mlme.c 124 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * BSS client mode implementation
 * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
 * Copyright 2004, Instant802 Networks, Inc.
 * Copyright 2005, Devicescape Software, Inc.
 * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
 * Copyright 2007, Michael Wu <flamingice@sourmilk.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

/* TODO:
 * order BSS list by RSSI(?) ("quality of AP")
 * scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
 *    SSID)
 */
19
#include <linux/delay.h>
20 21 22 23 24 25 26
#include <linux/if_ether.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/wireless.h>
#include <linux/random.h>
#include <linux/etherdevice.h>
27
#include <linux/rtnetlink.h>
28 29 30 31 32
#include <net/iw_handler.h>
#include <asm/types.h>

#include <net/mac80211.h>
#include "ieee80211_i.h"
Johannes Berg's avatar
Johannes Berg committed
33 34
#include "rate.h"
#include "led.h"
35
#include "mesh.h"
36 37 38 39 40 41

#define IEEE80211_AUTH_TIMEOUT (HZ / 5)
#define IEEE80211_AUTH_MAX_TRIES 3
#define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
#define IEEE80211_ASSOC_MAX_TRIES 3
#define IEEE80211_MONITORING_INTERVAL (2 * HZ)
42
#define IEEE80211_MESH_HOUSEKEEPING_INTERVAL (60 * HZ)
43 44 45 46
#define IEEE80211_PROBE_INTERVAL (60 * HZ)
#define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
#define IEEE80211_SCAN_INTERVAL (2 * HZ)
#define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
47
#define IEEE80211_IBSS_JOIN_TIMEOUT (7 * HZ)
48 49 50 51 52 53 54

#define IEEE80211_PROBE_DELAY (HZ / 33)
#define IEEE80211_CHANNEL_TIME (HZ / 33)
#define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
#define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
#define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
#define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
55
#define IEEE80211_MESH_PEER_INACTIVITY_LIMIT (1800 * HZ)
56 57 58 59 60 61

#define IEEE80211_IBSS_MAX_STA_ENTRIES 128


#define ERP_INFO_USE_PROTECTION BIT(1)

62 63 64 65 66 67
/* mgmt header + 1 byte action code */
#define IEEE80211_MIN_ACTION_SIZE (24 + 1)

#define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
#define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
#define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
68 69
#define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
#define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
70

71 72 73 74 75
/* next values represent the buffer size for A-MPDU frame.
 * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */
#define IEEE80211_MIN_AMPDU_BUF 0x8
#define IEEE80211_MAX_AMPDU_BUF 0x40

76 77 78
static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
				     u8 *ssid, size_t ssid_len);
static struct ieee80211_sta_bss *
79
ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
80
		     u8 *ssid, u8 ssid_len);
81
static void ieee80211_rx_bss_put(struct ieee80211_local *local,
82 83 84 85 86 87 88 89
				 struct ieee80211_sta_bss *bss);
static int ieee80211_sta_find_ibss(struct net_device *dev,
				   struct ieee80211_if_sta *ifsta);
static int ieee80211_sta_wep_configured(struct net_device *dev);
static int ieee80211_sta_start_scan(struct net_device *dev,
				    u8 *ssid, size_t ssid_len);
static int ieee80211_sta_config_auth(struct net_device *dev,
				     struct ieee80211_if_sta *ifsta);
90
static void sta_rx_agg_session_timer_expired(unsigned long data);
91 92


93 94
void ieee802_11_parse_elems(u8 *start, size_t len,
			    struct ieee802_11_elems *elems)
95 96 97 98 99 100 101 102 103 104 105 106 107
{
	size_t left = len;
	u8 *pos = start;

	memset(elems, 0, sizeof(*elems));

	while (left >= 2) {
		u8 id, elen;

		id = *pos++;
		elen = *pos++;
		left -= 2;

108 109
		if (elen > left)
			return;
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

		switch (id) {
		case WLAN_EID_SSID:
			elems->ssid = pos;
			elems->ssid_len = elen;
			break;
		case WLAN_EID_SUPP_RATES:
			elems->supp_rates = pos;
			elems->supp_rates_len = elen;
			break;
		case WLAN_EID_FH_PARAMS:
			elems->fh_params = pos;
			elems->fh_params_len = elen;
			break;
		case WLAN_EID_DS_PARAMS:
			elems->ds_params = pos;
			elems->ds_params_len = elen;
			break;
		case WLAN_EID_CF_PARAMS:
			elems->cf_params = pos;
			elems->cf_params_len = elen;
			break;
		case WLAN_EID_TIM:
			elems->tim = pos;
			elems->tim_len = elen;
			break;
		case WLAN_EID_IBSS_PARAMS:
			elems->ibss_params = pos;
			elems->ibss_params_len = elen;
			break;
		case WLAN_EID_CHALLENGE:
			elems->challenge = pos;
			elems->challenge_len = elen;
			break;
		case WLAN_EID_WPA:
			if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
			    pos[2] == 0xf2) {
				/* Microsoft OUI (00:50:F2) */
				if (pos[3] == 1) {
					/* OUI Type 1 - WPA IE */
					elems->wpa = pos;
					elems->wpa_len = elen;
				} else if (elen >= 5 && pos[3] == 2) {
					if (pos[4] == 0) {
						elems->wmm_info = pos;
						elems->wmm_info_len = elen;
					} else if (pos[4] == 1) {
						elems->wmm_param = pos;
						elems->wmm_param_len = elen;
					}
				}
			}
			break;
		case WLAN_EID_RSN:
			elems->rsn = pos;
			elems->rsn_len = elen;
			break;
		case WLAN_EID_ERP_INFO:
			elems->erp_info = pos;
			elems->erp_info_len = elen;
			break;
		case WLAN_EID_EXT_SUPP_RATES:
			elems->ext_supp_rates = pos;
			elems->ext_supp_rates_len = elen;
			break;
175 176 177 178 179 180 181 182
		case WLAN_EID_HT_CAPABILITY:
			elems->ht_cap_elem = pos;
			elems->ht_cap_elem_len = elen;
			break;
		case WLAN_EID_HT_EXTRA_INFO:
			elems->ht_info_elem = pos;
			elems->ht_info_elem_len = elen;
			break;
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
		case WLAN_EID_MESH_ID:
			elems->mesh_id = pos;
			elems->mesh_id_len = elen;
			break;
		case WLAN_EID_MESH_CONFIG:
			elems->mesh_config = pos;
			elems->mesh_config_len = elen;
			break;
		case WLAN_EID_PEER_LINK:
			elems->peer_link = pos;
			elems->peer_link_len = elen;
			break;
		case WLAN_EID_PREQ:
			elems->preq = pos;
			elems->preq_len = elen;
			break;
		case WLAN_EID_PREP:
			elems->prep = pos;
			elems->prep_len = elen;
			break;
		case WLAN_EID_PERR:
			elems->perr = pos;
			elems->perr_len = elen;
			break;
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
		case WLAN_EID_CHANNEL_SWITCH:
			elems->ch_switch_elem = pos;
			elems->ch_switch_elem_len = elen;
			break;
		case WLAN_EID_QUIET:
			if (!elems->quiet_elem) {
				elems->quiet_elem = pos;
				elems->quiet_elem_len = elen;
			}
			elems->num_of_quiet_elem++;
			break;
		case WLAN_EID_COUNTRY:
			elems->country_elem = pos;
			elems->country_elem_len = elen;
			break;
		case WLAN_EID_PWR_CONSTRAINT:
			elems->pwr_constr_elem = pos;
			elems->pwr_constr_elem_len = elen;
			break;
226 227 228 229 230 231 232 233 234 235 236 237
		default:
			break;
		}

		left -= elen;
		pos += elen;
	}
}


static int ecw2cw(int ecw)
{
238
	return (1 << ecw) - 1;
239 240
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

static void ieee80211_sta_def_wmm_params(struct net_device *dev,
					 struct ieee80211_sta_bss *bss,
					 int ibss)
{
	struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
	struct ieee80211_local *local = sdata->local;
	int i, have_higher_than_11mbit = 0;


	/* cf. IEEE 802.11 9.2.12 */
	for (i = 0; i < bss->supp_rates_len; i++)
		if ((bss->supp_rates[i] & 0x7f) * 5 > 110)
			have_higher_than_11mbit = 1;

	if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
	    have_higher_than_11mbit)
		sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
	else
		sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;


	if (local->ops->conf_tx) {
		struct ieee80211_tx_queue_params qparam;

		memset(&qparam, 0, sizeof(qparam));

		qparam.aifs = 2;

		if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
		    !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE))
			qparam.cw_min = 31;
		else
			qparam.cw_min = 15;

		qparam.cw_max = 1023;
		qparam.txop = 0;

Johannes Berg's avatar
Johannes Berg committed
279 280
		for (i = 0; i < local_to_hw(local)->queues; i++)
			local->ops->conf_tx(local_to_hw(local), i, &qparam);
281 282 283
	}
}

284 285 286 287 288 289 290 291 292 293
static void ieee80211_sta_wmm_params(struct net_device *dev,
				     struct ieee80211_if_sta *ifsta,
				     u8 *wmm_param, size_t wmm_param_len)
{
	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
	struct ieee80211_tx_queue_params params;
	size_t left;
	int count;
	u8 *pos;

294 295 296 297 298 299
	if (!(ifsta->flags & IEEE80211_STA_WMM_ENABLED))
		return;

	if (!wmm_param)
		return;

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
	if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
		return;
	count = wmm_param[6] & 0x0f;
	if (count == ifsta->wmm_last_param_set)
		return;
	ifsta->wmm_last_param_set = count;

	pos = wmm_param + 8;
	left = wmm_param_len - 8;

	memset(&params, 0, sizeof(params));

	if (!local->ops->conf_tx)
		return;

	local->wmm_acm = 0;
	for (; left >= 4; left -= 4, pos += 4) {
		int aci = (pos[0] >> 5) & 0x03;
		int acm = (pos[0] >> 4) & 0x01;
		int queue;

		switch (aci) {
		case 1:
Johannes Berg's avatar
Johannes Berg committed
323
			queue = 3;
Johannes Berg's avatar
Johannes Berg committed
324
			if (acm)
325 326 327
				local->wmm_acm |= BIT(0) | BIT(3);
			break;
		case 2:
Johannes Berg's avatar
Johannes Berg committed
328
			queue = 1;
Johannes Berg's avatar
Johannes Berg committed
329
			if (acm)
330 331 332
				local->wmm_acm |= BIT(4) | BIT(5);
			break;
		case 3:
Johannes Berg's avatar
Johannes Berg committed
333
			queue = 0;
Johannes Berg's avatar
Johannes Berg committed
334
			if (acm)
335 336 337 338
				local->wmm_acm |= BIT(6) | BIT(7);
			break;
		case 0:
		default:
Johannes Berg's avatar
Johannes Berg committed
339
			queue = 2;
Johannes Berg's avatar
Johannes Berg committed
340
			if (acm)
341 342 343 344 345 346 347
				local->wmm_acm |= BIT(1) | BIT(2);
			break;
		}

		params.aifs = pos[0] & 0x0f;
		params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
		params.cw_min = ecw2cw(pos[1] & 0x0f);
348
		params.txop = pos[2] | (pos[3] << 8);
349
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
350
		printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
351
		       "cWmin=%d cWmax=%d txop=%d\n",
352
		       dev->name, queue, aci, acm, params.aifs, params.cw_min,
353 354
		       params.cw_max, params.txop);
#endif
355 356 357 358 359 360 361 362 363
		/* TODO: handle ACM (block TX, fallback to next lowest allowed
		 * AC for now) */
		if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
			printk(KERN_DEBUG "%s: failed to set TX queue "
			       "parameters for queue %d\n", dev->name, queue);
		}
	}
}

364 365 366
static u32 ieee80211_handle_protect_preamb(struct ieee80211_sub_if_data *sdata,
					   bool use_protection,
					   bool use_short_preamble)
367
{
368
	struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
369
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
370
	struct ieee80211_if_sta *ifsta = &sdata->u.sta;
371
	DECLARE_MAC_BUF(mac);
372
#endif
373
	u32 changed = 0;
374

375
	if (use_protection != bss_conf->use_cts_prot) {
376
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
377 378
		if (net_ratelimit()) {
			printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
379
			       "%s)\n",
380
			       sdata->dev->name,
381
			       use_protection ? "enabled" : "disabled",
382
			       print_mac(mac, ifsta->bssid));
383
		}
384
#endif
385 386
		bss_conf->use_cts_prot = use_protection;
		changed |= BSS_CHANGED_ERP_CTS_PROT;
387
	}
388

389
	if (use_short_preamble != bss_conf->use_short_preamble) {
390
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
391 392
		if (net_ratelimit()) {
			printk(KERN_DEBUG "%s: switched to %s barker preamble"
393
			       " (BSSID=%s)\n",
394
			       sdata->dev->name,
395
			       use_short_preamble ? "short" : "long",
396
			       print_mac(mac, ifsta->bssid));
397
		}
398
#endif
399
		bss_conf->use_short_preamble = use_short_preamble;
400
		changed |= BSS_CHANGED_ERP_PREAMBLE;
401
	}
402

403
	return changed;
404 405
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
static u32 ieee80211_handle_erp_ie(struct ieee80211_sub_if_data *sdata,
				   u8 erp_value)
{
	bool use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
	bool use_short_preamble = (erp_value & WLAN_ERP_BARKER_PREAMBLE) == 0;

	return ieee80211_handle_protect_preamb(sdata,
			use_protection, use_short_preamble);
}

static u32 ieee80211_handle_bss_capability(struct ieee80211_sub_if_data *sdata,
					   struct ieee80211_sta_bss *bss)
{
	u32 changed = 0;

	if (bss->has_erp_value)
		changed |= ieee80211_handle_erp_ie(sdata, bss->erp_value);
	else {
		u16 capab = bss->capability;
		changed |= ieee80211_handle_protect_preamb(sdata, false,
				(capab & WLAN_CAPABILITY_SHORT_PREAMBLE) != 0);
	}

	return changed;
}

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie,
				   struct ieee80211_ht_info *ht_info)
{

	if (ht_info == NULL)
		return -EINVAL;

	memset(ht_info, 0, sizeof(*ht_info));

	if (ht_cap_ie) {
		u8 ampdu_info = ht_cap_ie->ampdu_params_info;

		ht_info->ht_supported = 1;
		ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info);
		ht_info->ampdu_factor =
			ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR;
		ht_info->ampdu_density =
			(ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2;
		memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16);
	} else
		ht_info->ht_supported = 0;

	return 0;
}

int ieee80211_ht_addt_info_ie_to_ht_bss_info(
			struct ieee80211_ht_addt_info *ht_add_info_ie,
			struct ieee80211_ht_bss_info *bss_info)
{
	if (bss_info == NULL)
		return -EINVAL;

	memset(bss_info, 0, sizeof(*bss_info));

	if (ht_add_info_ie) {
		u16 op_mode;
		op_mode = le16_to_cpu(ht_add_info_ie->operation_mode);

		bss_info->primary_channel = ht_add_info_ie->control_chan;
		bss_info->bss_cap = ht_add_info_ie->ht_param;
		bss_info->bss_op_mode = (u8)(op_mode & 0xff);
	}

	return 0;
}
477

478 479 480 481 482 483 484 485 486 487 488 489
static void ieee80211_sta_send_associnfo(struct net_device *dev,
					 struct ieee80211_if_sta *ifsta)
{
	char *buf;
	size_t len;
	int i;
	union iwreq_data wrqu;

	if (!ifsta->assocreq_ies && !ifsta->assocresp_ies)
		return;

	buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len +
490
				ifsta->assocresp_ies_len), GFP_KERNEL);
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	if (!buf)
		return;

	len = sprintf(buf, "ASSOCINFO(");
	if (ifsta->assocreq_ies) {
		len += sprintf(buf + len, "ReqIEs=");
		for (i = 0; i < ifsta->assocreq_ies_len; i++) {
			len += sprintf(buf + len, "%02x",
				       ifsta->assocreq_ies[i]);
		}
	}
	if (ifsta->assocresp_ies) {
		if (ifsta->assocreq_ies)
			len += sprintf(buf + len, " ");
		len += sprintf(buf + len, "RespIEs=");
		for (i = 0; i < ifsta->assocresp_ies_len; i++) {
			len += sprintf(buf + len, "%02x",
				       ifsta->assocresp_ies[i]);
		}
	}
	len += sprintf(buf + len, ")");

	if (len > IW_CUSTOM_MAX) {
		len = sprintf(buf, "ASSOCRESPIE=");
		for (i = 0; i < ifsta->assocresp_ies_len; i++) {
			len += sprintf(buf + len, "%02x",
				       ifsta->assocresp_ies[i]);
		}
	}

	memset(&wrqu, 0, sizeof(wrqu));
	wrqu.data.length = len;
	wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);

	kfree(buf);
}


static void ieee80211_set_associated(struct net_device *dev,
530
				     struct ieee80211_if_sta *ifsta,
531
				     bool assoc)
532
{
533 534
	struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
	struct ieee80211_local *local = sdata->local;
Tomas Winkler's avatar
Tomas Winkler committed
535
	struct ieee80211_conf *conf = &local_to_hw(local)->conf;
536
	union iwreq_data wrqu;
537
	u32 changed = BSS_CHANGED_ASSOC;
538 539

	if (assoc) {
540
		struct ieee80211_sta_bss *bss;
541 542 543

		ifsta->flags |= IEEE80211_STA_ASSOCIATED;

544
		if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
545
			return;
546

547
		bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
Tomas Winkler's avatar
Tomas Winkler committed
548
					   conf->channel->center_freq,
549
					   ifsta->ssid, ifsta->ssid_len);
550
		if (bss) {
551 552 553 554
			/* set timing information */
			sdata->bss_conf.beacon_int = bss->beacon_int;
			sdata->bss_conf.timestamp = bss->timestamp;

555
			changed |= ieee80211_handle_bss_capability(sdata, bss);
556

557
			ieee80211_rx_bss_put(local, bss);
558 559
		}

Tomas Winkler's avatar
Tomas Winkler committed
560 561 562 563 564 565 566
		if (conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
			changed |= BSS_CHANGED_HT;
			sdata->bss_conf.assoc_ht = 1;
			sdata->bss_conf.ht_conf = &conf->ht_conf;
			sdata->bss_conf.ht_bss_conf = &conf->ht_bss_conf;
		}

567
		ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
568 569 570 571
		memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
		memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
		ieee80211_sta_send_associnfo(dev, ifsta);
	} else {
572
		netif_carrier_off(dev);
573
		ieee80211_sta_tear_down_BA_sessions(dev, ifsta->bssid);
574
		ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
575
		changed |= ieee80211_reset_erp_info(dev);
Tomas Winkler's avatar
Tomas Winkler committed
576 577 578 579 580

		sdata->bss_conf.assoc_ht = 0;
		sdata->bss_conf.ht_conf = NULL;
		sdata->bss_conf.ht_bss_conf = NULL;

581 582 583
		memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
	}
	ifsta->last_probe = jiffies;
584
	ieee80211_led_assoc(local, assoc);
585

586
	sdata->bss_conf.assoc = assoc;
587
	ieee80211_bss_info_change_notify(sdata, changed);
588 589 590 591

	if (assoc)
		netif_carrier_on(dev);

592 593
	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
	wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
594 595 596 597 598 599 600 601 602 603 604
}

static void ieee80211_set_disassoc(struct net_device *dev,
				   struct ieee80211_if_sta *ifsta, int deauth)
{
	if (deauth)
		ifsta->auth_tries = 0;
	ifsta->assoc_tries = 0;
	ieee80211_set_associated(dev, ifsta, 0);
}

605 606
void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
		      int encrypt)
607 608
{
	struct ieee80211_sub_if_data *sdata;
609
	struct ieee80211_tx_info *info;
610 611 612 613 614 615 616

	sdata = IEEE80211_DEV_TO_SUB_IF(dev);
	skb->dev = sdata->local->mdev;
	skb_set_mac_header(skb, 0);
	skb_set_network_header(skb, 0);
	skb_set_transport_header(skb, 0);

617 618 619
	info = IEEE80211_SKB_CB(skb);
	memset(info, 0, sizeof(struct ieee80211_tx_info));
	info->control.ifindex = sdata->dev->ifindex;
620
	if (!encrypt)
621
		info->flags |= IEEE80211_TX_CTL_DO_NOT_ENCRYPT;
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667

	dev_queue_xmit(skb);
}


static void ieee80211_send_auth(struct net_device *dev,
				struct ieee80211_if_sta *ifsta,
				int transaction, u8 *extra, size_t extra_len,
				int encrypt)
{
	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
	struct sk_buff *skb;
	struct ieee80211_mgmt *mgmt;

	skb = dev_alloc_skb(local->hw.extra_tx_headroom +
			    sizeof(*mgmt) + 6 + extra_len);
	if (!skb) {
		printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
		       "frame\n", dev->name);
		return;
	}
	skb_reserve(skb, local->hw.extra_tx_headroom);

	mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
	memset(mgmt, 0, 24 + 6);
	mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
					   IEEE80211_STYPE_AUTH);
	if (encrypt)
		mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
	memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
	memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
	memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
	mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
	mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
	ifsta->auth_transaction = transaction + 1;
	mgmt->u.auth.status_code = cpu_to_le16(0);
	if (extra)
		memcpy(skb_put(skb, extra_len), extra, extra_len);

	ieee80211_sta_tx(dev, skb, encrypt);
}


static void ieee80211_authenticate(struct net_device *dev,
				   struct ieee80211_if_sta *ifsta)
{
668 669
	DECLARE_MAC_BUF(mac);

670 671
	ifsta->auth_tries++;
	if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
672
		printk(KERN_DEBUG "%s: authentication with AP %s"
673
		       " timed out\n",
674
		       dev->name, print_mac(mac, ifsta->bssid));
675 676 677 678 679
		ifsta->state = IEEE80211_DISABLED;
		return;
	}

	ifsta->state = IEEE80211_AUTHENTICATE;
680 681
	printk(KERN_DEBUG "%s: authenticate with AP %s\n",
	       dev->name, print_mac(mac, ifsta->bssid));
682 683 684 685 686 687

	ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);

	mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
}

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
static int ieee80211_compatible_rates(struct ieee80211_sta_bss *bss,
				      struct ieee80211_supported_band *sband,
				      u64 *rates)
{
	int i, j, count;
	*rates = 0;
	count = 0;
	for (i = 0; i < bss->supp_rates_len; i++) {
		int rate = (bss->supp_rates[i] & 0x7F) * 5;

		for (j = 0; j < sband->n_bitrates; j++)
			if (sband->bitrates[j].bitrate == rate) {
				*rates |= BIT(j);
				count++;
				break;
			}
	}

	return count;
}
708 709 710 711 712 713 714 715

static void ieee80211_send_assoc(struct net_device *dev,
				 struct ieee80211_if_sta *ifsta)
{
	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
	struct sk_buff *skb;
	struct ieee80211_mgmt *mgmt;
	u8 *pos, *ies;
716
	int i, len, count, rates_len, supp_rates_len;
717 718 719
	u16 capab;
	struct ieee80211_sta_bss *bss;
	int wmm = 0;
720
	struct ieee80211_supported_band *sband;
721
	u64 rates = 0;
722 723 724 725 726 727 728 729 730 731 732

	skb = dev_alloc_skb(local->hw.extra_tx_headroom +
			    sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
			    ifsta->ssid_len);
	if (!skb) {
		printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
		       "frame\n", dev->name);
		return;
	}
	skb_reserve(skb, local->hw.extra_tx_headroom);

733 734
	sband = local->hw.wiphy->bands[local->hw.conf.channel->band];

735
	capab = ifsta->capab;
736 737 738 739 740 741

	if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ) {
		if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE))
			capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
		if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE))
			capab |= WLAN_CAPABILITY_SHORT_PREAMBLE;
742
	}
743 744 745

	bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
				   local->hw.conf.channel->center_freq,
746
				   ifsta->ssid, ifsta->ssid_len);
747 748 749
	if (bss) {
		if (bss->capability & WLAN_CAPABILITY_PRIVACY)
			capab |= WLAN_CAPABILITY_PRIVACY;
Johannes Berg's avatar
Johannes Berg committed
750
		if (bss->wmm_ie)
751
			wmm = 1;
752 753 754 755 756 757 758

		/* get all rates supported by the device and the AP as
		 * some APs don't like getting a superset of their rates
		 * in the association request (e.g. D-Link DAP 1353 in
		 * b-only mode) */
		rates_len = ieee80211_compatible_rates(bss, sband, &rates);

759 760 761 762
		if ((bss->capability & WLAN_CAPABILITY_SPECTRUM_MGMT) &&
		    (local->hw.flags & IEEE80211_HW_SPECTRUM_MGMT))
			capab |= WLAN_CAPABILITY_SPECTRUM_MGMT;

763
		ieee80211_rx_bss_put(local, bss);
764 765 766
	} else {
		rates = ~0;
		rates_len = sband->n_bitrates;
767 768 769 770 771 772 773 774
	}

	mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
	memset(mgmt, 0, 24);
	memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
	memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
	memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);

775
	if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
		skb_put(skb, 10);
		mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
						   IEEE80211_STYPE_REASSOC_REQ);
		mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
		mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1);
		memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
		       ETH_ALEN);
	} else {
		skb_put(skb, 4);
		mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
						   IEEE80211_STYPE_ASSOC_REQ);
		mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
		mgmt->u.assoc_req.listen_interval = cpu_to_le16(1);
	}

	/* SSID */
	ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
	*pos++ = WLAN_EID_SSID;
	*pos++ = ifsta->ssid_len;
	memcpy(pos, ifsta->ssid, ifsta->ssid_len);

797
	/* add all rates which were marked to be used above */
798 799 800 801
	supp_rates_len = rates_len;
	if (supp_rates_len > 8)
		supp_rates_len = 8;

802
	len = sband->n_bitrates;
803
	pos = skb_put(skb, supp_rates_len + 2);
804
	*pos++ = WLAN_EID_SUPP_RATES;
805
	*pos++ = supp_rates_len;
806

807 808 809
	count = 0;
	for (i = 0; i < sband->n_bitrates; i++) {
		if (BIT(i) & rates) {
810
			int rate = sband->bitrates[i].bitrate;
811
			*pos++ = (u8) (rate / 5);
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
			if (++count == 8)
				break;
		}
	}

	if (count == 8) {
		pos = skb_put(skb, rates_len - count + 2);
		*pos++ = WLAN_EID_EXT_SUPP_RATES;
		*pos++ = rates_len - count;

		for (i++; i < sband->n_bitrates; i++) {
			if (BIT(i) & rates) {
				int rate = sband->bitrates[i].bitrate;
				*pos++ = (u8) (rate / 5);
			}
827 828 829
		}
	}

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	if (capab & WLAN_CAPABILITY_SPECTRUM_MGMT) {
		/* 1. power capabilities */
		pos = skb_put(skb, 4);
		*pos++ = WLAN_EID_PWR_CAPABILITY;
		*pos++ = 2;
		*pos++ = 0; /* min tx power */
		*pos++ = local->hw.conf.channel->max_power; /* max tx power */

		/* 2. supported channels */
		/* TODO: get this in reg domain format */
		pos = skb_put(skb, 2 * sband->n_channels + 2);
		*pos++ = WLAN_EID_SUPPORTED_CHANNELS;
		*pos++ = 2 * sband->n_channels;
		for (i = 0; i < sband->n_channels; i++) {
			*pos++ = ieee80211_frequency_to_channel(
					sband->channels[i].center_freq);
			*pos++ = 1; /* one channel in the subband*/
		}
	}

850 851 852 853 854
	if (ifsta->extra_ie) {
		pos = skb_put(skb, ifsta->extra_ie_len);
		memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
	}

855
	if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
856 857 858 859 860 861 862 863 864 865 866
		pos = skb_put(skb, 9);
		*pos++ = WLAN_EID_VENDOR_SPECIFIC;
		*pos++ = 7; /* len */
		*pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
		*pos++ = 0x50;
		*pos++ = 0xf2;
		*pos++ = 2; /* WME */
		*pos++ = 0; /* WME info */
		*pos++ = 1; /* WME ver */
		*pos++ = 0;
	}
867

868
	/* wmm support is a must to HT */
869
	if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED) &&
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	    sband->ht_info.ht_supported && bss->ht_add_ie) {
		struct ieee80211_ht_addt_info *ht_add_info =
			(struct ieee80211_ht_addt_info *)bss->ht_add_ie;
		u16 cap = sband->ht_info.cap;
		__le16 tmp;
		u32 flags = local->hw.conf.channel->flags;

		switch (ht_add_info->ht_param & IEEE80211_HT_IE_CHA_SEC_OFFSET) {
		case IEEE80211_HT_IE_CHA_SEC_ABOVE:
			if (flags & IEEE80211_CHAN_NO_FAT_ABOVE) {
				cap &= ~IEEE80211_HT_CAP_SUP_WIDTH;
				cap &= ~IEEE80211_HT_CAP_SGI_40;
			}
			break;
		case IEEE80211_HT_IE_CHA_SEC_BELOW:
			if (flags & IEEE80211_CHAN_NO_FAT_BELOW) {
				cap &= ~IEEE80211_HT_CAP_SUP_WIDTH;
				cap &= ~IEEE80211_HT_CAP_SGI_40;
			}
			break;
		}

		tmp = cpu_to_le16(cap);
893 894 895 896 897 898
		pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2);
		*pos++ = WLAN_EID_HT_CAPABILITY;
		*pos++ = sizeof(struct ieee80211_ht_cap);
		memset(pos, 0, sizeof(struct ieee80211_ht_cap));
		memcpy(pos, &tmp, sizeof(u16));
		pos += sizeof(u16);
899 900 901 902
		/* TODO: needs a define here for << 2 */
		*pos++ = sband->ht_info.ampdu_factor |
			 (sband->ht_info.ampdu_density << 2);
		memcpy(pos, sband->ht_info.supp_mcs_set, 16);
903
	}
904 905 906

	kfree(ifsta->assocreq_ies);
	ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
907
	ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
	if (ifsta->assocreq_ies)
		memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);

	ieee80211_sta_tx(dev, skb, 0);
}


static void ieee80211_send_deauth(struct net_device *dev,
				  struct ieee80211_if_sta *ifsta, u16 reason)
{
	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
	struct sk_buff *skb;
	struct ieee80211_mgmt *mgmt;

	skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
	if (!skb) {
		printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
		       "frame\n", dev->name);
		return;
	}
	skb_reserve(skb, local->hw.extra_tx_headroom);

	mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
	memset(mgmt, 0, 24);
	memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
	memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
	memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
	mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
					   IEEE80211_STYPE_DEAUTH);
	skb_put(skb, 2);
	mgmt->u.deauth.reason_code = cpu_to_le16(reason);

	ieee80211_sta_tx(dev, skb, 0);
}


static void ieee80211_send_disassoc(struct net_device *dev,
				    struct ieee80211_if_sta *ifsta, u16 reason)
{
	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
	struct sk_buff *skb;
	struct ieee80211_mgmt *mgmt;

	skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
	if (!skb) {
		printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
		       "frame\n", dev->name);
		return;
	}
	skb_reserve(skb, local->hw.extra_tx_headroom);

	mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
	memset(mgmt, 0, 24);
	memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
	memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
	memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
	mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
					   IEEE80211_STYPE_DISASSOC);
	skb_put(skb, 2);
	mgmt->u.disassoc.reason_code = cpu_to_le16(reason);

	ieee80211_sta_tx(dev, skb, 0);
}


static int ieee80211_privacy_mismatch(struct net_device *dev,
				      struct ieee80211_if_sta *ifsta)
{
976
	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
977
	struct ieee80211_sta_bss *bss;
978 979 980
	int bss_privacy;
	int wep_privacy;
	int privacy_invoked;
981

982
	if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL))
983 984
		return 0;

985 986
	bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
				   local->hw.conf.channel->center_freq,
987
				   ifsta->ssid, ifsta->ssid_len);
988 989 990
	if (!bss)
		return 0;

991 992 993
	bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY);
	wep_privacy = !!ieee80211_sta_wep_configured(dev);
	privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED);
994

995
	ieee80211_rx_bss_put(local, bss);
996

997 998 999 1000
	if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked))
		return 0;

	return 1;
1001 1002 1003 1004 1005 1006
}


static void ieee80211_associate(struct net_device *dev,
				struct ieee80211_if_sta *ifsta)
{
1007 1008
	DECLARE_MAC_BUF(mac);

1009 1010
	ifsta->assoc_tries++;
	if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
1011
		printk(KERN_DEBUG "%s: association with AP %s"
1012
		       " timed out\n",
1013
		       dev->name, print_mac(mac, ifsta->bssid));
1014 1015 1016 1017 1018
		ifsta->state = IEEE80211_DISABLED;
		return;
	}

	ifsta->state = IEEE80211_ASSOCIATE;
1019 1020
	printk(KERN_DEBUG "%s: associate with AP %s\n",
	       dev->name, print_mac(mac, ifsta->bssid));
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	if (ieee80211_privacy_mismatch(dev, ifsta)) {
		printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
		       "mixed-cell disabled - abort association\n", dev->name);
		ifsta->state = IEEE80211_DISABLED;
		return;
	}

	ieee80211_send_assoc(dev, ifsta);

	mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
}


static void ieee80211_associated(struct net_device *dev,
				 struct ieee80211_if_sta *ifsta)
{
	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
	struct sta_info *sta;
	int disassoc;
1040
	DECLARE_MAC_BUF(mac);
1041 1042 1043 1044 1045 1046 1047 1048

	/* TODO: start monitoring current AP signal quality and number of
	 * missed beacons. Scan other channels every now and then and search
	 * for better APs. */
	/* TODO: remove expired BSSes */

	ifsta->state = IEEE80211_ASSOCIATED;

1049 1050
	rcu_read_lock();

1051 1052
	sta = sta_info_get(local, ifsta->bssid);
	if (!sta) {
1053 1054
		printk(KERN_DEBUG "%s: No STA entry for own AP %s\n",
		       dev->name, print_mac(mac, ifsta->bssid));
1055 1056 1057 1058 1059
		disassoc = 1;
	} else {
		disassoc = 0;
		if (time_after(jiffies,
			       sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
1060
			if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
1061
				printk(KERN_DEBUG "%s: No ProbeResp from "
1062
				       "current AP %s - assume out of "
1063
				       "range\n",
1064
				       dev->name, print_mac(mac, ifsta->bssid));
1065
				disassoc = 1;
1066
				sta_info_unlink(&sta);
1067
			} else
1068 1069 1070
				ieee80211_send_probe_req(dev, ifsta->bssid,
							 local->scan_ssid,
							 local->scan_ssid_len);
1071
			ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
1072
		} else {
1073
			ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
1074 1075 1076 1077 1078 1079 1080 1081 1082
			if (time_after(jiffies, ifsta->last_probe +
				       IEEE80211_PROBE_INTERVAL)) {
				ifsta->last_probe = jiffies;
				ieee80211_send_probe_req(dev, ifsta->bssid,
							 ifsta->ssid,
							 ifsta->ssid_len);
			}
		}
	}
1083 1084 1085

	rcu_read_unlock();

1086
	if (disassoc && sta)
1087 1088
		sta_info_destroy(sta);

1089
	if (disassoc) {
1090 1091
		ifsta->state = IEEE80211_DISABLED;
		ieee80211_set_associated(dev, ifsta, 0);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	} else {
		mod_timer(&ifsta->timer, jiffies +
				      IEEE80211_MONITORING_INTERVAL);
	}
}


static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
				     u8 *ssid, size_t ssid_len)
{
	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1103
	struct ieee80211_supported_band *sband;
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	struct sk_buff *skb;
	struct ieee80211_mgmt *mgmt;
	u8 *pos, *supp_rates, *esupp_rates = NULL;
	int i;

	skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
	if (!skb) {
		printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
		       "request\n", dev->name);
		return;
	}
	skb_reserve(skb, local->hw.extra_tx_headroom);

	mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
	memset(mgmt, 0, 24);
	mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
					   IEEE80211_STYPE_PROBE_REQ);
	memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
	if (dst) {
		memcpy(mgmt->da, dst, ETH_ALEN);
		memcpy(mgmt->bssid, dst, ETH_ALEN);
	} else {
		memset(mgmt->da, 0xff, ETH_ALEN);
		memset(mgmt->bssid, 0xff, ETH_ALEN);
	}
	pos = skb_put(skb, 2 + ssid_len);
	*pos++ = WLAN_EID_SSID;
	*pos++ = ssid_len;
	memcpy(pos, ssid, ssid_len);

	supp_rates = skb_put(skb, 2);
	supp_rates[0] = WLAN_EID_SUPP_RATES;
	supp_rates[1] = 0;
1137 1138 1139 1140
	sband = local->hw.wiphy->bands[local->hw.conf.channel->band];

	for (i = 0; i < sband->n_bitrates; i++) {
		struct ieee80211_rate *rate = &sband->bitrates[i];
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		if (esupp_rates) {
			pos = skb_put(skb, 1);
			esupp_rates[1]++;
		} else if (supp_rates[1] == 8) {
			esupp_rates = skb_put(skb, 3);
			esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
			esupp_rates[1] = 1;
			pos = &esupp_rates[2];
		} else {
			pos = skb_put(skb, 1);
			supp_rates[1]++;
		}
1153
		*pos = rate->bitrate / 5;
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	}

	ieee80211_sta_tx(dev, skb, 0);
}


static int ieee80211_sta_wep_configured(struct net_device *dev)
{
	struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
	if (!sdata || !sdata->default_key ||
1164
	    sdata->default_key->conf.alg != ALG_WEP)
1165 1166 1167 1168 1169 1170 1171 1172 1173
		return 0;
	return 1;
}


static void ieee80211_auth_completed(struct net_device *dev,
				     struct ieee80211_if_sta *ifsta)
{
	printk(KERN_DEBUG "%s: authenticated\n", dev->name);
1174
	ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	ieee80211_associate(dev, ifsta);
}


static void ieee80211_auth_challenge(struct net_device *dev,
				     struct ieee80211_if_sta *ifsta,
				     struct ieee80211_mgmt *mgmt,
				     size_t len)
{
	u8 *pos;
	struct ieee802_11_elems elems;

	pos = mgmt->u.auth.variable;
1188
	ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
1189
	if (!elems.challenge)
1190 1191 1192 1193 1194
		return;
	ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
			    elems.challenge_len + 2, 1);
}

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid,
					u8 dialog_token, u16 status, u16 policy,
					u16 buf_size, u16 timeout)
{
	struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
	struct ieee80211_if_sta *ifsta = &sdata->u.sta;
	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
	struct sk_buff *skb;
	struct ieee80211_mgmt *mgmt;
	u16 capab;

1206 1207
	skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom);

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	if (!skb) {
		printk(KERN_DEBUG "%s: failed to allocate buffer "
		       "for addba resp frame\n", dev->name);
		return;
	}

	skb_reserve(skb, local->hw.extra_tx_headroom);
	mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
	memset(mgmt, 0, 24);
	memcpy(mgmt->da, da, ETH_ALEN);
	memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
1219
	if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
	else
		memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
	mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
					   IEEE80211_STYPE_ACTION);

	skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp));
	mgmt->u.action.category = WLAN_CATEGORY_BACK;
	mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP;
	mgmt->u.action.u.addba_resp.dialog_token = dialog_token;

	capab = (u16)(policy << 1);	/* bit 1 aggregation policy */
	capab |= (u16)(tid << 2); 	/* bit 5:2 TID number */
	capab |= (u16)(buf_size << 6);	/* bit 15:6 max size of aggregation */

	mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab);
	mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout);
	mgmt->u.action.u.addba_resp.status = cpu_to_le16(status);

	ieee80211_sta_tx(dev, skb, 0);

	return;
}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
void ieee80211_send_addba_request(struct net_device *dev, const u8 *da,
				u16 tid, u8 dialog_token, u16 start_seq_num,
				u16 agg_size, u16 timeout)
{
	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
	struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
	struct ieee80211_if_sta *ifsta = &sdata->u.sta;
	struct sk_buff *skb;
	struct ieee80211_mgmt *mgmt;
	u16 capab;

1255
	skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom);
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293

	if (!skb) {
		printk(KERN_ERR "%s: failed to allocate buffer "
				"for addba request frame\n", dev->name);
		return;
	}
	skb_reserve(skb, local->hw.extra_tx_headroom);
	mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
	memset(mgmt, 0, 24);
	memcpy(mgmt->da, da, ETH_ALEN);
	memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
	if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
		memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
	else
		memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);

	mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
					IEEE80211_STYPE_ACTION);

	skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_req));

	mgmt->u.action.category = WLAN_CATEGORY_BACK;
	mgmt->u.action.u.addba_req.action_code = WLAN_ACTION_ADDBA_REQ;

	mgmt->u.action.u.addba_req.dialog_token = dialog_token;
	capab = (u16)(1 << 1);		/* bit 1 aggregation policy */
	capab |= (u16)(tid << 2); 	/* bit 5:2 TID number */
	capab |= (u16)(agg_size << 6);	/* bit 15:6 max size of aggergation */

	mgmt->u.action.u.addba_req.capab = cpu_to_le16(capab);

	mgmt->u.action.u.addba_req.timeout = cpu_to_le16(timeout);
	mgmt->u.action.u.addba_req.start_seq_num =
					cpu_to_le16(start_seq_num << 4);

	ieee80211_sta_tx(dev, skb, 0);
}

1294 1295 1296 1297 1298
static void ieee80211_sta_process_addba_request(struct net_device *dev,
						struct ieee80211_mgmt *mgmt,
						size_t len)
{
	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1299 1300
	struct ieee80211_hw *hw = &local->hw;
	struct ieee80211_conf *conf = &hw->conf;
1301
	struct sta_info *sta;
1302 1303
	struct tid_ampdu_rx *tid_agg_rx;
	u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status;
1304
	u8 dialog_token;
1305 1306
	int ret = -EOPNOTSUPP;
	DECLARE_MAC_BUF(mac);
1307

1308 1309
	rcu_read_lock();

1310
	sta = sta_info_get(local, mgmt->sa);
1311 1312
	if (!sta) {
		rcu_read_unlock();
1313
		return;
1314
	}
1315 1316 1317 1318

	/* extract session parameters from addba request frame */
	dialog_token = mgmt->u.action.u.addba_req.dialog_token;
	timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
1319 1320
	start_seq_num =
		le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4;
1321 1322 1323 1324 1325 1326 1327 1328

	capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
	ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1;
	tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
	buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6;

	status = WLAN_STATUS_REQUEST_DECLINED;

1329 1330 1331 1332 1333 1334 1335 1336 1337
	/* sanity check for incoming parameters:
	 * check if configuration can support the BA policy
	 * and if buffer size does not exceeds max value */
	if (((ba_policy != 1)
		&& (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA)))
		|| (buf_size > IEEE80211_MAX_AMPDU_BUF)) {
		status = WLAN_STATUS_INVALID_QOS_PARAM;
#ifdef CONFIG_MAC80211_HT_DEBUG
		if (net_ratelimit())
1338
			printk(KERN_DEBUG "AddBA Req with bad params from "
1339 1340 1341 1342 1343 1344 1345 1346
				"%s on tid %u. policy %d, buffer size %d\n",
				print_mac(mac, mgmt->sa), tid, ba_policy,
				buf_size);
#endif /* CONFIG_MAC80211_HT_DEBUG */
		goto end_no_lock;
	}
	/* determine default buffer size */
	if (buf_size == 0) {
1347 1348 1349
		struct ieee80211_supported_band *sband;

		sband = local->hw.wiphy->bands[conf->channel->band];
1350
		buf_size = IEEE80211_MIN_AMPDU_BUF;
1351
		buf_size = buf_size << sband->ht_info.ampdu_factor;
1352 1353 1354 1355
	}


	/* examine state machine */
1356
	spin_lock_bh(&sta->lock);
1357

1358
	if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_IDLE) {
1359 1360
#ifdef CONFIG_MAC80211_HT_DEBUG
		if (net_ratelimit())
1361
			printk(KERN_DEBUG "unexpected AddBA Req from "
1362 1363 1364 1365 1366 1367
				"%s on tid %u\n",
				print_mac(mac, mgmt->sa), tid);
#endif /* CONFIG_MAC80211_HT_DEBUG */
		goto end;
	}

1368 1369 1370 1371
	/* prepare A-MPDU MLME for Rx aggregation */
	sta->ampdu_mlme.tid_rx[tid] =
			kmalloc(sizeof(struct tid_ampdu_rx), GFP_ATOMIC);
	if (!sta->ampdu_mlme.tid_rx[tid]) {
1372
#ifdef CONFIG_MAC80211_HT_DEBUG
1373 1374 1375
		if (net_ratelimit())
			printk(KERN_ERR "allocate rx mlme to tid %d failed\n",
					tid);
1376
#endif
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
		goto end;
	}
	/* rx timer */
	sta->ampdu_mlme.tid_rx[tid]->session_timer.function =
				sta_rx_agg_session_timer_expired;
	sta->ampdu_mlme.tid_rx[tid]->session_timer.data =
				(unsigned long)&sta->timer_to_tid[tid];
	init_timer(&sta->ampdu_mlme.tid_rx[tid]->session_timer);

	tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];

1388 1389
	/* prepare reordering buffer */
	tid_agg_rx->reorder_buf =
1390
		kmalloc(buf_size * sizeof(struct sk_buff *), GFP_ATOMIC);
1391
	if (!tid_agg_rx->reorder_buf) {
1392
#ifdef CONFIG_MAC80211_HT_DEBUG
1393 1394 1395
		if (net_ratelimit())
			printk(KERN_ERR "can not allocate reordering buffer "
			       "to tid %d\n", tid);
1396
#endif
1397
		kfree(sta->ampdu_mlme.tid_rx[tid]);
1398 1399 1400
		goto end;
	}
	memset(tid_agg_rx->reorder_buf, 0,
1401
		buf_size * sizeof(struct sk_buff *));
1402 1403 1404

	if (local->ops->ampdu_action)
		ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START,
1405
					       sta->addr, tid, &start_seq_num);
1406
#ifdef CONFIG_MAC80211_HT_DEBUG
1407
	printk(KERN_DEBUG "Rx A-MPDU request on tid %d result %d\n", tid, ret);
1408 1409 1410 1411
#endif /* CONFIG_MAC80211_HT_DEBUG */

	if (ret) {
		kfree(tid_agg_rx->reorder_buf);
1412 1413
		kfree(tid_agg_rx);
		sta->ampdu_mlme.tid_rx[tid] = NULL;
1414 1415 1416 1417
		goto end;
	}

	/* change state and send addba resp */
1418
	sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_OPERATIONAL;
1419 1420 1421 1422 1423 1424 1425 1426
	tid_agg_rx->dialog_token = dialog_token;
	tid_agg_rx->ssn = start_seq_num;
	tid_agg_rx->head_seq_num = start_seq_num;
	tid_agg_rx->buf_size = buf_size;
	tid_agg_rx->timeout = timeout;
	tid_agg_rx->stored_mpdu_num = 0;
	status = WLAN_STATUS_SUCCESS;
end:
1427
	spin_unlock_bh(&sta->lock);
1428 1429

end_no_lock:
1430 1431 1432
	ieee80211_send_addba_resp(sta->sdata->dev, sta->addr, tid,
				  dialog_token, status, 1, buf_size, timeout);
	rcu_read_unlock();
1433
}
1434

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
static void ieee80211_sta_process_addba_resp(struct net_device *dev,
					     struct ieee80211_mgmt *mgmt,
					     size_t len)
{
	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
	struct ieee80211_hw *hw = &local->hw;
	struct sta_info *sta;
	u16 capab;
	u16 tid;
	u8 *state;

1446 1447
	rcu_read_lock();

1448
	sta = sta_info_get(local, mgmt->sa);
1449 1450
	if (!sta) {
		rcu_read_unlock();
1451
		return;
1452
	}
1453 1454 1455 1456

	capab = le16_to_cpu(mgmt->u.action.u.addba_resp.capab);
	tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;

1457
	state = &sta->ampdu_mlme.tid_state_tx[tid];
1458

1459
	spin_lock_bh(&sta->lock);
1460

1461
	if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
1462
		spin_unlock_bh(&sta->lock);
1463 1464 1465
		goto addba_resp_exit;
	}

1466
	if (mgmt->u.action.u.addba_resp.dialog_token !=
1467
		sta->ampdu_mlme.tid_tx[tid]->dialog_token) {
1468
		spin_unlock_bh(&sta->lock);