_SLOB_DEF_H
#include <linux/numa.h>
void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
static __always_inline void *kmem_cache_alloc(struct kmem_cache *cachep,
gfp_t flags)
{
return kmem_cache_alloc_node(cachep, flags, -1);
return kmem_cache_alloc_node(cachep, flags, NUMA_NO_NODE);
}
void *__kmalloc_node(size_t size, gfp_t flags, int node);
......@@ -26,7 +28,7 @@ static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
*/
static __always_inline void *kmalloc(size_t size, gfp_t flags)
{
return __kmalloc_node(size, flags, -1);
return __kmalloc_node(size, flags, NUMA_NO_NODE);
}
static __always_inline void *__kmalloc(size_t size, gfp_t flags)
......
This diff is collapsed.
......@@ -25,9 +25,26 @@ extern enum slab_state slab_state;
/* The slab cache mutex protects the management structures during changes */
extern struct mutex slab_mutex;
/* The list of all slab caches on the system */
extern struct list_head slab_caches;
struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
/* The slab cache that manages slab cache information */
extern struct kmem_cache *kmem_cache;
/* Functions provided by the slab allocators */
extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
#ifdef CONFIG_SLUB
struct kmem_cache *__kmem_cache_alias(const char *name, size_t size,
size_t align, unsigned long flags, void (*ctor)(void *));
#else
static inline struct kmem_cache *__kmem_cache_alias(const char *name, size_t size,
size_t align, unsigned long flags, void (*ctor)(void *))
{ return NULL; }
#endif
int __kmem_cache_shutdown(struct kmem_cache *);
#endif
......@@ -22,6 +22,53 @@
enum slab_state slab_state;
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
struct kmem_cache *kmem_cache;
#ifdef CONFIG_DEBUG_VM
static int kmem_cache_sanity_check(const char *name, size_t size)
{
struct kmem_cache *s = NULL;
if (!name || in_interrupt() || size < sizeof(void *) ||
size > KMALLOC_MAX_SIZE) {
pr_err("kmem_cache_create(%s) integrity check failed\n", name);
return -EINVAL;
}
list_for_each_entry(s, &slab_caches, list) {
char tmp;
int res;
/*
* This happens when the module gets unloaded and doesn't
* destroy its slab cache and no-one else reuses the vmalloc
* area of the module. Print a warning.
*/
res = probe_kernel_address(s->name, tmp);
if (res) {
pr_err("Slab cache with size %d has lost its name\n",
s->object_size);
continue;
}
if (!strcmp(s->name, name)) {
pr_err("%s (%s): Cache name already exists.\n",
__func__, name);
dump_stack();
s = NULL;
return -EINVAL;
}
}
WARN_ON(strchr(name, ' ')); /* It confuses parsers */
return 0;
}
#else
static inline int kmem_cache_sanity_check(const char *name, size_t size)
{
return 0;
}
#endif
/*
* kmem_cache_create - Create a cache.
......@@ -52,68 +99,92 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size, size_t align
unsigned long flags, void (*ctor)(void *))
{
struct kmem_cache *s = NULL;
#ifdef CONFIG_DEBUG_VM
if (!name || in_interrupt() || size < sizeof(void *) ||
size > KMALLOC_MAX_SIZE) {
printk(KERN_ERR "kmem_cache_create(%s) integrity check"
" failed\n", name);
goto out;
}
#endif
int err = 0;
get_online_cpus();
mutex_lock(&slab_mutex);
#ifdef CONFIG_DEBUG_VM
list_for_each_entry(s, &slab_caches, list) {
char tmp;
int res;
if (!kmem_cache_sanity_check(name, size) == 0)
goto out_locked;
/*
* This happens when the module gets unloaded and doesn't
* destroy its slab cache and no-one else reuses the vmalloc
* area of the module. Print a warning.
*/
res = probe_kernel_address(s->name, tmp);
if (res) {
printk(KERN_ERR
"Slab cache with size %d has lost its name\n",
s->object_size);
continue;
}
if (!strcmp(s->name, name)) {
printk(KERN_ERR "kmem_cache_create(%s): Cache name"
" already exists.\n",
name);
dump_stack();
s = NULL;
goto oops;
s = __kmem_cache_alias(name, size, align, flags, ctor);
if (s)
goto out_locked;
s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
if (s) {
s->object_size = s->size = size;
s->align = align;
s->ctor = ctor;
s->name = kstrdup(name, GFP_KERNEL);
if (!s->name) {
kmem_cache_free(kmem_cache, s);
err = -ENOMEM;
goto out_locked;
}
}
WARN_ON(strchr(name, ' ')); /* It confuses parsers */
#endif
err = __kmem_cache_create(s, flags);
if (!err) {
s = __kmem_cache_create(name, size, align, flags, ctor);
s->refcount = 1;
list_add(&s->list, &slab_caches);
#ifdef CONFIG_DEBUG_VM
oops:
#endif
} else {
kfree(s->name);
kmem_cache_free(kmem_cache, s);
}
} else
err = -ENOMEM;
out_locked:
mutex_unlock(&slab_mutex);
put_online_cpus();
#ifdef CONFIG_DEBUG_VM
out:
#endif
if (!s && (flags & SLAB_PANIC))
panic("kmem_cache_create: Failed to create slab '%s'\n", name);
if (err) {
if (flags & SLAB_PANIC)
panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
name, err);
else {
printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
name, err);
dump_stack();
}
return NULL;
}
return s;
}
EXPORT_SYMBOL(kmem_cache_create);
void kmem_cache_destroy(struct kmem_cache *s)
{
get_online_cpus();
mutex_lock(&slab_mutex);
s->refcount--;
if (!s->refcount) {
list_del(&s->list);
if (!__kmem_cache_shutdown(s)) {
if (s->flags & SLAB_DESTROY_BY_RCU)
rcu_barrier();
kfree(s->name);
kmem_cache_free(kmem_cache, s);
} else {
list_add(&s->list, &slab_caches);
printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
s->name);
dump_stack();
}
}
mutex_unlock(&slab_mutex);
put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);
int slab_is_available(void)
{
return slab_state >= UP;
......
......@@ -194,7 +194,7 @@ static void *slob_new_pages(gfp_t gfp, int order, int node)
void *page;
#ifdef CONFIG_NUMA
if (node != -1)
if (node != NUMA_NO_NODE)
page = alloc_pages_exact_node(node, gfp, order);
else
#endif
......@@ -290,7 +290,7 @@ static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
* If there's a node specification, search for a partial
* page with a matching node id in the freelist.
*/
if (node != -1 && page_to_nid(sp) != node)
if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
continue;
#endif
/* Enough room on this page? */
......@@ -425,7 +425,8 @@ out:
* End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
*/
void *__kmalloc_node(size_t size, gfp_t gfp, int node)
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
{
unsigned int *m;
int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
......@@ -446,7 +447,7 @@ void *__kmalloc_node(size_t size, gfp_t gfp, int node)
*m = size;
ret = (void *)m + align;
trace_kmalloc_node(_RET_IP_, ret,
trace_kmalloc_node(caller, ret,
size, size + align, gfp, node);
} else {
unsigned int order = get_order(size);
......@@ -460,15 +461,35 @@ void *__kmalloc_node(size_t size, gfp_t gfp, int node)
page->private = size;
}
trace_kmalloc_node(_RET_IP_, ret,
trace_kmalloc_node(caller, ret,
size, PAGE_SIZE << order, gfp, node);
}
kmemleak_alloc(ret, size, 1, gfp);
return ret;
}
void *__kmalloc_node(size_t size, gfp_t gfp, int node)
{
return __do_kmalloc_node(size, gfp, node, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc_node);
#ifdef CONFIG_TRACING
void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
{
return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
}
#ifdef CONFIG_NUMA
void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
int node, unsigned long caller)
{
return __do_kmalloc_node(size, gfp, node, caller);
}
#endif
#endif
void kfree(const void *block)
{
struct page *sp;
......@@ -508,44 +529,24 @@ size_t ksize(const void *block)
}
EXPORT_SYMBOL(ksize);
struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
size_t align, unsigned long flags, void (*ctor)(void *))
int __kmem_cache_create(struct kmem_cache *c, unsigned long flags)
{
struct kmem_cache *c;
c = slob_alloc(sizeof(struct kmem_cache),
GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1);
size_t align = c->size;
if (c) {
c->name = name;
c->size = size;
if (flags & SLAB_DESTROY_BY_RCU) {
/* leave room for rcu footer at the end of object */
c->size += sizeof(struct slob_rcu);
}
c->flags = flags;
c->ctor = ctor;
/* ignore alignment unless it's forced */
c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
if (c->align < ARCH_SLAB_MINALIGN)
c->align = ARCH_SLAB_MINALIGN;
if (c->align < align)
c->align = align;
kmemleak_alloc(c, sizeof(struct kmem_cache), 1, GFP_KERNEL);
c->refcount = 1;
if (flags & SLAB_DESTROY_BY_RCU) {
/* leave room for rcu footer at the end of object */
c->size += sizeof(struct slob_rcu);
}
return c;
}
c->flags = flags;
/* ignore alignment unless it's forced */
c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
if (c->align < ARCH_SLAB_MINALIGN)
c->align = ARCH_SLAB_MINALIGN;
if (c->align < align)
c->align = align;
void kmem_cache_destroy(struct kmem_cache *c)
{
kmemleak_free(c);
if (c->flags & SLAB_DESTROY_BY_RCU)
rcu_barrier();
slob_free(c, sizeof(struct kmem_cache));
return 0;
}
EXPORT_SYMBOL(kmem_cache_destroy);
void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
{
......@@ -613,14 +614,28 @@ unsigned int kmem_cache_size(struct kmem_cache *c)
}
EXPORT_SYMBOL(kmem_cache_size);
int __kmem_cache_shutdown(struct kmem_cache *c)
{
/* No way to check for remaining objects */
return 0;
}
int kmem_cache_shrink(struct kmem_cache *d)
{
return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);
struct kmem_cache kmem_cache_boot = {
.name = "kmem_cache",
.size = sizeof(struct kmem_cache),
.flags = SLAB_PANIC,
.align = ARCH_KMALLOC_MINALIGN,
};
void __init kmem_cache_init(void)
{
kmem_cache = &kmem_cache_boot;
slab_state = UP;
}
......
......@@ -210,11 +210,7 @@ static void sysfs_slab_remove(struct kmem_cache *);
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
{ return 0; }
static inline void sysfs_slab_remove(struct kmem_cache *s)
{
kfree(s->name);
kfree(s);
}
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
#endif
......@@ -568,6 +564,8 @@ static void slab_bug(struct kmem_cache *s, char *fmt, ...)
printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
printk(KERN_ERR "----------------------------------------"
"-------------------------------------\n\n");
add_taint(TAINT_BAD_PAGE);
}
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
......@@ -624,7 +622,7 @@ static void object_err(struct kmem_cache *s, struct page *page,
print_trailer(s, page, object);
}
static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
{
va_list args;
char buf[100];
......@@ -1069,13 +1067,13 @@ bad:
return 0;
}
static noinline int free_debug_processing(struct kmem_cache *s,
struct page *page, void *object, unsigned long addr)
static noinline struct kmem_cache_node *free_debug_processing(
struct kmem_cache *s, struct page *page, void *object,
unsigned long addr, unsigned long *flags)
{
unsigned long flags;
int rc = 0;
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
local_irq_save(flags);
spin_lock_irqsave(&n->list_lock, *flags);
slab_lock(page);
if (!check_slab(s, page))
......@@ -1113,15 +1111,19 @@ static noinline int free_debug_processing(struct kmem_cache *s,
set_track(s, object, TRACK_FREE, addr);
trace(s, page, object, 0);
init_object(s, object, SLUB_RED_INACTIVE);
rc = 1;
out:
slab_unlock(page);
local_irq_restore(flags);
return rc;
/*
* Keep node_lock to preserve integrity
* until the object is actually freed
*/
return n;
fail:
slab_unlock(page);
spin_unlock_irqrestore(&n->list_lock, *flags);
slab_fix(s, "Object at 0x%p not freed", object);
goto out;
return NULL;
}
static int __init setup_slub_debug(char *str)
......@@ -1214,8 +1216,9 @@ static inline void setup_object_debug(struct kmem_cache *s,
static inline int alloc_debug_processing(struct kmem_cache *s,
struct page *page, void *object, unsigned long addr) { return 0; }
static inline int free_debug_processing(struct kmem_cache *s,
struct page *page, void *object, unsigned long addr) { return 0; }
static inline struct kmem_cache_node *free_debug_processing(
struct kmem_cache *s, struct page *page, void *object,
unsigned long addr, unsigned long *flags) { return NULL; }
static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
{ return 1; }
......@@ -1714,7 +1717,7 @@ static inline void note_cmpxchg_failure(const char *n,
stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
}
void init_kmem_cache_cpus(struct kmem_cache *s)
static void init_kmem_cache_cpus(struct kmem_cache *s)
{
int cpu;
......@@ -1939,7 +1942,7 @@ static void unfreeze_partials(struct kmem_cache *s)
* If we did not find a slot then simply move all the partials to the
* per node partial list.
*/
int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
{
struct page *oldpage;
int pages;
......@@ -1962,6 +1965,7 @@ int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
local_irq_save(flags);
unfreeze_partials(s);
local_irq_restore(flags);
oldpage = NULL;
pobjects = 0;
pages = 0;
stat(s, CPU_PARTIAL_DRAIN);
......@@ -2310,7 +2314,7 @@ new_slab:
*
* Otherwise we can simply pick the next object from the lockless free list.
*/
static __always_inline void *slab_alloc(struct kmem_cache *s,
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
gfp_t gfpflags, int node, unsigned long addr)
{
void **object;
......@@ -2380,9 +2384,15 @@ redo:
return object;
}
static __always_inline void *slab_alloc(struct kmem_cache *s,
gfp_t gfpflags, unsigned long addr)
{
return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
void *ret = slab_alloc(s, gfpflags, _RET_IP_);