rc80211_minstrel_ht.c 36.9 KB
Newer Older
1
/*
2
 * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
3 4 5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/skbuff.h>
#include <linux/debugfs.h>
#include <linux/random.h>
13
#include <linux/moduleparam.h>
14 15 16 17 18 19 20 21 22 23 24 25
#include <linux/ieee80211.h>
#include <net/mac80211.h>
#include "rate.h"
#include "rc80211_minstrel.h"
#include "rc80211_minstrel_ht.h"

#define AVG_PKT_SIZE	1200

/* Number of bits for an average sized packet */
#define MCS_NBITS (AVG_PKT_SIZE << 3)

/* Number of symbols for a packet with (bps) bits per symbol */
26
#define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
27

28
/* Transmission time (nanoseconds) for a packet containing (syms) symbols */
29 30
#define MCS_SYMBOL_TIME(sgi, syms)					\
	(sgi ?								\
31 32
	  ((syms) * 18000 + 4000) / 5 :	/* syms * 3.6 us */		\
	  ((syms) * 1000) << 2		/* syms * 4 us */		\
33 34 35 36 37
	)

/* Transmit duration for the raw data part of an average sized packet */
#define MCS_DURATION(streams, sgi, bps) MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps)))

38 39
#define BW_20			0
#define BW_40			1
40
#define BW_80			2
41

42 43 44 45
/*
 * Define group sort order: HT40 -> SGI -> #streams
 */
#define GROUP_IDX(_streams, _sgi, _ht40)	\
46
	MINSTREL_HT_GROUP_0 +			\
47
	MINSTREL_MAX_STREAMS * 2 * _ht40 +	\
48
	MINSTREL_MAX_STREAMS * _sgi +	\
49 50
	_streams - 1

51
/* MCS rate information for an MCS group */
52 53
#define MCS_GROUP(_streams, _sgi, _ht40)				\
	[GROUP_IDX(_streams, _sgi, _ht40)] = {				\
54 55
	.streams = _streams,						\
	.flags =							\
56
		IEEE80211_TX_RC_MCS |					\
57 58 59 60 61 62 63 64 65 66 67 68 69 70
		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
		(_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),		\
	.duration = {							\
		MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260)		\
	}								\
}

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
#define VHT_GROUP_IDX(_streams, _sgi, _bw)				\
	(MINSTREL_VHT_GROUP_0 +						\
	 MINSTREL_MAX_STREAMS * 2 * (_bw) +				\
	 MINSTREL_MAX_STREAMS * (_sgi) +				\
	 (_streams) - 1)

#define BW2VBPS(_bw, r3, r2, r1)					\
	(_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)

#define VHT_GROUP(_streams, _sgi, _bw)					\
	[VHT_GROUP_IDX(_streams, _sgi, _bw)] = {			\
	.streams = _streams,						\
	.flags =							\
		IEEE80211_TX_RC_VHT_MCS |				\
		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
		(_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH :		\
		 _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),	\
	.duration = {							\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  117,  54,  26)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  234, 108,  52)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  351, 162,  78)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  468, 216, 104)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  702, 324, 156)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  936, 432, 208)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1053, 486, 234)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1170, 540, 260)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1404, 648, 312)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1560, 720, 346))		\
	}								\
}

112
#define CCK_DURATION(_bitrate, _short, _len)		\
113
	(1000 * (10 /* SIFS */ +			\
Weilong Chen's avatar
Weilong Chen committed
114
	 (_short ? 72 + 24 : 144 + 48) +		\
115
	 (8 * (_len + 4) * 10) / (_bitrate)))
116 117 118 119 120 121 122 123 124 125 126

#define CCK_ACK_DURATION(_bitrate, _short)			\
	(CCK_DURATION((_bitrate > 10 ? 20 : 10), false, 60) +	\
	 CCK_DURATION(_bitrate, _short, AVG_PKT_SIZE))

#define CCK_DURATION_LIST(_short)			\
	CCK_ACK_DURATION(10, _short),			\
	CCK_ACK_DURATION(20, _short),			\
	CCK_ACK_DURATION(55, _short),			\
	CCK_ACK_DURATION(110, _short)

127 128 129
#define CCK_GROUP					\
	[MINSTREL_CCK_GROUP] = {			\
		.streams = 0,				\
130
		.flags = 0,				\
131 132 133 134
		.duration = {				\
			CCK_DURATION_LIST(false),	\
			CCK_DURATION_LIST(true)		\
		}					\
135 136
	}

137 138 139 140 141 142 143
#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
static bool minstrel_vht_only = true;
module_param(minstrel_vht_only, bool, 0644);
MODULE_PARM_DESC(minstrel_vht_only,
		 "Use only VHT rates when VHT is supported by sta.");
#endif

144 145 146 147
/*
 * To enable sufficiently targeted rate sampling, MCS rates are divided into
 * groups, based on the number of streams and flags (HT40, SGI) that they
 * use.
148 149
 *
 * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
150
 * BW -> SGI -> #streams
151 152
 */
const struct mcs_group minstrel_mcs_groups[] = {
153 154
	MCS_GROUP(1, 0, BW_20),
	MCS_GROUP(2, 0, BW_20),
155
#if MINSTREL_MAX_STREAMS >= 3
156
	MCS_GROUP(3, 0, BW_20),
157 158
#endif

159 160
	MCS_GROUP(1, 1, BW_20),
	MCS_GROUP(2, 1, BW_20),
161
#if MINSTREL_MAX_STREAMS >= 3
162
	MCS_GROUP(3, 1, BW_20),
163 164
#endif

165 166
	MCS_GROUP(1, 0, BW_40),
	MCS_GROUP(2, 0, BW_40),
167
#if MINSTREL_MAX_STREAMS >= 3
168
	MCS_GROUP(3, 0, BW_40),
169 170
#endif

171 172
	MCS_GROUP(1, 1, BW_40),
	MCS_GROUP(2, 1, BW_40),
173
#if MINSTREL_MAX_STREAMS >= 3
174
	MCS_GROUP(3, 1, BW_40),
175
#endif
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190
	CCK_GROUP,

#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
	VHT_GROUP(1, 0, BW_20),
	VHT_GROUP(2, 0, BW_20),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 0, BW_20),
#endif

	VHT_GROUP(1, 1, BW_20),
	VHT_GROUP(2, 1, BW_20),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 1, BW_20),
#endif
191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
	VHT_GROUP(1, 0, BW_40),
	VHT_GROUP(2, 0, BW_40),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 0, BW_40),
#endif

	VHT_GROUP(1, 1, BW_40),
	VHT_GROUP(2, 1, BW_40),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 1, BW_40),
#endif

	VHT_GROUP(1, 0, BW_80),
	VHT_GROUP(2, 0, BW_80),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 0, BW_80),
#endif

	VHT_GROUP(1, 1, BW_80),
	VHT_GROUP(2, 1, BW_80),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 1, BW_80),
#endif
#endif
};
217

218
static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
219

220 221 222
static void
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
/*
 * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
 * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
 *
 * Returns the valid mcs map for struct minstrel_mcs_group_data.supported
 */
static u16
minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map)
{
	u16 mask = 0;

	if (bw == BW_20) {
		if (nss != 3 && nss != 6)
			mask = BIT(9);
	} else if (bw == BW_80) {
		if (nss == 3 || nss == 7)
			mask = BIT(6);
		else if (nss == 6)
			mask = BIT(9);
	} else {
		WARN_ON(bw != BW_40);
	}

	switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) {
	case IEEE80211_VHT_MCS_SUPPORT_0_7:
		mask |= 0x300;
		break;
	case IEEE80211_VHT_MCS_SUPPORT_0_8:
		mask |= 0x200;
		break;
	case IEEE80211_VHT_MCS_SUPPORT_0_9:
		break;
	default:
		mask = 0x3ff;
	}

	return 0x3ff & ~mask;
}

262 263 264 265 266 267
/*
 * Look up an MCS group index based on mac80211 rate information
 */
static int
minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
{
268
	return GROUP_IDX((rate->idx / 8) + 1,
269 270
			 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
			 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
271 272
}

273 274 275 276 277 278 279 280 281
static int
minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate)
{
	return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate),
			     !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
			     !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) +
			     2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH));
}

282 283 284 285 286 287 288 289
static struct minstrel_rate_stats *
minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
		      struct ieee80211_tx_rate *rate)
{
	int group, idx;

	if (rate->flags & IEEE80211_TX_RC_MCS) {
		group = minstrel_ht_get_group_idx(rate);
290
		idx = rate->idx % 8;
291 292 293
	} else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
		group = minstrel_vht_get_group_idx(rate);
		idx = ieee80211_rate_get_vht_mcs(rate);
294 295 296 297 298 299 300 301 302 303 304 305 306 307
	} else {
		group = MINSTREL_CCK_GROUP;

		for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++)
			if (rate->idx == mp->cck_rates[idx])
				break;

		/* short preamble */
		if (!(mi->groups[group].supported & BIT(idx)))
			idx += 4;
	}
	return &mi->groups[group].rates[idx];
}

308 309 310 311 312 313 314 315 316 317 318
static inline struct minstrel_rate_stats *
minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
{
	return &mi->groups[index / MCS_GROUP_RATES].rates[index % MCS_GROUP_RATES];
}


/*
 * Recalculate success probabilities and counters for a rate using EWMA
 */
static void
319
minstrel_calc_rate_ewma(struct minstrel_rate_stats *mr)
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
{
	if (unlikely(mr->attempts > 0)) {
		mr->sample_skipped = 0;
		mr->cur_prob = MINSTREL_FRAC(mr->success, mr->attempts);
		if (!mr->att_hist)
			mr->probability = mr->cur_prob;
		else
			mr->probability = minstrel_ewma(mr->probability,
				mr->cur_prob, EWMA_LEVEL);
		mr->att_hist += mr->attempts;
		mr->succ_hist += mr->success;
	} else {
		mr->sample_skipped++;
	}
	mr->last_success = mr->success;
	mr->last_attempts = mr->attempts;
	mr->success = 0;
	mr->attempts = 0;
}

/*
 * Calculate throughput based on the average A-MPDU length, taking into account
 * the expected number of retransmissions and their expected length
 */
static void
345
minstrel_ht_calc_tp(struct minstrel_ht_sta *mi, int group, int rate)
346 347
{
	struct minstrel_rate_stats *mr;
348 349
	unsigned int nsecs = 0;
	unsigned int tp;
350
	unsigned int prob;
351 352

	mr = &mi->groups[group].rates[rate];
353
	prob = mr->probability;
354

355
	if (prob < MINSTREL_FRAC(1, 10)) {
356 357 358 359
		mr->cur_tp = 0;
		return;
	}

360 361 362 363 364 365 366
	/*
	 * For the throughput calculation, limit the probability value to 90% to
	 * account for collision related packet error rate fluctuation
	 */
	if (prob > MINSTREL_FRAC(9, 10))
		prob = MINSTREL_FRAC(9, 10);

367
	if (group != MINSTREL_CCK_GROUP)
368
		nsecs = 1000 * mi->overhead / MINSTREL_TRUNC(mi->avg_ampdu_len);
369

370 371
	nsecs += minstrel_mcs_groups[group].duration[rate];

372 373
	/* prob is scaled - see MINSTREL_FRAC above */
	tp = 1000000 * ((prob * 1000) / nsecs);
374
	mr->cur_tp = MINSTREL_TRUNC(tp);
375 376
}

377 378 379 380 381 382 383 384
/*
 * Find & sort topmost throughput rates
 *
 * If multiple rates provide equal throughput the sorting is based on their
 * current success probability. Higher success probability is preferred among
 * MCS groups, CCK rates do not provide aggregation and are therefore at last.
 */
static void
385 386
minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
			       u16 *tp_list)
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
{
	int cur_group, cur_idx, cur_thr, cur_prob;
	int tmp_group, tmp_idx, tmp_thr, tmp_prob;
	int j = MAX_THR_RATES;

	cur_group = index / MCS_GROUP_RATES;
	cur_idx = index  % MCS_GROUP_RATES;
	cur_thr = mi->groups[cur_group].rates[cur_idx].cur_tp;
	cur_prob = mi->groups[cur_group].rates[cur_idx].probability;

	tmp_group = tp_list[j - 1] / MCS_GROUP_RATES;
	tmp_idx = tp_list[j - 1] % MCS_GROUP_RATES;
	tmp_thr = mi->groups[tmp_group].rates[tmp_idx].cur_tp;
	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].probability;

	while (j > 0 && (cur_thr > tmp_thr ||
	      (cur_thr == tmp_thr && cur_prob > tmp_prob))) {
		j--;
		tmp_group = tp_list[j - 1] / MCS_GROUP_RATES;
		tmp_idx = tp_list[j - 1] % MCS_GROUP_RATES;
		tmp_thr = mi->groups[tmp_group].rates[tmp_idx].cur_tp;
		tmp_prob = mi->groups[tmp_group].rates[tmp_idx].probability;
	}

	if (j < MAX_THR_RATES - 1) {
		memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
		       (MAX_THR_RATES - (j + 1))));
	}
	if (j < MAX_THR_RATES)
		tp_list[j] = index;
}

/*
 * Find and set the topmost probability rate per sta and per group
 */
static void
423
minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 index)
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
{
	struct minstrel_mcs_group_data *mg;
	struct minstrel_rate_stats *mr;
	int tmp_group, tmp_idx, tmp_tp, tmp_prob, max_tp_group;

	mg = &mi->groups[index / MCS_GROUP_RATES];
	mr = &mg->rates[index % MCS_GROUP_RATES];

	tmp_group = mi->max_prob_rate / MCS_GROUP_RATES;
	tmp_idx = mi->max_prob_rate % MCS_GROUP_RATES;
	tmp_tp = mi->groups[tmp_group].rates[tmp_idx].cur_tp;
	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].probability;

	/* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
	 * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
	max_tp_group = mi->max_tp_rate[0] / MCS_GROUP_RATES;
	if((index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) &&
	    (max_tp_group != MINSTREL_CCK_GROUP))
		return;

	if (mr->probability > MINSTREL_FRAC(75, 100)) {
		if (mr->cur_tp > tmp_tp)
			mi->max_prob_rate = index;
		if (mr->cur_tp > mg->rates[mg->max_group_prob_rate].cur_tp)
			mg->max_group_prob_rate = index;
	} else {
		if (mr->probability > tmp_prob)
			mi->max_prob_rate = index;
		if (mr->probability > mg->rates[mg->max_group_prob_rate].probability)
			mg->max_group_prob_rate = index;
	}
}


/*
 * Assign new rate set per sta and use CCK rates only if the fastest
 * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
 * rate sets where MCS and CCK rates are mixed, because CCK rates can
 * not use aggregation.
 */
static void
minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
466 467
				 u16 tmp_mcs_tp_rate[MAX_THR_RATES],
				 u16 tmp_cck_tp_rate[MAX_THR_RATES])
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
{
	unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp;
	int i;

	tmp_group = tmp_cck_tp_rate[0] / MCS_GROUP_RATES;
	tmp_idx = tmp_cck_tp_rate[0] % MCS_GROUP_RATES;
	tmp_cck_tp = mi->groups[tmp_group].rates[tmp_idx].cur_tp;

	tmp_group = tmp_mcs_tp_rate[0] / MCS_GROUP_RATES;
	tmp_idx = tmp_mcs_tp_rate[0] % MCS_GROUP_RATES;
	tmp_mcs_tp = mi->groups[tmp_group].rates[tmp_idx].cur_tp;

	if (tmp_cck_tp > tmp_mcs_tp) {
		for(i = 0; i < MAX_THR_RATES; i++) {
			minstrel_ht_sort_best_tp_rates(mi, tmp_cck_tp_rate[i],
						       tmp_mcs_tp_rate);
		}
	}

}

/*
 * Try to increase robustness of max_prob rate by decrease number of
 * streams if possible.
 */
static inline void
minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;
	struct minstrel_rate_stats *mr;
	int tmp_max_streams, group;
	int tmp_tp = 0;

	tmp_max_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
			  MCS_GROUP_RATES].streams;
	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
		mg = &mi->groups[group];
		if (!mg->supported || group == MINSTREL_CCK_GROUP)
			continue;
		mr = minstrel_get_ratestats(mi, mg->max_group_prob_rate);
		if (tmp_tp < mr->cur_tp &&
		   (minstrel_mcs_groups[group].streams < tmp_max_streams)) {
				mi->max_prob_rate = mg->max_group_prob_rate;
				tmp_tp = mr->cur_tp;
		}
	}
}

516 517 518 519 520 521
/*
 * Update rate statistics and select new primary rates
 *
 * Rules for rate selection:
 *  - max_prob_rate must use only one stream, as a tradeoff between delivery
 *    probability and throughput during strong fluctuations
522
 *  - as long as the max prob rate has a probability of more than 75%, pick
523 524 525 526 527 528 529
 *    higher throughput rates, even if the probablity is a bit lower
 */
static void
minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;
	struct minstrel_rate_stats *mr;
530
	int group, i, j;
531 532
	u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
	u16 tmp_cck_tp_rate[MAX_THR_RATES], index;
533 534 535 536 537 538 539 540 541 542 543

	if (mi->ampdu_packets > 0) {
		mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
			MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets), EWMA_LEVEL);
		mi->ampdu_len = 0;
		mi->ampdu_packets = 0;
	}

	mi->sample_slow = 0;
	mi->sample_count = 0;

544 545 546 547 548
	/* Initialize global rate indexes */
	for(j = 0; j < MAX_THR_RATES; j++){
		tmp_mcs_tp_rate[j] = 0;
		tmp_cck_tp_rate[j] = 0;
	}
549

550 551
	/* Find best rate sets within all MCS groups*/
	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
552 553 554 555 556 557 558

		mg = &mi->groups[group];
		if (!mg->supported)
			continue;

		mi->sample_count++;

559 560 561 562
		/* (re)Initialize group rate indexes */
		for(j = 0; j < MAX_THR_RATES; j++)
			tmp_group_tp_rate[j] = group;

563 564 565 566
		for (i = 0; i < MCS_GROUP_RATES; i++) {
			if (!(mg->supported & BIT(i)))
				continue;

567 568
			index = MCS_GROUP_RATES * group + i;

569 570
			mr = &mg->rates[i];
			mr->retry_updated = false;
571 572
			minstrel_calc_rate_ewma(mr);
			minstrel_ht_calc_tp(mi, group, i);
573 574 575 576

			if (!mr->cur_tp)
				continue;

577 578 579 580 581 582 583
			/* Find max throughput rate set */
			if (group != MINSTREL_CCK_GROUP) {
				minstrel_ht_sort_best_tp_rates(mi, index,
							       tmp_mcs_tp_rate);
			} else if (group == MINSTREL_CCK_GROUP) {
				minstrel_ht_sort_best_tp_rates(mi, index,
							       tmp_cck_tp_rate);
584 585
			}

586 587 588
			/* Find max throughput rate set within a group */
			minstrel_ht_sort_best_tp_rates(mi, index,
						       tmp_group_tp_rate);
589

590 591
			/* Find max probability rate per group and global */
			minstrel_ht_set_best_prob_rate(mi, index);
592 593
		}

594 595
		memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
		       sizeof(mg->max_group_tp_rate));
596 597
	}

598 599 600
	/* Assign new rate set per sta */
	minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate, tmp_cck_tp_rate);
	memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
601

602 603 604 605 606
	/* Try to increase robustness of max_prob_rate*/
	minstrel_ht_prob_rate_reduce_streams(mi);

	/* try to sample all available rates during each interval */
	mi->sample_count *= 8;
607

608 609 610
#ifdef CONFIG_MAC80211_DEBUGFS
	/* use fixed index if set */
	if (mp->fixed_rate_idx != -1) {
611 612
		for (i = 0; i < 4; i++)
			mi->max_tp_rate[i] = mp->fixed_rate_idx;
613 614 615
		mi->max_prob_rate = mp->fixed_rate_idx;
	}
#endif
616

617
	/* Reset update timer */
618 619 620 621
	mi->stats_update = jiffies;
}

static bool
622
minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct ieee80211_tx_rate *rate)
623
{
624
	if (rate->idx < 0)
625 626
		return false;

627
	if (!rate->count)
628 629
		return false;

630 631
	if (rate->flags & IEEE80211_TX_RC_MCS ||
	    rate->flags & IEEE80211_TX_RC_VHT_MCS)
632 633 634 635 636 637
		return true;

	return rate->idx == mp->cck_rates[0] ||
	       rate->idx == mp->cck_rates[1] ||
	       rate->idx == mp->cck_rates[2] ||
	       rate->idx == mp->cck_rates[3];
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
}

static void
minstrel_next_sample_idx(struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;

	for (;;) {
		mi->sample_group++;
		mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups);
		mg = &mi->groups[mi->sample_group];

		if (!mg->supported)
			continue;

		if (++mg->index >= MCS_GROUP_RATES) {
			mg->index = 0;
			if (++mg->column >= ARRAY_SIZE(sample_table))
				mg->column = 0;
		}
		break;
	}
}

static void
663
minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
{
	int group, orig_group;

	orig_group = group = *idx / MCS_GROUP_RATES;
	while (group > 0) {
		group--;

		if (!mi->groups[group].supported)
			continue;

		if (minstrel_mcs_groups[group].streams >
		    minstrel_mcs_groups[orig_group].streams)
			continue;

		if (primary)
679
			*idx = mi->groups[group].max_group_tp_rate[0];
680
		else
681
			*idx = mi->groups[group].max_group_tp_rate[1];
682 683 684 685 686
		break;
	}
}

static void
687
minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb)
688 689 690 691 692
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
	u16 tid;

693 694 695
	if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
		return;

696 697 698
	if (unlikely(!ieee80211_is_data_qos(hdr->frame_control)))
		return;

699
	if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE)))
700 701 702
		return;

	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
703
	if (likely(sta->ampdu_mlme.tid_tx[tid]))
704 705
		return;

706
	ieee80211_start_tx_ba_session(pubsta, tid, 5000);
707 708 709 710 711 712 713 714 715 716 717 718 719
}

static void
minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
                      struct ieee80211_sta *sta, void *priv_sta,
                      struct sk_buff *skb)
{
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
	struct ieee80211_tx_rate *ar = info->status.rates;
	struct minstrel_rate_stats *rate, *rate2;
	struct minstrel_priv *mp = priv;
720
	bool last, update = false;
721
	int i;
722 723 724 725 726 727 728 729 730

	if (!msp->is_ht)
		return mac80211_minstrel.tx_status(priv, sband, sta, &msp->legacy, skb);

	/* This packet was aggregated but doesn't carry status info */
	if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
	    !(info->flags & IEEE80211_TX_STAT_AMPDU))
		return;

731 732 733
	if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
		info->status.ampdu_ack_len =
			(info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
734 735 736 737 738 739 740
		info->status.ampdu_len = 1;
	}

	mi->ampdu_packets++;
	mi->ampdu_len += info->status.ampdu_len;

	if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) {
741
		mi->sample_wait = 16 + 2 * MINSTREL_TRUNC(mi->avg_ampdu_len);
742
		mi->sample_tries = 1;
743 744 745
		mi->sample_count--;
	}

746
	if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
747 748
		mi->sample_packets += info->status.ampdu_len;

749
	last = !minstrel_ht_txstat_valid(mp, &ar[0]);
750 751
	for (i = 0; !last; i++) {
		last = (i == IEEE80211_TX_MAX_RATES - 1) ||
752
		       !minstrel_ht_txstat_valid(mp, &ar[i + 1]);
753

754
		rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
755

756
		if (last)
757 758 759 760 761 762 763 764 765
			rate->success += info->status.ampdu_ack_len;

		rate->attempts += ar[i].count * info->status.ampdu_len;
	}

	/*
	 * check for sudden death of spatial multiplexing,
	 * downgrade to a lower number of streams if necessary.
	 */
766
	rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
767 768
	if (rate->attempts > 30 &&
	    MINSTREL_FRAC(rate->success, rate->attempts) <
769
	    MINSTREL_FRAC(20, 100)) {
770
		minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
771 772
		update = true;
	}
773

774
	rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
775 776
	if (rate2->attempts > 30 &&
	    MINSTREL_FRAC(rate2->success, rate2->attempts) <
777
	    MINSTREL_FRAC(20, 100)) {
778
		minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
779 780
		update = true;
	}
781 782

	if (time_after(jiffies, mi->stats_update + (mp->update_interval / 2 * HZ) / 1000)) {
783
		update = true;
784 785
		minstrel_ht_update_stats(mp, mi);
	}
786 787 788

	if (update)
		minstrel_ht_update_rates(mp, mi);
789 790 791 792 793 794 795 796 797 798
}

static void
minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
                         int index)
{
	struct minstrel_rate_stats *mr;
	const struct mcs_group *group;
	unsigned int tx_time, tx_time_rtscts, tx_time_data;
	unsigned int cw = mp->cw_min;
799
	unsigned int ctime = 0;
800 801
	unsigned int t_slot = 9; /* FIXME */
	unsigned int ampdu_len = MINSTREL_TRUNC(mi->avg_ampdu_len);
802
	unsigned int overhead = 0, overhead_rtscts = 0;
803 804 805 806 807 808 809 810 811 812 813 814 815

	mr = minstrel_get_ratestats(mi, index);
	if (mr->probability < MINSTREL_FRAC(1, 10)) {
		mr->retry_count = 1;
		mr->retry_count_rtscts = 1;
		return;
	}

	mr->retry_count = 2;
	mr->retry_count_rtscts = 2;
	mr->retry_updated = true;

	group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
816
	tx_time_data = group->duration[index % MCS_GROUP_RATES] * ampdu_len / 1000;
817 818 819 820 821 822 823

	/* Contention time for first 2 tries */
	ctime = (t_slot * cw) >> 1;
	cw = min((cw << 1) | 1, mp->cw_max);
	ctime += (t_slot * cw) >> 1;
	cw = min((cw << 1) | 1, mp->cw_max);

824 825 826 827 828
	if (index / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) {
		overhead = mi->overhead;
		overhead_rtscts = mi->overhead_rtscts;
	}

829
	/* Total TX time for data and Contention after first 2 tries */
830 831
	tx_time = ctime + 2 * (overhead + tx_time_data);
	tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
832 833

	/* See how many more tries we can fit inside segment size */
834
	do {
835 836 837 838 839
		/* Contention time for this try */
		ctime = (t_slot * cw) >> 1;
		cw = min((cw << 1) | 1, mp->cw_max);

		/* Total TX time after this try */
840 841
		tx_time += ctime + overhead + tx_time_data;
		tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
842

843 844 845 846 847 848 849 850 851
		if (tx_time_rtscts < mp->segment_size)
			mr->retry_count_rtscts++;
	} while ((tx_time < mp->segment_size) &&
	         (++mr->retry_count < mp->max_retry));
}


static void
minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
852
                     struct ieee80211_sta_rates *ratetbl, int offset, int index)
853 854 855
{
	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
	struct minstrel_rate_stats *mr;
856
	u8 idx;
857
	u16 flags = group->flags;
858 859 860 861 862

	mr = minstrel_get_ratestats(mi, index);
	if (!mr->retry_updated)
		minstrel_calc_retransmit(mp, mi, index);

863 864 865 866 867 868 869 870 871
	if (mr->probability < MINSTREL_FRAC(20, 100) || !mr->retry_count) {
		ratetbl->rate[offset].count = 2;
		ratetbl->rate[offset].count_rts = 2;
		ratetbl->rate[offset].count_cts = 2;
	} else {
		ratetbl->rate[offset].count = mr->retry_count;
		ratetbl->rate[offset].count_cts = mr->retry_count;
		ratetbl->rate[offset].count_rts = mr->retry_count_rtscts;
	}
872

873
	if (index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP)
874
		idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
875 876 877
	else if (flags & IEEE80211_TX_RC_VHT_MCS)
		idx = ((group->streams - 1) << 4) |
		      ((index % MCS_GROUP_RATES) & 0xF);
878
	else
879
		idx = index % MCS_GROUP_RATES + (group->streams - 1) * 8;
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897

	if (offset > 0) {
		ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
		flags |= IEEE80211_TX_RC_USE_RTS_CTS;
	}

	ratetbl->rate[offset].idx = idx;
	ratetbl->rate[offset].flags = flags;
}

static void
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct ieee80211_sta_rates *rates;
	int i = 0;

	rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
	if (!rates)
898
		return;
899

900 901
	/* Start with max_tp_rate[0] */
	minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]);
902 903

	if (mp->hw->max_rates >= 3) {
904 905
		/* At least 3 tx rates supported, use max_tp_rate[1] next */
		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[1]);
906 907 908 909 910 911
	}

	if (mp->hw->max_rates >= 2) {
		/*
		 * At least 2 tx rates supported, use max_prob_rate next */
		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
912 913
	}

914 915
	rates->rate[i].idx = -1;
	rate_control_set_rates(mp->hw, mi->sta, rates);
916 917 918 919 920 921 922 923 924 925 926 927 928 929
}

static inline int
minstrel_get_duration(int index)
{
	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
	return group->duration[index % MCS_GROUP_RATES];
}

static int
minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct minstrel_rate_stats *mr;
	struct minstrel_mcs_group_data *mg;
930
	unsigned int sample_dur, sample_group, cur_max_tp_streams;
931 932 933 934 935 936 937 938 939 940
	int sample_idx = 0;

	if (mi->sample_wait > 0) {
		mi->sample_wait--;
		return -1;
	}

	if (!mi->sample_tries)
		return -1;

941 942
	sample_group = mi->sample_group;
	mg = &mi->groups[sample_group];
943
	sample_idx = sample_table[mg->column][mg->index];
944 945 946 947 948
	minstrel_next_sample_idx(mi);

	if (!(mg->supported & BIT(sample_idx)))
		return -1;

949
	mr = &mg->rates[sample_idx];
950
	sample_idx += sample_group * MCS_GROUP_RATES;
951

952 953 954
	/*
	 * Sampling might add some overhead (RTS, no aggregation)
	 * to the frame. Hence, don't use sampling for the currently
955
	 * used rates.
956
	 */
957 958
	if (sample_idx == mi->max_tp_rate[0] ||
	    sample_idx == mi->max_tp_rate[1] ||
959
	    sample_idx == mi->max_prob_rate)
960
		return -1;
961

962
	/*
963 964
	 * Do not sample if the probability is already higher than 95%
	 * to avoid wasting airtime.
965
	 */
966
	if (mr->probability > MINSTREL_FRAC(95, 100))
967
		return -1;
968 969 970 971 972

	/*
	 * Make sure that lower rates get sampled only occasionally,
	 * if the link is working perfectly.
	 */
973 974 975

	cur_max_tp_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
		MCS_GROUP_RATES].streams;
976
	sample_dur = minstrel_get_duration(sample_idx);
977 978
	if (sample_dur >= minstrel_get_duration(mi->max_tp_rate[1]) &&
	    (cur_max_tp_streams - 1 <
979 980
	     minstrel_mcs_groups[sample_group].streams ||
	     sample_dur >= minstrel_get_duration(mi->max_prob_rate))) {
981
		if (mr->sample_skipped < 20)
982
			return -1;
983 984

		if (mi->sample_slow++ > 2)
985
			return -1;
986
	}
987
	mi->sample_tries--;
988 989 990 991

	return sample_idx;
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
static void
minstrel_ht_check_cck_shortpreamble(struct minstrel_priv *mp,
				    struct minstrel_ht_sta *mi, bool val)
{
	u8 supported = mi->groups[MINSTREL_CCK_GROUP].supported;

	if (!supported || !mi->cck_supported_short)
		return;

	if (supported & (mi->cck_supported_short << (val * 4)))
		return;

	supported ^= mi->cck_supported_short | (mi->cck_supported_short << 4);
	mi->groups[MINSTREL_CCK_GROUP].supported = supported;
}

1008 1009 1010 1011
static void
minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
                     struct ieee80211_tx_rate_control *txrc)
{
1012
	const struct mcs_group *sample_group;
1013
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
1014
	struct ieee80211_tx_rate *rate = &info->status.rates[0];
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct minstrel_priv *mp = priv;
	int sample_idx;

	if (rate_control_send_low(sta, priv_sta, txrc))
		return;

	if (!msp->is_ht)
		return mac80211_minstrel.get_rate(priv, sta, &msp->legacy, txrc);

1026 1027 1028 1029
	if (!(info->flags & IEEE80211_TX_CTL_AMPDU) &&
	    mi->max_prob_rate / MCS_GROUP_RATES != MINSTREL_CCK_GROUP)
		minstrel_aggr_check(sta, txrc->skb);

1030
	info->flags |= mi->tx_flags;
1031
	minstrel_ht_check_cck_shortpreamble(mp, mi, txrc->short_preamble);
1032

1033 1034 1035 1036 1037
#ifdef CONFIG_MAC80211_DEBUGFS
	if (mp->fixed_rate_idx != -1)
		return;
#endif

1038 1039
	/* Don't use EAPOL frames for sampling on non-mrr hw */
	if (mp->hw->max_rates == 1 &&
1040
	    (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
1041 1042 1043
		sample_idx = -1;
	else
		sample_idx = minstrel_get_sample_rate(mp, mi);
1044

1045 1046 1047 1048 1049 1050 1051
	mi->total_packets++;

	/* wraparound */
	if (mi->total_packets == ~0) {
		mi->total_packets = 0;
		mi->sample_packets = 0;
	}
1052 1053 1054 1055 1056 1057

	if (sample_idx < 0)
		return;

	sample_group = &minstrel_mcs_groups[sample_idx / MCS_GROUP_RATES];
	info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1058 1059 1060 1061 1062
	rate->count = 1;

	if (sample_idx / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) {
		int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
		rate->idx = mp->cck_rates[idx];
1063 1064 1065
	} else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) {
		ieee80211_rate_set_vht(rate, sample_idx % MCS_GROUP_RATES,
				       sample_group->streams);
1066 1067 1068
	} else {
		rate->idx = sample_idx % MCS_GROUP_RATES +
			    (sample_group->streams - 1) * 8;
1069 1070
	}

1071
	rate->flags = sample_group->flags;
1072 1073
}

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
static void
minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
		       struct ieee80211_supported_band *sband,
		       struct ieee80211_sta *sta)
{
	int i;

	if (sband->band != IEEE80211_BAND_2GHZ)
		return;

1084 1085 1086
	if (!(mp->hw->flags & IEEE80211_HW_SUPPORTS_HT_CCK_RATES))
		return;

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	mi->cck_supported = 0;
	mi->cck_supported_short = 0;
	for (i = 0; i < 4; i++) {
		if (!rate_supported(sta, sband->band, mp->cck_rates[i]))
			continue;

		mi->cck_supported |= BIT(i);
		if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
			mi->cck_supported_short |= BIT(i);
	}

	mi->groups[MINSTREL_CCK_GROUP].supported = mi->cck_supported;
}

1101 1102
static void
minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
1103
			struct cfg80211_chan_def *chandef,
1104
                        struct ieee80211_sta *sta, void *priv_sta)
1105 1106 1107 1108 1109 1110
{
	struct minstrel_priv *mp = priv;
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
	u16 sta_cap = sta->ht_cap.cap;
1111 1112
	struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
	int use_vht;
1113
	int n_supported = 0;
1114 1115 1116 1117 1118
	int ack_dur;
	int stbc;
	int i;

	/* fall back to the old minstrel for legacy stations */
1119 1120
	if (!sta->ht_cap.ht_supported)
		goto use_legacy;