caif_hsi.c 34.4 KB
Newer Older
1 2 3 4 5 6 7 8
/*
 * Copyright (C) ST-Ericsson AB 2010
 * Contact: Sjur Brendeland / sjur.brandeland@stericsson.com
 * Author:  Daniel Martensson / daniel.martensson@stericsson.com
 *	    Dmitry.Tarnyagin  / dmitry.tarnyagin@stericsson.com
 * License terms: GNU General Public License (GPL) version 2.
 */

9 10
#define pr_fmt(fmt) KBUILD_MODNAME fmt

11 12 13 14 15 16 17 18 19 20 21 22
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/netdevice.h>
#include <linux/string.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/if_arp.h>
#include <linux/timer.h>
23
#include <linux/rtnetlink.h>
24
#include <linux/pkt_sched.h>
25 26 27 28 29 30 31 32 33 34 35
#include <net/caif/caif_layer.h>
#include <net/caif/caif_hsi.h>

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Daniel Martensson<daniel.martensson@stericsson.com>");
MODULE_DESCRIPTION("CAIF HSI driver");

/* Returns the number of padding bytes for alignment. */
#define PAD_POW2(x, pow) ((((x)&((pow)-1)) == 0) ? 0 :\
				(((pow)-((x)&((pow)-1)))))

36 37 38 39
static int inactivity_timeout = 1000;
module_param(inactivity_timeout, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(inactivity_timeout, "Inactivity timeout on HSI, ms.");

40 41 42 43
static int aggregation_timeout = 1;
module_param(aggregation_timeout, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(aggregation_timeout, "Aggregation timeout on HSI, ms.");

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
/*
 * HSI padding options.
 * Warning: must be a base of 2 (& operation used) and can not be zero !
 */
static int hsi_head_align = 4;
module_param(hsi_head_align, int, S_IRUGO);
MODULE_PARM_DESC(hsi_head_align, "HSI head alignment.");

static int hsi_tail_align = 4;
module_param(hsi_tail_align, int, S_IRUGO);
MODULE_PARM_DESC(hsi_tail_align, "HSI tail alignment.");

/*
 * HSI link layer flowcontrol thresholds.
 * Warning: A high threshold value migth increase throughput but it will at
 * the same time prevent channel prioritization and increase the risk of
 * flooding the modem. The high threshold should be above the low.
 */
static int hsi_high_threshold = 100;
module_param(hsi_high_threshold, int, S_IRUGO);
MODULE_PARM_DESC(hsi_high_threshold, "HSI high threshold (FLOW OFF).");

static int hsi_low_threshold = 50;
module_param(hsi_low_threshold, int, S_IRUGO);
MODULE_PARM_DESC(hsi_low_threshold, "HSI high threshold (FLOW ON).");

#define ON 1
#define OFF 0

/*
 * Threshold values for the HSI packet queue. Flowcontrol will be asserted
 * when the number of packets exceeds HIGH_WATER_MARK. It will not be
 * de-asserted before the number of packets drops below LOW_WATER_MARK.
 */
#define LOW_WATER_MARK   hsi_low_threshold
#define HIGH_WATER_MARK  hsi_high_threshold

static LIST_HEAD(cfhsi_list);
static spinlock_t cfhsi_list_lock;

static void cfhsi_inactivity_tout(unsigned long arg)
{
	struct cfhsi *cfhsi = (struct cfhsi *)arg;

	dev_dbg(&cfhsi->ndev->dev, "%s.\n",
		__func__);

	/* Schedule power down work queue. */
	if (!test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
		queue_work(cfhsi->wq, &cfhsi->wake_down_work);
}

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
static void cfhsi_update_aggregation_stats(struct cfhsi *cfhsi,
					   const struct sk_buff *skb,
					   int direction)
{
	struct caif_payload_info *info;
	int hpad, tpad, len;

	info = (struct caif_payload_info *)&skb->cb;
	hpad = 1 + PAD_POW2((info->hdr_len + 1), hsi_head_align);
	tpad = PAD_POW2((skb->len + hpad), hsi_tail_align);
	len = skb->len + hpad + tpad;

	if (direction > 0)
		cfhsi->aggregation_len += len;
	else if (direction < 0)
		cfhsi->aggregation_len -= len;
}

static bool cfhsi_can_send_aggregate(struct cfhsi *cfhsi)
{
	int i;

	if (cfhsi->aggregation_timeout < 0)
		return true;

	for (i = 0; i < CFHSI_PRIO_BEBK; ++i) {
		if (cfhsi->qhead[i].qlen)
			return true;
	}

	/* TODO: Use aggregation_len instead */
	if (cfhsi->qhead[CFHSI_PRIO_BEBK].qlen >= CFHSI_MAX_PKTS)
		return true;

	return false;
}

static struct sk_buff *cfhsi_dequeue(struct cfhsi *cfhsi)
{
	struct sk_buff *skb;
	int i;

	for (i = 0; i < CFHSI_PRIO_LAST; ++i) {
		skb = skb_dequeue(&cfhsi->qhead[i]);
		if (skb)
			break;
	}

	return skb;
}

static int cfhsi_tx_queue_len(struct cfhsi *cfhsi)
{
	int i, len = 0;
	for (i = 0; i < CFHSI_PRIO_LAST; ++i)
		len += skb_queue_len(&cfhsi->qhead[i]);
	return len;
}

155 156 157 158 159 160
static void cfhsi_abort_tx(struct cfhsi *cfhsi)
{
	struct sk_buff *skb;

	for (;;) {
		spin_lock_bh(&cfhsi->lock);
161
		skb = cfhsi_dequeue(cfhsi);
162 163 164 165 166
		if (!skb)
			break;

		cfhsi->ndev->stats.tx_errors++;
		cfhsi->ndev->stats.tx_dropped++;
167
		cfhsi_update_aggregation_stats(cfhsi, skb, -1);
168 169 170 171 172
		spin_unlock_bh(&cfhsi->lock);
		kfree_skb(skb);
	}
	cfhsi->tx_state = CFHSI_TX_STATE_IDLE;
	if (!test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
173
		mod_timer(&cfhsi->inactivity_timer,
174
			jiffies + cfhsi->inactivity_timeout);
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
	spin_unlock_bh(&cfhsi->lock);
}

static int cfhsi_flush_fifo(struct cfhsi *cfhsi)
{
	char buffer[32]; /* Any reasonable value */
	size_t fifo_occupancy;
	int ret;

	dev_dbg(&cfhsi->ndev->dev, "%s.\n",
		__func__);

	do {
		ret = cfhsi->dev->cfhsi_fifo_occupancy(cfhsi->dev,
				&fifo_occupancy);
		if (ret) {
			dev_warn(&cfhsi->ndev->dev,
				"%s: can't get FIFO occupancy: %d.\n",
				__func__, ret);
			break;
		} else if (!fifo_occupancy)
			/* No more data, exitting normally */
			break;

		fifo_occupancy = min(sizeof(buffer), fifo_occupancy);
		set_bit(CFHSI_FLUSH_FIFO, &cfhsi->bits);
		ret = cfhsi->dev->cfhsi_rx(buffer, fifo_occupancy,
				cfhsi->dev);
		if (ret) {
			clear_bit(CFHSI_FLUSH_FIFO, &cfhsi->bits);
			dev_warn(&cfhsi->ndev->dev,
				"%s: can't read data: %d.\n",
				__func__, ret);
			break;
		}

		ret = 5 * HZ;
212
		ret = wait_event_interruptible_timeout(cfhsi->flush_fifo_wait,
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
			 !test_bit(CFHSI_FLUSH_FIFO, &cfhsi->bits), ret);

		if (ret < 0) {
			dev_warn(&cfhsi->ndev->dev,
				"%s: can't wait for flush complete: %d.\n",
				__func__, ret);
			break;
		} else if (!ret) {
			ret = -ETIMEDOUT;
			dev_warn(&cfhsi->ndev->dev,
				"%s: timeout waiting for flush complete.\n",
				__func__);
			break;
		}
	} while (1);

	return ret;
}

static int cfhsi_tx_frm(struct cfhsi_desc *desc, struct cfhsi *cfhsi)
{
	int nfrms = 0;
	int pld_len = 0;
	struct sk_buff *skb;
	u8 *pfrm = desc->emb_frm + CFHSI_MAX_EMB_FRM_SZ;

239
	skb = cfhsi_dequeue(cfhsi);
240 241 242
	if (!skb)
		return 0;

243 244 245
	/* Clear offset. */
	desc->offset = 0;

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	/* Check if we can embed a CAIF frame. */
	if (skb->len < CFHSI_MAX_EMB_FRM_SZ) {
		struct caif_payload_info *info;
		int hpad = 0;
		int tpad = 0;

		/* Calculate needed head alignment and tail alignment. */
		info = (struct caif_payload_info *)&skb->cb;

		hpad = 1 + PAD_POW2((info->hdr_len + 1), hsi_head_align);
		tpad = PAD_POW2((skb->len + hpad), hsi_tail_align);

		/* Check if frame still fits with added alignment. */
		if ((skb->len + hpad + tpad) <= CFHSI_MAX_EMB_FRM_SZ) {
			u8 *pemb = desc->emb_frm;
			desc->offset = CFHSI_DESC_SHORT_SZ;
			*pemb = (u8)(hpad - 1);
			pemb += hpad;

			/* Update network statistics. */
266
			spin_lock_bh(&cfhsi->lock);
267 268
			cfhsi->ndev->stats.tx_packets++;
			cfhsi->ndev->stats.tx_bytes += skb->len;
269 270
			cfhsi_update_aggregation_stats(cfhsi, skb, -1);
			spin_unlock_bh(&cfhsi->lock);
271 272 273

			/* Copy in embedded CAIF frame. */
			skb_copy_bits(skb, 0, pemb, skb->len);
274 275

			/* Consume the SKB */
276 277 278
			consume_skb(skb);
			skb = NULL;
		}
279
	}
280 281 282 283 284 285 286 287 288

	/* Create payload CAIF frames. */
	pfrm = desc->emb_frm + CFHSI_MAX_EMB_FRM_SZ;
	while (nfrms < CFHSI_MAX_PKTS) {
		struct caif_payload_info *info;
		int hpad = 0;
		int tpad = 0;

		if (!skb)
289
			skb = cfhsi_dequeue(cfhsi);
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307

		if (!skb)
			break;

		/* Calculate needed head alignment and tail alignment. */
		info = (struct caif_payload_info *)&skb->cb;

		hpad = 1 + PAD_POW2((info->hdr_len + 1), hsi_head_align);
		tpad = PAD_POW2((skb->len + hpad), hsi_tail_align);

		/* Fill in CAIF frame length in descriptor. */
		desc->cffrm_len[nfrms] = hpad + skb->len + tpad;

		/* Fill head padding information. */
		*pfrm = (u8)(hpad - 1);
		pfrm += hpad;

		/* Update network statistics. */
308
		spin_lock_bh(&cfhsi->lock);
309 310
		cfhsi->ndev->stats.tx_packets++;
		cfhsi->ndev->stats.tx_bytes += skb->len;
311 312
		cfhsi_update_aggregation_stats(cfhsi, skb, -1);
		spin_unlock_bh(&cfhsi->lock);
313 314 315 316 317 318 319 320 321

		/* Copy in CAIF frame. */
		skb_copy_bits(skb, 0, pfrm, skb->len);

		/* Update payload length. */
		pld_len += desc->cffrm_len[nfrms];

		/* Update frame pointer. */
		pfrm += skb->len + tpad;
322 323

		/* Consume the SKB */
324 325 326 327 328 329 330 331 332 333 334 335 336 337
		consume_skb(skb);
		skb = NULL;

		/* Update number of frames. */
		nfrms++;
	}

	/* Unused length fields should be zero-filled (according to SPEC). */
	while (nfrms < CFHSI_MAX_PKTS) {
		desc->cffrm_len[nfrms] = 0x0000;
		nfrms++;
	}

	/* Check if we can piggy-back another descriptor. */
338
	if (cfhsi_can_send_aggregate(cfhsi))
339 340 341 342 343 344 345
		desc->header |= CFHSI_PIGGY_DESC;
	else
		desc->header &= ~CFHSI_PIGGY_DESC;

	return CFHSI_DESC_SZ + pld_len;
}

346
static void cfhsi_start_tx(struct cfhsi *cfhsi)
347
{
348 349
	struct cfhsi_desc *desc = (struct cfhsi_desc *)cfhsi->tx_buf;
	int len, res;
350

351
	dev_dbg(&cfhsi->ndev->dev, "%s.\n", __func__);
352 353 354 355 356 357

	if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
		return;

	do {
		/* Create HSI frame. */
358 359 360 361
		len = cfhsi_tx_frm(desc, cfhsi);
		if (!len) {
			spin_lock_bh(&cfhsi->lock);
			if (unlikely(cfhsi_tx_queue_len(cfhsi))) {
362
				spin_unlock_bh(&cfhsi->lock);
363 364
				res = -EAGAIN;
				continue;
365
			}
366 367 368 369 370 371 372
			cfhsi->tx_state = CFHSI_TX_STATE_IDLE;
			/* Start inactivity timer. */
			mod_timer(&cfhsi->inactivity_timer,
				jiffies + cfhsi->inactivity_timeout);
			spin_unlock_bh(&cfhsi->lock);
			break;
		}
373 374 375

		/* Set up new transfer. */
		res = cfhsi->dev->cfhsi_tx(cfhsi->tx_buf, len, cfhsi->dev);
376
		if (WARN_ON(res < 0))
377 378 379
			dev_err(&cfhsi->ndev->dev, "%s: TX error %d.\n",
				__func__, res);
	} while (res < 0);
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
}

static void cfhsi_tx_done(struct cfhsi *cfhsi)
{
	dev_dbg(&cfhsi->ndev->dev, "%s.\n", __func__);

	if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
		return;

	/*
	 * Send flow on if flow off has been previously signalled
	 * and number of packets is below low water mark.
	 */
	spin_lock_bh(&cfhsi->lock);
	if (cfhsi->flow_off_sent &&
			cfhsi_tx_queue_len(cfhsi) <= cfhsi->q_low_mark &&
			cfhsi->cfdev.flowctrl) {

		cfhsi->flow_off_sent = 0;
		cfhsi->cfdev.flowctrl(cfhsi->ndev, ON);
	}

	if (cfhsi_can_send_aggregate(cfhsi)) {
		spin_unlock_bh(&cfhsi->lock);
		cfhsi_start_tx(cfhsi);
	} else {
		mod_timer(&cfhsi->aggregation_timer,
			jiffies + cfhsi->aggregation_timeout);
		spin_unlock_bh(&cfhsi->lock);
	}
410 411

	return;
412 413 414 415 416 417 418 419 420 421 422 423
}

static void cfhsi_tx_done_cb(struct cfhsi_drv *drv)
{
	struct cfhsi *cfhsi;

	cfhsi = container_of(drv, struct cfhsi, drv);
	dev_dbg(&cfhsi->ndev->dev, "%s.\n",
		__func__);

	if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
		return;
424
	cfhsi_tx_done(cfhsi);
425 426
}

427
static int cfhsi_rx_desc(struct cfhsi_desc *desc, struct cfhsi *cfhsi)
428 429 430 431 432 433 434 435 436 437
{
	int xfer_sz = 0;
	int nfrms = 0;
	u16 *plen = NULL;
	u8 *pfrm = NULL;

	if ((desc->header & ~CFHSI_PIGGY_DESC) ||
			(desc->offset > CFHSI_MAX_EMB_FRM_SZ)) {
		dev_err(&cfhsi->ndev->dev, "%s: Invalid descriptor.\n",
			__func__);
438
		return -EPROTO;
439 440 441 442 443 444
	}

	/* Check for embedded CAIF frame. */
	if (desc->offset) {
		struct sk_buff *skb;
		u8 *dst = NULL;
445
		int len = 0;
446 447 448 449 450 451 452 453 454 455
		pfrm = ((u8 *)desc) + desc->offset;

		/* Remove offset padding. */
		pfrm += *pfrm + 1;

		/* Read length of CAIF frame (little endian). */
		len = *pfrm;
		len |= ((*(pfrm+1)) << 8) & 0xFF00;
		len += 2;	/* Add FCS fields. */

456 457 458 459 460 461
		/* Sanity check length of CAIF frame. */
		if (unlikely(len > CFHSI_MAX_CAIF_FRAME_SZ)) {
			dev_err(&cfhsi->ndev->dev, "%s: Invalid length.\n",
				__func__);
			return -EPROTO;
		}
462 463

		/* Allocate SKB (OK even in IRQ context). */
464 465 466 467 468
		skb = alloc_skb(len + 1, GFP_ATOMIC);
		if (!skb) {
			dev_err(&cfhsi->ndev->dev, "%s: Out of memory !\n",
				__func__);
			return -ENOMEM;
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
		}
		caif_assert(skb != NULL);

		dst = skb_put(skb, len);
		memcpy(dst, pfrm, len);

		skb->protocol = htons(ETH_P_CAIF);
		skb_reset_mac_header(skb);
		skb->dev = cfhsi->ndev;

		/*
		 * We are called from a arch specific platform device.
		 * Unfortunately we don't know what context we're
		 * running in.
		 */
		if (in_interrupt())
			netif_rx(skb);
		else
			netif_rx_ni(skb);

		/* Update network statistics. */
		cfhsi->ndev->stats.rx_packets++;
		cfhsi->ndev->stats.rx_bytes += len;
	}

	/* Calculate transfer length. */
	plen = desc->cffrm_len;
	while (nfrms < CFHSI_MAX_PKTS && *plen) {
		xfer_sz += *plen;
		plen++;
		nfrms++;
	}

	/* Check for piggy-backed descriptor. */
	if (desc->header & CFHSI_PIGGY_DESC)
		xfer_sz += CFHSI_DESC_SZ;

506
	if ((xfer_sz % 4) || (xfer_sz > (CFHSI_BUF_SZ_RX - CFHSI_DESC_SZ))) {
507 508 509
		dev_err(&cfhsi->ndev->dev,
				"%s: Invalid payload len: %d, ignored.\n",
			__func__, xfer_sz);
510
		return -EPROTO;
511 512 513 514
	}
	return xfer_sz;
}

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
static int cfhsi_rx_desc_len(struct cfhsi_desc *desc)
{
	int xfer_sz = 0;
	int nfrms = 0;
	u16 *plen;

	if ((desc->header & ~CFHSI_PIGGY_DESC) ||
			(desc->offset > CFHSI_MAX_EMB_FRM_SZ)) {

		pr_err("Invalid descriptor. %x %x\n", desc->header,
				desc->offset);
		return -EPROTO;
	}

	/* Calculate transfer length. */
	plen = desc->cffrm_len;
	while (nfrms < CFHSI_MAX_PKTS && *plen) {
		xfer_sz += *plen;
		plen++;
		nfrms++;
	}

	if (xfer_sz % 4) {
		pr_err("Invalid payload len: %d, ignored.\n", xfer_sz);
		return -EPROTO;
	}
	return xfer_sz;
}

544
static int cfhsi_rx_pld(struct cfhsi_desc *desc, struct cfhsi *cfhsi)
545 546 547 548 549 550 551 552 553 554 555
{
	int rx_sz = 0;
	int nfrms = 0;
	u16 *plen = NULL;
	u8 *pfrm = NULL;

	/* Sanity check header and offset. */
	if (WARN_ON((desc->header & ~CFHSI_PIGGY_DESC) ||
			(desc->offset > CFHSI_MAX_EMB_FRM_SZ))) {
		dev_err(&cfhsi->ndev->dev, "%s: Invalid descriptor.\n",
			__func__);
556
		return -EPROTO;
557 558 559 560 561
	}

	/* Set frame pointer to start of payload. */
	pfrm = desc->emb_frm + CFHSI_MAX_EMB_FRM_SZ;
	plen = desc->cffrm_len;
562 563 564 565 566 567 568 569 570 571

	/* Skip already processed frames. */
	while (nfrms < cfhsi->rx_state.nfrms) {
		pfrm += *plen;
		rx_sz += *plen;
		plen++;
		nfrms++;
	}

	/* Parse payload. */
572 573 574 575
	while (nfrms < CFHSI_MAX_PKTS && *plen) {
		struct sk_buff *skb;
		u8 *dst = NULL;
		u8 *pcffrm = NULL;
576
		int len = 0;
577 578 579 580 581 582 583 584 585

		/* CAIF frame starts after head padding. */
		pcffrm = pfrm + *pfrm + 1;

		/* Read length of CAIF frame (little endian). */
		len = *pcffrm;
		len |= ((*(pcffrm + 1)) << 8) & 0xFF00;
		len += 2;	/* Add FCS fields. */

586 587 588 589 590 591 592
		/* Sanity check length of CAIF frames. */
		if (unlikely(len > CFHSI_MAX_CAIF_FRAME_SZ)) {
			dev_err(&cfhsi->ndev->dev, "%s: Invalid length.\n",
				__func__);
			return -EPROTO;
		}

593
		/* Allocate SKB (OK even in IRQ context). */
594 595 596 597 598 599
		skb = alloc_skb(len + 1, GFP_ATOMIC);
		if (!skb) {
			dev_err(&cfhsi->ndev->dev, "%s: Out of memory !\n",
				__func__);
			cfhsi->rx_state.nfrms = nfrms;
			return -ENOMEM;
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
		}
		caif_assert(skb != NULL);

		dst = skb_put(skb, len);
		memcpy(dst, pcffrm, len);

		skb->protocol = htons(ETH_P_CAIF);
		skb_reset_mac_header(skb);
		skb->dev = cfhsi->ndev;

		/*
		 * We're called from a platform device,
		 * and don't know the context we're running in.
		 */
		if (in_interrupt())
			netif_rx(skb);
		else
			netif_rx_ni(skb);

		/* Update network statistics. */
		cfhsi->ndev->stats.rx_packets++;
		cfhsi->ndev->stats.rx_bytes += len;

		pfrm += *plen;
		rx_sz += *plen;
		plen++;
		nfrms++;
	}

	return rx_sz;
}

632
static void cfhsi_rx_done(struct cfhsi *cfhsi)
633 634
{
	int res;
635
	int desc_pld_len = 0, rx_len, rx_state;
636
	struct cfhsi_desc *desc = NULL;
637 638
	u8 *rx_ptr, *rx_buf;
	struct cfhsi_desc *piggy_desc = NULL;
639 640 641

	desc = (struct cfhsi_desc *)cfhsi->rx_buf;

642
	dev_dbg(&cfhsi->ndev->dev, "%s\n", __func__);
643 644 645 646 647

	if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
		return;

	/* Update inactivity timer if pending. */
648
	spin_lock_bh(&cfhsi->lock);
649
	mod_timer_pending(&cfhsi->inactivity_timer,
650
			jiffies + cfhsi->inactivity_timeout);
651
	spin_unlock_bh(&cfhsi->lock);
652

653
	if (cfhsi->rx_state.state == CFHSI_RX_STATE_DESC) {
654 655 656
		desc_pld_len = cfhsi_rx_desc_len(desc);

		if (desc_pld_len < 0)
657
			goto out_of_sync;
658 659 660 661 662 663 664

		rx_buf = cfhsi->rx_buf;
		rx_len = desc_pld_len;
		if (desc_pld_len > 0 && (desc->header & CFHSI_PIGGY_DESC))
			rx_len += CFHSI_DESC_SZ;
		if (desc_pld_len == 0)
			rx_buf = cfhsi->rx_flip_buf;
665
	} else {
666
		rx_buf = cfhsi->rx_flip_buf;
667

668 669 670
		rx_len = CFHSI_DESC_SZ;
		if (cfhsi->rx_state.pld_len > 0 &&
				(desc->header & CFHSI_PIGGY_DESC)) {
671 672 673

			piggy_desc = (struct cfhsi_desc *)
				(desc->emb_frm + CFHSI_MAX_EMB_FRM_SZ +
674 675
						cfhsi->rx_state.pld_len);

676
			cfhsi->rx_state.piggy_desc = true;
677

678 679 680 681 682 683 684 685 686 687 688
			/* Extract payload len from piggy-backed descriptor. */
			desc_pld_len = cfhsi_rx_desc_len(piggy_desc);
			if (desc_pld_len < 0)
				goto out_of_sync;

			if (desc_pld_len > 0)
				rx_len = desc_pld_len;

			if (desc_pld_len > 0 &&
					(piggy_desc->header & CFHSI_PIGGY_DESC))
				rx_len += CFHSI_DESC_SZ;
689 690 691 692 693

			/*
			 * Copy needed information from the piggy-backed
			 * descriptor to the descriptor in the start.
			 */
694
			memcpy(rx_buf, (u8 *)piggy_desc,
695
					CFHSI_DESC_SHORT_SZ);
696 697
			/* Mark no embedded frame here */
			piggy_desc->offset = 0;
698 699 700
			if (desc_pld_len == -EPROTO)
				goto out_of_sync;
		}
701 702
	}

703
	if (desc_pld_len) {
704 705
		rx_state = CFHSI_RX_STATE_PAYLOAD;
		rx_ptr = rx_buf + CFHSI_DESC_SZ;
706
	} else {
707 708 709
		rx_state = CFHSI_RX_STATE_DESC;
		rx_ptr = rx_buf;
		rx_len = CFHSI_DESC_SZ;
710 711
	}

712
	/* Initiate next read */
713 714 715
	if (test_bit(CFHSI_AWAKE, &cfhsi->bits)) {
		/* Set up new transfer. */
		dev_dbg(&cfhsi->ndev->dev, "%s: Start RX.\n",
716 717 718
				__func__);

		res = cfhsi->dev->cfhsi_rx(rx_ptr, rx_len,
719 720 721 722 723 724 725 726
				cfhsi->dev);
		if (WARN_ON(res < 0)) {
			dev_err(&cfhsi->ndev->dev, "%s: RX error %d.\n",
				__func__, res);
			cfhsi->ndev->stats.rx_errors++;
			cfhsi->ndev->stats.rx_dropped++;
		}
	}
727

728 729 730 731 732 733 734 735 736 737 738 739 740
	if (cfhsi->rx_state.state == CFHSI_RX_STATE_DESC) {
		/* Extract payload from descriptor */
		if (cfhsi_rx_desc(desc, cfhsi) < 0)
			goto out_of_sync;
	} else {
		/* Extract payload */
		if (cfhsi_rx_pld(desc, cfhsi) < 0)
			goto out_of_sync;
		if (piggy_desc) {
			/* Extract any payload in piggyback descriptor. */
			if (cfhsi_rx_desc(piggy_desc, cfhsi) < 0)
				goto out_of_sync;
		}
741
	}
742 743 744 745 746 747 748 749 750 751 752

	/* Update state info */
	memset(&cfhsi->rx_state, 0, sizeof(cfhsi->rx_state));
	cfhsi->rx_state.state = rx_state;
	cfhsi->rx_ptr = rx_ptr;
	cfhsi->rx_len = rx_len;
	cfhsi->rx_state.pld_len = desc_pld_len;
	cfhsi->rx_state.piggy_desc = desc->header & CFHSI_PIGGY_DESC;

	if (rx_buf != cfhsi->rx_buf)
		swap(cfhsi->rx_buf, cfhsi->rx_flip_buf);
753 754 755 756 757 758 759
	return;

out_of_sync:
	dev_err(&cfhsi->ndev->dev, "%s: Out of sync.\n", __func__);
	print_hex_dump_bytes("--> ", DUMP_PREFIX_NONE,
			cfhsi->rx_buf, CFHSI_DESC_SZ);
	schedule_work(&cfhsi->out_of_sync_work);
760 761 762 763 764 765 766 767 768 769
}

static void cfhsi_rx_slowpath(unsigned long arg)
{
	struct cfhsi *cfhsi = (struct cfhsi *)arg;

	dev_dbg(&cfhsi->ndev->dev, "%s.\n",
		__func__);

	cfhsi_rx_done(cfhsi);
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
}

static void cfhsi_rx_done_cb(struct cfhsi_drv *drv)
{
	struct cfhsi *cfhsi;

	cfhsi = container_of(drv, struct cfhsi, drv);
	dev_dbg(&cfhsi->ndev->dev, "%s.\n",
		__func__);

	if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
		return;

	if (test_and_clear_bit(CFHSI_FLUSH_FIFO, &cfhsi->bits))
		wake_up_interruptible(&cfhsi->flush_fifo_wait);
	else
786
		cfhsi_rx_done(cfhsi);
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
}

static void cfhsi_wake_up(struct work_struct *work)
{
	struct cfhsi *cfhsi = NULL;
	int res;
	int len;
	long ret;

	cfhsi = container_of(work, struct cfhsi, wake_up_work);

	if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
		return;

	if (unlikely(test_bit(CFHSI_AWAKE, &cfhsi->bits))) {
		/* It happenes when wakeup is requested by
		 * both ends at the same time. */
		clear_bit(CFHSI_WAKE_UP, &cfhsi->bits);
805
		clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits);
806 807 808 809 810 811 812 813 814 815
		return;
	}

	/* Activate wake line. */
	cfhsi->dev->cfhsi_wake_up(cfhsi->dev);

	dev_dbg(&cfhsi->ndev->dev, "%s: Start waiting.\n",
		__func__);

	/* Wait for acknowledge. */
816 817 818
	ret = CFHSI_WAKE_TOUT;
	ret = wait_event_interruptible_timeout(cfhsi->wake_up_wait,
					test_and_clear_bit(CFHSI_WAKE_UP_ACK,
819 820 821
							&cfhsi->bits), ret);
	if (unlikely(ret < 0)) {
		/* Interrupted by signal. */
822
		dev_err(&cfhsi->ndev->dev, "%s: Signalled: %ld.\n",
823
			__func__, ret);
824

825 826 827 828
		clear_bit(CFHSI_WAKE_UP, &cfhsi->bits);
		cfhsi->dev->cfhsi_wake_down(cfhsi->dev);
		return;
	} else if (!ret) {
829 830 831
		bool ca_wake = false;
		size_t fifo_occupancy = 0;

832
		/* Wakeup timeout */
833
		dev_dbg(&cfhsi->ndev->dev, "%s: Timeout.\n",
834
			__func__);
835 836 837 838 839

		/* Check FIFO to check if modem has sent something. */
		WARN_ON(cfhsi->dev->cfhsi_fifo_occupancy(cfhsi->dev,
					&fifo_occupancy));

840
		dev_dbg(&cfhsi->ndev->dev, "%s: Bytes in FIFO: %u.\n",
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
				__func__, (unsigned) fifo_occupancy);

		/* Check if we misssed the interrupt. */
		WARN_ON(cfhsi->dev->cfhsi_get_peer_wake(cfhsi->dev,
							&ca_wake));

		if (ca_wake) {
			dev_err(&cfhsi->ndev->dev, "%s: CA Wake missed !.\n",
				__func__);

			/* Clear the CFHSI_WAKE_UP_ACK bit to prevent race. */
			clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits);

			/* Continue execution. */
			goto wake_ack;
		}

858 859 860 861
		clear_bit(CFHSI_WAKE_UP, &cfhsi->bits);
		cfhsi->dev->cfhsi_wake_down(cfhsi->dev);
		return;
	}
862
wake_ack:
863 864 865 866 867 868 869 870
	dev_dbg(&cfhsi->ndev->dev, "%s: Woken.\n",
		__func__);

	/* Clear power up bit. */
	set_bit(CFHSI_AWAKE, &cfhsi->bits);
	clear_bit(CFHSI_WAKE_UP, &cfhsi->bits);

	/* Resume read operation. */
871 872 873 874 875
	dev_dbg(&cfhsi->ndev->dev, "%s: Start RX.\n", __func__);
	res = cfhsi->dev->cfhsi_rx(cfhsi->rx_ptr, cfhsi->rx_len, cfhsi->dev);

	if (WARN_ON(res < 0))
		dev_err(&cfhsi->ndev->dev, "%s: RX err %d.\n", __func__, res);
876 877 878 879 880 881

	/* Clear power up acknowledment. */
	clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits);

	spin_lock_bh(&cfhsi->lock);

882 883
	/* Resume transmit if queues are not empty. */
	if (!cfhsi_tx_queue_len(cfhsi)) {
884 885 886
		dev_dbg(&cfhsi->ndev->dev, "%s: Peer wake, start timer.\n",
			__func__);
		/* Start inactivity timer. */
887
		mod_timer(&cfhsi->inactivity_timer,
888
				jiffies + cfhsi->inactivity_timeout);
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
		spin_unlock_bh(&cfhsi->lock);
		return;
	}

	dev_dbg(&cfhsi->ndev->dev, "%s: Host wake.\n",
		__func__);

	spin_unlock_bh(&cfhsi->lock);

	/* Create HSI frame. */
	len = cfhsi_tx_frm((struct cfhsi_desc *)cfhsi->tx_buf, cfhsi);

	if (likely(len > 0)) {
		/* Set up new transfer. */
		res = cfhsi->dev->cfhsi_tx(cfhsi->tx_buf, len, cfhsi->dev);
		if (WARN_ON(res < 0)) {
			dev_err(&cfhsi->ndev->dev, "%s: TX error %d.\n",
				__func__, res);
			cfhsi_abort_tx(cfhsi);
		}
	} else {
		dev_err(&cfhsi->ndev->dev,
				"%s: Failed to create HSI frame: %d.\n",
				__func__, len);
	}
}

static void cfhsi_wake_down(struct work_struct *work)
{
	long ret;
	struct cfhsi *cfhsi = NULL;
920 921
	size_t fifo_occupancy = 0;
	int retry = CFHSI_WAKE_TOUT;
922 923

	cfhsi = container_of(work, struct cfhsi, wake_down_work);
924
	dev_dbg(&cfhsi->ndev->dev, "%s.\n", __func__);
925 926 927 928 929 930 931 932

	if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
		return;

	/* Deactivate wake line. */
	cfhsi->dev->cfhsi_wake_down(cfhsi->dev);

	/* Wait for acknowledge. */
933
	ret = CFHSI_WAKE_TOUT;
934
	ret = wait_event_interruptible_timeout(cfhsi->wake_down_wait,
935 936
					test_and_clear_bit(CFHSI_WAKE_DOWN_ACK,
							&cfhsi->bits), ret);
937 938
	if (ret < 0) {
		/* Interrupted by signal. */
939
		dev_err(&cfhsi->ndev->dev, "%s: Signalled: %ld.\n",
940 941 942
			__func__, ret);
		return;
	} else if (!ret) {
943 944
		bool ca_wake = true;

945
		/* Timeout */
946
		dev_err(&cfhsi->ndev->dev, "%s: Timeout.\n", __func__);
947 948 949 950 951 952 953

		/* Check if we misssed the interrupt. */
		WARN_ON(cfhsi->dev->cfhsi_get_peer_wake(cfhsi->dev,
							&ca_wake));
		if (!ca_wake)
			dev_err(&cfhsi->ndev->dev, "%s: CA Wake missed !.\n",
				__func__);
954 955
	}

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
	/* Check FIFO occupancy. */
	while (retry) {
		WARN_ON(cfhsi->dev->cfhsi_fifo_occupancy(cfhsi->dev,
							&fifo_occupancy));

		if (!fifo_occupancy)
			break;

		set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(1);
		retry--;
	}

	if (!retry)
		dev_err(&cfhsi->ndev->dev, "%s: FIFO Timeout.\n", __func__);

	/* Clear AWAKE condition. */
973 974
	clear_bit(CFHSI_AWAKE, &cfhsi->bits);

975 976
	/* Cancel pending RX requests. */
	cfhsi->dev->cfhsi_rx_cancel(cfhsi->dev);
977 978 979

}

980 981 982 983 984 985 986 987 988 989 990
static void cfhsi_out_of_sync(struct work_struct *work)
{
	struct cfhsi *cfhsi = NULL;

	cfhsi = container_of(work, struct cfhsi, out_of_sync_work);

	rtnl_lock();
	dev_close(cfhsi->ndev);
	rtnl_unlock();
}

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
static void cfhsi_wake_up_cb(struct cfhsi_drv *drv)
{
	struct cfhsi *cfhsi = NULL;

	cfhsi = container_of(drv, struct cfhsi, drv);
	dev_dbg(&cfhsi->ndev->dev, "%s.\n",
		__func__);

	set_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits);
	wake_up_interruptible(&cfhsi->wake_up_wait);

	if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
		return;

	/* Schedule wake up work queue if the peer initiates. */
	if (!test_and_set_bit(CFHSI_WAKE_UP, &cfhsi->bits))
		queue_work(cfhsi->wq, &cfhsi->wake_up_work);
}

static void cfhsi_wake_down_cb(struct cfhsi_drv *drv)
{
	struct cfhsi *cfhsi = NULL;

	cfhsi = container_of(drv, struct cfhsi, drv);
	dev_dbg(&cfhsi->ndev->dev, "%s.\n",
		__func__);

	/* Initiating low power is only permitted by the host (us). */
	set_bit(CFHSI_WAKE_DOWN_ACK, &cfhsi->bits);
	wake_up_interruptible(&cfhsi->wake_down_wait);
}

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
static void cfhsi_aggregation_tout(unsigned long arg)
{
	struct cfhsi *cfhsi = (struct cfhsi *)arg;

	dev_dbg(&cfhsi->ndev->dev, "%s.\n",
		__func__);

	cfhsi_start_tx(cfhsi);
}

1033 1034 1035 1036 1037
static int cfhsi_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct cfhsi *cfhsi = NULL;
	int start_xfer = 0;
	int timer_active;
1038
	int prio;
1039 1040 1041 1042 1043 1044

	if (!dev)
		return -EINVAL;

	cfhsi = netdev_priv(dev);

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	switch (skb->priority) {
	case TC_PRIO_BESTEFFORT:
	case TC_PRIO_FILLER:
	case TC_PRIO_BULK:
		prio = CFHSI_PRIO_BEBK;
		break;
	case TC_PRIO_INTERACTIVE_BULK:
		prio = CFHSI_PRIO_VI;
		break;
	case TC_PRIO_INTERACTIVE:
		prio = CFHSI_PRIO_VO;
		break;
	case TC_PRIO_CONTROL:
	default:
		prio = CFHSI_PRIO_CTL;
		break;
	}

1063 1064
	spin_lock_bh(&cfhsi->lock);

1065 1066 1067 1068 1069
	/* Update aggregation statistics  */
	cfhsi_update_aggregation_stats(cfhsi, skb, 1);

	/* Queue the SKB */
	skb_queue_tail(&cfhsi->qhead[prio], skb);
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

	/* Sanity check; xmit should not be called after unregister_netdev */
	if (WARN_ON(test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))) {
		spin_unlock_bh(&cfhsi->lock);
		cfhsi_abort_tx(cfhsi);
		return -EINVAL;
	}

	/* Send flow off if number of packets is above high water mark. */
	if (!cfhsi->flow_off_sent &&
1080
		cfhsi_tx_queue_len(cfhsi) > cfhsi->q_high_mark &&
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		cfhsi->cfdev.flowctrl) {
		cfhsi->flow_off_sent = 1;
		cfhsi->cfdev.flowctrl(cfhsi->ndev, OFF);
	}

	if (cfhsi->tx_state == CFHSI_TX_STATE_IDLE) {
		cfhsi->tx_state = CFHSI_TX_STATE_XFER;
		start_xfer = 1;
	}

1091
	if (!start_xfer) {
1092 1093 1094 1095
		/* Send aggregate if it is possible */
		bool aggregate_ready =
			cfhsi_can_send_aggregate(cfhsi) &&
			del_timer(&cfhsi->aggregation_timer) > 0;
1096
		spin_unlock_bh(&cfhsi->lock);
1097 1098
		if (aggregate_ready)
			cfhsi_start_tx(cfhsi);
1099
		return 0;
1100
	}
1101 1102

	/* Delete inactivity timer if started. */
1103
	timer_active = del_timer_sync(&cfhsi->inactivity_timer);
1104

1105 1106
	spin_unlock_bh(&cfhsi->lock);

1107 1108 1109 1110 1111 1112 1113
	if (timer_active) {
		struct cfhsi_desc *desc = (struct cfhsi_desc *)cfhsi->tx_buf;
		int len;
		int res;

		/* Create HSI frame. */
		len = cfhsi_tx_frm(desc, cfhsi);
1114
		WARN_ON(!len);
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

		/* Set up new transfer. */
		res = cfhsi->dev->cfhsi_tx(cfhsi->tx_buf, len, cfhsi->dev);
		if (WARN_ON(res < 0)) {
			dev_err(&cfhsi->ndev->dev, "%s: TX error %d.\n",
				__func__, res);
			cfhsi_abort_tx(cfhsi);
		}
	} else {
		/* Schedule wake up work queue if the we initiate. */
		if (!test_and_set_bit(CFHSI_WAKE_UP, &cfhsi->bits))
			queue_work(cfhsi->wq, &cfhsi->wake_up_work);
	}

	return 0;
}

1132
static const struct net_device_ops cfhsi_ops;
1133 1134 1135

static void cfhsi_setup(struct net_device *dev)
{
1136
	int i;
1137 1138 1139 1140 1141
	struct cfhsi *cfhsi = netdev_priv(dev);
	dev->features = 0;
	dev->netdev_ops = &cfhsi_ops;
	dev->type = ARPHRD_CAIF;
	dev->flags = IFF_POINTOPOINT | IFF_NOARP;
1142
	dev->mtu = CFHSI_MAX_CAIF_FRAME_SZ;
1143 1144
	dev->tx_queue_len = 0;
	dev->destructor = free_netdev;
1145 1146
	for (i = 0; i < CFHSI_PRIO_LAST; ++i)
		skb_queue_head_init(&cfhsi->qhead[i]);
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	cfhsi->cfdev.link_select = CAIF_LINK_HIGH_BANDW;
	cfhsi->cfdev.use_frag = false;
	cfhsi->cfdev.use_stx = false;
	cfhsi->cfdev.use_fcs = false;
	cfhsi->ndev = dev;
}

int cfhsi_probe(struct platform_device *pdev)
{
	struct cfhsi *cfhsi = NULL;
	struct net_device *ndev;
1158

1159 1160 1161
	int res;

	ndev = alloc_netdev(sizeof(struct cfhsi), "cfhsi%d", cfhsi_setup);
1162
	if (!ndev)
1163 1164 1165 1166 1167 1168
		return -ENODEV;

	cfhsi = netdev_priv(ndev);
	cfhsi->ndev = ndev;
	cfhsi->pdev = pdev;

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	/* Assign the HSI device. */
	cfhsi->dev = pdev->dev.platform_data;

	/* Assign the driver to this HSI device. */
	cfhsi->dev->drv = &cfhsi->drv;

	/* Register network device. */
	res = register_netdev(ndev);
	if (res) {
		dev_err(&ndev->dev, "%s: Registration error: %d.\n",
			__func__, res);
		free_netdev(ndev);
	}
	/* Add CAIF HSI device to list. */
	spin_lock(&cfhsi_list_lock);
	list_add_tail(&cfhsi->list, &cfhsi_list);
	spin_unlock(&cfhsi_list_lock);

	return res;
}

static int cfhsi_open(struct net_device *ndev)
{
	struct cfhsi *cfhsi = netdev_priv(ndev);
	int res;

	clear_bit(CFHSI_SHUTDOWN, &cfhsi->bits);

1197 1198
	/* Initialize state vaiables. */
	cfhsi->tx_state = CFHSI_TX_STATE_IDLE;
1199
	cfhsi->rx_state.state = CFHSI_RX_STATE_DESC;
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

	/* Set flow info */
	cfhsi->flow_off_sent = 0;
	cfhsi->q_low_mark = LOW_WATER_MARK;
	cfhsi->q_high_mark = HIGH_WATER_MARK;


	/*
	 * Allocate a TX buffer with the size of a HSI packet descriptors
	 * and the necessary room for CAIF payload frames.
	 */
	cfhsi->tx_buf = kzalloc(CFHSI_BUF_SZ_TX, GFP_KERNEL);
	if (!cfhsi->tx_buf) {
		res = -ENODEV;
		goto err_alloc_tx;
	}

	/*
	 * Allocate a RX buffer with the size of two HSI packet descriptors and
	 * the necessary room for CAIF payload frames.
	 */
	cfhsi->rx_buf = kzalloc(CFHSI_BUF_SZ_RX, GFP_KERNEL);
	if (!cfhsi->rx_buf) {
		res = -ENODEV;
		goto err_alloc_rx;
	}

1227 1228 1229 1230 1231 1232
	cfhsi->rx_flip_buf = kzalloc(CFHSI_BUF_SZ_RX, GFP_KERNEL);
	if (!cfhsi->rx_flip_buf) {
		res = -ENODEV;
		goto err_alloc_rx_flip;
	}

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	/* Pre-calculate inactivity timeout. */
	if (inactivity_timeout != -1) {
		cfhsi->inactivity_timeout =
				inactivity_timeout * HZ / 1000;
		if (!cfhsi->inactivity_timeout)
			cfhsi->inactivity_timeout = 1;
		else if (cfhsi->inactivity_timeout > NEXT_TIMER_MAX_DELTA)
			cfhsi->inactivity_timeout = NEXT_TIMER_MAX_DELTA;
	} else {
		cfhsi->inactivity_timeout = NEXT_TIMER_MAX_DELTA;
	}

1245 1246 1247
	/* Initialize aggregation timeout */
	cfhsi->aggregation_timeout = aggregation_timeout;

1248
	/* Initialize recieve vaiables. */
1249 1250 1251 1252 1253 1254 1255 1256 1257
	cfhsi->rx_ptr = cfhsi->rx_buf;
	cfhsi->rx_len = CFHSI_DESC_SZ;

	/* Initialize spin locks. */
	spin_lock_init(&cfhsi->lock);

	/* Set up the driver. */
	cfhsi->drv.tx_done_cb = cfhsi_tx_done_cb;
	cfhsi->drv.rx_done_cb = cfhsi_rx_done_cb;
1258 1259
	cfhsi->drv.wake_up_cb = cfhsi_wake_up_cb;
	cfhsi->drv.wake_down_cb = cfhsi_wake_down_cb;
1260 1261 1262 1263

	/* Initialize the work queues. */
	INIT_WORK(&cfhsi->wake_up_work, cfhsi_wake_up);
	INIT_WORK(&cfhsi->wake_down_work, cfhsi_wake_down);
1264
	INIT_WORK(&cfhsi->out_of_sync_work, cfhsi_out_of_sync);
1265 1266 1267 1268 1269 1270 1271 1272

	/* Clear all bit fields. */
	clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits);
	clear_bit(CFHSI_WAKE_DOWN_ACK, &cfhsi->bits);
	clear_bit(CFHSI_WAKE_UP, &cfhsi->bits);
	clear_bit(CFHSI_AWAKE, &cfhsi->bits);

	/* Create work thread. */
1273
	cfhsi->wq = create_singlethread_workqueue(cfhsi->pdev->name);
1274
	if (!cfhsi->wq) {
1275
		dev_err(&cfhsi->ndev->dev, "%s: Failed to create work queue.\n",
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
			__func__);
		res = -ENODEV;
		goto err_create_wq;
	}

	/* Initialize wait queues. */
	init_waitqueue_head(&cfhsi->wake_up_wait);
	init_waitqueue_head(&cfhsi->wake_down_wait);
	init_waitqueue_head(&cfhsi->flush_fifo_wait);

	/* Setup the inactivity timer. */
1287 1288 1289
	init_timer(&cfhsi->inactivity_timer);
	cfhsi->inactivity_timer.data = (unsigned long)cfhsi;
	cfhsi->inactivity_timer.function = cfhsi_inactivity_tout;
1290 1291 1292 1293
	/* Setup the slowpath RX timer. */
	init_timer(&cfhsi->rx_slowpath_timer);
	cfhsi->rx_slowpath_timer.data = (unsigned long)cfhsi;
	cfhsi->rx_slowpath_timer.function = cfhsi_rx_slowpath;
1294 1295 1296 1297
	/* Setup the aggregation timer. */
	init_timer(&cfhsi->aggregation_timer);
	cfhsi->aggregation_timer.data = (unsigned long)cfhsi;
	cfhsi->aggregation_timer.function = cfhsi_aggregation_tout;
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

	/* Activate HSI interface. */
	res = cfhsi->dev->cfhsi_up(cfhsi->dev);
	if (res) {
		dev_err(&cfhsi->ndev->dev,
			"%s: can't activate HSI interface: %d.\n",
			__func__, res);
		goto err_activate;
	}

	/* Flush FIFO */
	res = cfhsi_flush_fifo(cfhsi);
	if (res) {
1311
		dev_err(&cfhsi->ndev->dev, "%s: Can't flush FIFO: %d.\n",
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
			__func__, res);
		goto err_net_reg;
	}
	return res;

 err_net_reg:
	cfhsi->dev->cfhsi_down(cfhsi->dev);
 err_activate:
	destroy_workqueue(cfhsi->wq);
 err_create_wq:
1322 1323
	kfree(cfhsi->rx_flip_buf);
 err_alloc_rx_flip: