heap.c 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * mem.c
 *
 * Isolated liblcd page allocator and related
 * code.
 */

#include <lcd_config/pre_hook.h>

10
#include <linux/mm.h>
11
#include <linux/slab.h>
12
#include <liblcd/mem.h>
13
#include <liblcd/allocator.h>
14 15
#include <asm/lcd_domains/liblcd.h>
#include <lcd_domains/liblcd.h>
16 17 18

#include <lcd_config/post_hook.h>

19 20 21
struct lcd_page_allocator *heap_allocator;
struct page *heap_page_array;

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/* LOW-LEVEL SYSCALLS -------------------------------------------------- */

int _lcd_alloc_pages_exact_node(int nid, unsigned int flags, unsigned int order,
				cptr_t *slot_out)
{
	cptr_t slot;
	int ret;
	/*
	 * Get a free cptr
	 */
	ret = lcd_cptr_alloc(&slot);
	if (ret) {
		LIBLCD_ERR("out of cptr's");
		goto fail1;
	}
	/*
	 * Alloc pages
	 */
40
	ret = lcd_syscall_alloc_pages_exact_node(slot, nid, flags, order);
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
	if (ret) {
		LIBLCD_ERR("alloc pages syscall failed");
		goto fail2;
	}

	*slot_out = slot;
	
	return 0;

fail2:
	lcd_cptr_free(slot);
fail1:
	return ret;
}

int _lcd_alloc_pages(unsigned int flags, unsigned int order,
		cptr_t *slot_out)
{
	cptr_t slot;
	int ret;
	/*
	 * Get a free cptr
	 */
	ret = lcd_cptr_alloc(&slot);
	if (ret) {
		LIBLCD_ERR("out of cptr's");
		goto fail1;
	}
	/*
	 * Alloc pages
	 */
72
	ret = lcd_syscall_alloc_pages(slot, flags, order);
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
	if (ret) {
		LIBLCD_ERR("alloc pages syscall failed");
		goto fail2;
	}

	*slot_out = slot;
	
	return 0;

fail2:
	lcd_cptr_free(slot);
fail1:
	return ret;
}

88
int _lcd_vmalloc(unsigned long nr_pages, cptr_t *slot_out)
89 90 91 92 93 94 95 96 97 98 99 100 101 102
{
	cptr_t slot;
	int ret;
	/*
	 * Get a free cptr
	 */
	ret = lcd_cptr_alloc(&slot);
	if (ret) {
		LIBLCD_ERR("out of cptr's");
		goto fail1;
	}
	/*
	 * Alloc pages
	 */
103
	ret = lcd_syscall_vmalloc(slot, nr_pages);
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	if (ret) {
		LIBLCD_ERR("vmalloc syscall failed");
		goto fail2;
	}

	*slot_out = slot;
	
	return 0;

fail2:
	lcd_cptr_free(slot);
fail1:
	return ret;
}

119 120
/* PAGE ALLOCATOR INTERNALS ---------------------------------------- */

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
static void __do_one_heap_free(struct lcd_resource_node *n)
{
	cptr_t pages = n->cptr;
	gpa_t base = __gpa(lcd_resource_node_start(n));
	/*
	 * Unmap from guest physical
	 */
	_lcd_munmap(pages, base);
	/*
	 * Free pages from host
	 */
	lcd_cap_delete(pages);
}

static void do_one_heap_free(gpa_t dest)
{
	int ret;
	struct lcd_resource_node *n;
	/*
	 * Use resource tree to look up node for memory object
	 */
	ret = lcd_phys_to_resource_node(dest, &n);
	if (ret) {
		LIBLCD_ERR("error looking up resource node");
		return;
	}
	__do_one_heap_free(n);
}

150 151
static int do_one_heap_alloc(gpa_t dest, unsigned int alloc_order,
			struct lcd_resource_node **n_out)
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
{
	int ret;
	cptr_t pages;
	/*
	 * Do low-level page alloc out into microkernel
	 */
	ret = _lcd_alloc_pages(0, alloc_order, &pages);
	if (ret) {
		LIBLCD_ERR("low level alloc failed");
		goto fail1;
	}
	/*
	 * Map in guest physical at the right offset into the heap region
	 */
	ret = _lcd_mmap(pages, alloc_order, dest);
	if (ret) {
		LIBLCD_ERR("low level mmap failed");
		goto fail2;
	}
171 172 173 174 175 176 177 178
	/*
	 * Get the resource node for the mapped memory
	 */
	ret = lcd_phys_to_resource_node(dest, n_out);
	if (ret) {
		LIBLCD_ERR("error getting resource node");
		goto fail3;
	}
179 180 181

	return 0;

182 183
fail3:
	_lcd_munmap(pages, dest);
184 185 186 187 188 189 190
fail2:
	lcd_cap_delete(pages);
fail1:
	return ret;
}

static int 
191
heap_alloc_map_metadata_memory(const struct lcd_page_allocator_cbs *cbs,
192 193 194 195 196 197 198 199 200
				unsigned int alloc_order,
				unsigned long metadata_sz,
				void **metadata_addr)
{
	int ret;
	unsigned long i, j;
	unsigned long nr_allocs;
	unsigned total;
	gpa_t dest;
201
	struct lcd_resource_node *unused;
202

203
	/*
204 205
	 * Since we are embedding, we need to allocate in 2^alloc_order
	 * chunks of pages.
206
	 */
207 208 209 210 211 212 213 214
	total = ALIGN(metadata_sz, (1UL << (alloc_order + PAGE_SHIFT)));
	nr_allocs = total >> (alloc_order + PAGE_SHIFT); /* > 0 */

	for (i = 0; i < nr_allocs; i++) {

		dest = gpa_add(LCD_HEAP_GP_ADDR, 
			i * (1UL << (alloc_order + PAGE_SHIFT)));

215
		ret = do_one_heap_alloc(dest, alloc_order, &unused);
216 217 218 219 220
		if (ret) {
			LIBLCD_ERR("metadata alloca failed at i = %lx", i);
			goto fail1;
		}

221
	}
222 223
	
	*metadata_addr = (void *)gva_val(LCD_HEAP_GV_ADDR);
224 225 226 227

	return 0;

fail1:
228 229 230 231 232 233 234 235 236
	for (j = 0; j < i; j++) {

		dest = gpa_add(LCD_HEAP_GP_ADDR, 
			j * (1UL << (alloc_order + PAGE_SHIFT)));

		do_one_heap_free(dest);

	}

237 238 239 240
	return ret;
}

static void
241
heap_free_unmap_metadata_memory(const struct lcd_page_allocator_cbs *cbs,
242 243 244
				void *metadata_addr,
				unsigned long metadata_sz,
				unsigned int alloc_order)
245
{
246 247 248 249 250 251 252 253 254 255 256 257
	unsigned long i;
	unsigned long nr_frees;
	unsigned total;
	gpa_t dest;

	/*
	 * Ignore the metadata address; should be at predefined spot.
	 *
	 * We alloc'd the metadata in chunks; free them.
	 */

	total = ALIGN(metadata_sz, (1UL << (alloc_order + PAGE_SHIFT)));
258
	nr_frees = total >> (alloc_order + PAGE_SHIFT); /* > 0 */
259

260
	for (i = 0; i < nr_frees; i++) {
261 262 263 264 265 266
		dest = gpa_add(LCD_HEAP_GP_ADDR, 
			i * (1UL << (alloc_order + PAGE_SHIFT)));
		do_one_heap_free(dest);
	}

	return;
267 268 269 270 271 272 273 274 275
}

static int 
heap_alloc_map_regular_mem_chunk(struct lcd_page_allocator *pa,
				struct lcd_page_block *dest_blocks,
				unsigned long mapping_offset,
				unsigned int alloc_order,
				struct lcd_resource_node **n_out)
{
276 277
	gpa_t dest = gpa_add(LCD_HEAP_GP_ADDR, mapping_offset);

278
	return do_one_heap_alloc(dest, alloc_order, n_out);
279 280 281 282 283 284 285 286 287
}

static void
heap_free_unmap_regular_mem_chunk(struct lcd_page_allocator *pa,
				struct lcd_page_block *page_blocks,
				struct lcd_resource_node *n_to_delete,
				unsigned long mapping_offset,
				unsigned int order)
{
288
	__do_one_heap_free(n_to_delete);
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
}

static inline gva_t heap_page_block_to_addr(struct lcd_page_block *pb)
{
	return gva_add(LCD_HEAP_GV_ADDR, 
		lcd_page_block_to_offset(heap_allocator, pb));
}

static inline struct lcd_page_block *heap_addr_to_page_block(gva_t addr)
{
	return lcd_offset_to_page_block(
		heap_allocator,
		gva_val(addr) - gva_val(LCD_HEAP_GV_ADDR));
}

static inline struct page *heap_addr_to_struct_page(gva_t addr)
{
	unsigned long idx;
	idx = (gva_val(addr) - gva_val(LCD_HEAP_GV_ADDR)) >> PAGE_SHIFT;
	return &heap_page_array[idx];
}

311
static inline gva_t heap_struct_page_to_addr(const struct page *p)
312 313 314 315 316 317
{
	unsigned long idx;
	idx = p - heap_page_array;
	return gva_add(LCD_HEAP_GV_ADDR, idx * PAGE_SIZE);
}

318 319 320 321 322 323 324 325
static inline struct page *heap_page_block_to_struct_page(
	struct lcd_page_block *pb)
{
	return heap_addr_to_struct_page(
		heap_page_block_to_addr(pb));
}

static inline struct lcd_page_block *heap_struct_page_to_page_block(
326
	const struct page *p)
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
{
	return heap_addr_to_page_block(
		heap_struct_page_to_addr(p));
}

/* PAGE ALLOC INTERFACE ---------------------------------------- */

struct page *lcd_alloc_pages_exact_node(int nid, unsigned int flags, 
					unsigned int order)
{
	/*
	 * For now, we ignore the node id (not numa aware).
	 */
	return lcd_alloc_pages(flags, order);
}

struct page *lcd_alloc_pages(unsigned int flags, unsigned int order)
{
	struct lcd_page_block *pb;
	/*
	 * Do heap alloc. Flags are ignored for now.
	 */
	pb = lcd_page_allocator_alloc(heap_allocator, order);
	if (!pb) {
		LIBLCD_ERR("alloc failed");
		goto fail1;
	}
	/*
	 * Convert to struct page
	 */
	return heap_page_block_to_struct_page(pb);

fail1:
	return NULL;
}

void lcd_free_pages(struct page *base, unsigned int order)
{
	lcd_page_allocator_free(heap_allocator,
366
				heap_struct_page_to_page_block(base),
367 368 369 370 371 372 373
				order);
}

void* lcd_vmalloc(unsigned long sz)
{
	/* Not implemented for now */
	BUG();
374
	return NULL;
375 376 377 378 379 380 381 382
}

void lcd_vfree(void *ptr)
{
	/* Not implemented for now */
	BUG();
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
struct page *lcd_virt_to_head_page(const void *addr)
{
	unsigned long i_addr = (unsigned long)addr;

	/* If outside heap, error out and return NULL */
	if (i_addr < gva_val(LCD_HEAP_GV_ADDR) ||
		i_addr >= gva_val(LCD_HEAP_GV_ADDR) + LCD_HEAP_SIZE) {
		LIBLCD_ERR("address %p falls outside heap; only addresses in the heap can be converted to a struct page pointer (we don't use the costly struct page metadata for all bits of the physical address space)", addr);
		return NULL;
	}

	return heap_addr_to_struct_page(__gva((unsigned long)addr));
}

void *lcd_page_address(const struct page *page)
{
	return (void *)gva_val(heap_struct_page_to_addr(page));
}

void lcd_free_memcg_kmem_pages(unsigned long addr, unsigned int order)
{
	lcd_free_pages(heap_addr_to_struct_page(__gva(addr)), order);
}

407 408 409 410 411
/* VOLUNTEERING -------------------------------------------------- */

int lcd_volunteer_pages(struct page *base, unsigned int order,
			cptr_t *slot_out)
{
412
	unsigned long size, unused;
413 414
	return lcd_phys_to_cptr(
		lcd_gva2gpa(__gva((unsigned long)lcd_page_address(base))), 
415
		slot_out, &size, &unused);
416 417 418 419 420 421 422 423 424 425
}

void lcd_unvolunteer_pages(cptr_t pages)
{
	return;
}

int lcd_volunteer_dev_mem(gpa_t base, unsigned int order,
			cptr_t *slot_out)
{
426 427
	unsigned long size, unused;
	return lcd_phys_to_cptr(base, slot_out, &size, &unused);
428 429 430 431 432 433 434
}

void lcd_unvolunteer_dev_mem(cptr_t devmem)
{
	return;
}

435
int lcd_volunteer_vmalloc_mem(gva_t base, unsigned long nr_pages,
436 437
			cptr_t *slot_out)
{
438 439
	unsigned long size, unused;
	return lcd_virt_to_cptr(base, slot_out, &size, &unused);
440 441 442 443 444 445 446 447 448 449 450
}

void lcd_unvolunteer_vmalloc_mem(cptr_t vmalloc_mem)
{
	return;
}

/* ADDRESS TRANSLATION -------------------------------------------------- */

gpa_t lcd_gva2gpa(gva_t gva)
{
451
	return isolated_lcd_gva2gpa(gva);
452 453 454 455
}

gva_t lcd_gpa2gva(gpa_t gpa)
{
456
	return isolated_lcd_gpa2gva(gpa);
457 458 459 460
}

/* INIT/EXIT -------------------------------------------------- */

461 462 463 464 465
static int setup_struct_page_array(void)
{
	struct lcd_page_block *pb;
	unsigned int order;
	unsigned long bytes;
466
	int ret;
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	/*
	 * Compute number of struct pages we need
	 */
	bytes = roundup_pow_of_two((1UL << LCD_HEAP_NR_PAGES_ORDER) *
				sizeof(struct page));
	order = ilog2(bytes >> PAGE_SHIFT);
	/*
	 * Do the alloc
	 */
	pb = lcd_page_allocator_alloc(heap_allocator, order);
	if (!pb) {
		LIBLCD_ERR("error setting up struct page array for heap");
		ret = -ENOMEM;
		goto fail1;
	}
	/*
	 * Zero out the array (unnecessary right now, but just in case)
	 */
485
	heap_page_array = (void *)gva_val(heap_page_block_to_addr(pb));
486 487
	memset(heap_page_array,
		0,
488
		(1UL << (order + PAGE_SHIFT)));
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

	return 0;

fail1:
	return ret;
}

void cpucache_init(void);

static void __init_refok kmalloc_init(void)
{
	kmem_cache_init();
	kmem_cache_init_late();
	cpucache_init();
}

struct lcd_page_allocator_cbs heap_page_allocator_cbs = {
506 507
	.alloc_map_metadata_memory = heap_alloc_map_metadata_memory,
	.free_unmap_metadata_memory = heap_free_unmap_metadata_memory,
508 509 510 511 512
	.alloc_map_regular_mem_chunk = heap_alloc_map_regular_mem_chunk,
	.free_unmap_regular_mem_chunk = heap_free_unmap_regular_mem_chunk,
};

int __liblcd_heap_init(void)
513
{
514
	int ret;
515 516 517
	/*
	 * Create new page allocator in heap region
	 */
518
	ret = lcd_page_allocator_create(LCD_HEAP_NR_PAGES_ORDER,
519 520 521 522 523
					LCD_HEAP_MIN_ORDER,
					LCD_HEAP_MAX_ORDER,
					&heap_page_allocator_cbs,
					1, /* embed metadata */
					&heap_allocator);
524
	if (ret) {
525
		LIBLCD_ERR("error initializing heap allocator");
526 527
		goto fail1;
	}
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
	/*
	 * Set up struct page array
	 */
	ret = setup_struct_page_array();
	if (ret) {
		LIBLCD_ERR("error setting up struct page array for heap");
		goto fail2;
	}
	/*
	 * Initialize kmalloc
	 */
	kmalloc_init();
	/*
	 * Inform mem itree the page and slab allocators are up (and so
	 * it can start using kmalloc for allocating nodes)
	 */
	__liblcd_mem_itree_booted();
545

546
	return 0;
547

548
fail2:
549
	lcd_page_allocator_destroy(heap_allocator); /* frees metadata */
550
	heap_allocator = NULL;
551 552
fail1:
	return ret;
553
}