rc80211_minstrel_ht.c 27.4 KB
Newer Older
1
/*
2
 * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/skbuff.h>
#include <linux/debugfs.h>
#include <linux/random.h>
#include <linux/ieee80211.h>
#include <net/mac80211.h>
#include "rate.h"
#include "rc80211_minstrel.h"
#include "rc80211_minstrel_ht.h"

#define AVG_PKT_SIZE	1200

/* Number of bits for an average sized packet */
#define MCS_NBITS (AVG_PKT_SIZE << 3)

/* Number of symbols for a packet with (bps) bits per symbol */
#define MCS_NSYMS(bps) ((MCS_NBITS + (bps) - 1) / (bps))

27
/* Transmission time (nanoseconds) for a packet containing (syms) symbols */
28
29
#define MCS_SYMBOL_TIME(sgi, syms)					\
	(sgi ?								\
30
31
	  ((syms) * 18000 + 4000) / 5 :	/* syms * 3.6 us */		\
	  ((syms) * 1000) << 2		/* syms * 4 us */		\
32
33
34
35
36
	)

/* Transmit duration for the raw data part of an average sized packet */
#define MCS_DURATION(streams, sgi, bps) MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps)))

37
38
39
40
41
42
43
44
/*
 * Define group sort order: HT40 -> SGI -> #streams
 */
#define GROUP_IDX(_streams, _sgi, _ht40)	\
	MINSTREL_MAX_STREAMS * 2 * _ht40 +	\
	MINSTREL_MAX_STREAMS * _sgi +		\
	_streams - 1

45
/* MCS rate information for an MCS group */
46
47
#define MCS_GROUP(_streams, _sgi, _ht40)				\
	[GROUP_IDX(_streams, _sgi, _ht40)] = {				\
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
	.streams = _streams,						\
	.flags =							\
		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
		(_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),		\
	.duration = {							\
		MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260)		\
	}								\
}

64
#define CCK_DURATION(_bitrate, _short, _len)		\
65
	(1000 * (10 /* SIFS */ +			\
66
	 (_short ? 72 + 24 : 144 + 48 ) +		\
67
	 (8 * (_len + 4) * 10) / (_bitrate)))
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

#define CCK_ACK_DURATION(_bitrate, _short)			\
	(CCK_DURATION((_bitrate > 10 ? 20 : 10), false, 60) +	\
	 CCK_DURATION(_bitrate, _short, AVG_PKT_SIZE))

#define CCK_DURATION_LIST(_short)			\
	CCK_ACK_DURATION(10, _short),			\
	CCK_ACK_DURATION(20, _short),			\
	CCK_ACK_DURATION(55, _short),			\
	CCK_ACK_DURATION(110, _short)

#define CCK_GROUP						\
	[MINSTREL_MAX_STREAMS * MINSTREL_STREAM_GROUPS] = {	\
		.streams = 0,					\
		.duration = {					\
			CCK_DURATION_LIST(false),		\
			CCK_DURATION_LIST(true)			\
		}						\
	}

88
89
90
91
/*
 * To enable sufficiently targeted rate sampling, MCS rates are divided into
 * groups, based on the number of streams and flags (HT40, SGI) that they
 * use.
92
93
94
 *
 * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
 * HT40 -> SGI -> #streams
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
 */
const struct mcs_group minstrel_mcs_groups[] = {
	MCS_GROUP(1, 0, 0),
	MCS_GROUP(2, 0, 0),
#if MINSTREL_MAX_STREAMS >= 3
	MCS_GROUP(3, 0, 0),
#endif

	MCS_GROUP(1, 1, 0),
	MCS_GROUP(2, 1, 0),
#if MINSTREL_MAX_STREAMS >= 3
	MCS_GROUP(3, 1, 0),
#endif

	MCS_GROUP(1, 0, 1),
	MCS_GROUP(2, 0, 1),
#if MINSTREL_MAX_STREAMS >= 3
	MCS_GROUP(3, 0, 1),
#endif

	MCS_GROUP(1, 1, 1),
	MCS_GROUP(2, 1, 1),
#if MINSTREL_MAX_STREAMS >= 3
	MCS_GROUP(3, 1, 1),
#endif
120
121
122

	/* must be last */
	CCK_GROUP
123
124
};

125
126
#define MINSTREL_CCK_GROUP	(ARRAY_SIZE(minstrel_mcs_groups) - 1)

127
128
static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES];

129
130
131
static void
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);

132
133
134
135
136
137
/*
 * Look up an MCS group index based on mac80211 rate information
 */
static int
minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
{
138
139
140
	return GROUP_IDX((rate->idx / MCS_GROUP_RATES) + 1,
			 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
			 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
141
142
}

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
static struct minstrel_rate_stats *
minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
		      struct ieee80211_tx_rate *rate)
{
	int group, idx;

	if (rate->flags & IEEE80211_TX_RC_MCS) {
		group = minstrel_ht_get_group_idx(rate);
		idx = rate->idx % MCS_GROUP_RATES;
	} else {
		group = MINSTREL_CCK_GROUP;

		for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++)
			if (rate->idx == mp->cck_rates[idx])
				break;

		/* short preamble */
		if (!(mi->groups[group].supported & BIT(idx)))
			idx += 4;
	}
	return &mi->groups[group].rates[idx];
}

166
167
168
169
170
171
172
173
174
175
176
static inline struct minstrel_rate_stats *
minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
{
	return &mi->groups[index / MCS_GROUP_RATES].rates[index % MCS_GROUP_RATES];
}


/*
 * Recalculate success probabilities and counters for a rate using EWMA
 */
static void
177
minstrel_calc_rate_ewma(struct minstrel_rate_stats *mr)
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
{
	if (unlikely(mr->attempts > 0)) {
		mr->sample_skipped = 0;
		mr->cur_prob = MINSTREL_FRAC(mr->success, mr->attempts);
		if (!mr->att_hist)
			mr->probability = mr->cur_prob;
		else
			mr->probability = minstrel_ewma(mr->probability,
				mr->cur_prob, EWMA_LEVEL);
		mr->att_hist += mr->attempts;
		mr->succ_hist += mr->success;
	} else {
		mr->sample_skipped++;
	}
	mr->last_success = mr->success;
	mr->last_attempts = mr->attempts;
	mr->success = 0;
	mr->attempts = 0;
}

/*
 * Calculate throughput based on the average A-MPDU length, taking into account
 * the expected number of retransmissions and their expected length
 */
static void
203
minstrel_ht_calc_tp(struct minstrel_ht_sta *mi, int group, int rate)
204
205
{
	struct minstrel_rate_stats *mr;
206
207
	unsigned int nsecs = 0;
	unsigned int tp;
208
	unsigned int prob;
209
210

	mr = &mi->groups[group].rates[rate];
211
	prob = mr->probability;
212

213
	if (prob < MINSTREL_FRAC(1, 10)) {
214
215
216
217
		mr->cur_tp = 0;
		return;
	}

218
219
220
221
222
223
224
	/*
	 * For the throughput calculation, limit the probability value to 90% to
	 * account for collision related packet error rate fluctuation
	 */
	if (prob > MINSTREL_FRAC(9, 10))
		prob = MINSTREL_FRAC(9, 10);

225
	if (group != MINSTREL_CCK_GROUP)
226
		nsecs = 1000 * mi->overhead / MINSTREL_TRUNC(mi->avg_ampdu_len);
227

228
229
230
231
	nsecs += minstrel_mcs_groups[group].duration[rate];
	tp = 1000000 * ((mr->probability * 1000) / nsecs);

	mr->cur_tp = MINSTREL_TRUNC(tp);
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
}

/*
 * Update rate statistics and select new primary rates
 *
 * Rules for rate selection:
 *  - max_prob_rate must use only one stream, as a tradeoff between delivery
 *    probability and throughput during strong fluctuations
 *  - as long as the max prob rate has a probability of more than 3/4, pick
 *    higher throughput rates, even if the probablity is a bit lower
 */
static void
minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;
	struct minstrel_rate_stats *mr;
	int cur_prob, cur_prob_tp, cur_tp, cur_tp2;
	int group, i, index;
250
	bool mi_rates_valid = false;
251
252
253
254
255
256
257
258
259
260
261
262

	if (mi->ampdu_packets > 0) {
		mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
			MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets), EWMA_LEVEL);
		mi->ampdu_len = 0;
		mi->ampdu_packets = 0;
	}

	mi->sample_slow = 0;
	mi->sample_count = 0;

	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
263
264
		bool mg_rates_valid = false;

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
		cur_prob = 0;
		cur_prob_tp = 0;
		cur_tp = 0;
		cur_tp2 = 0;

		mg = &mi->groups[group];
		if (!mg->supported)
			continue;

		mi->sample_count++;

		for (i = 0; i < MCS_GROUP_RATES; i++) {
			if (!(mg->supported & BIT(i)))
				continue;

280
281
282
283
284
285
286
287
288
289
290
291
			/* initialize rates selections starting indexes */
			if (!mg_rates_valid) {
				mg->max_tp_rate = mg->max_tp_rate2 =
					mg->max_prob_rate = i;
				if (!mi_rates_valid) {
					mi->max_tp_rate = mi->max_tp_rate2 =
						mi->max_prob_rate = i;
					mi_rates_valid = true;
				}
				mg_rates_valid = true;
			}

292
293
294
			mr = &mg->rates[i];
			mr->retry_updated = false;
			index = MCS_GROUP_RATES * group + i;
295
296
			minstrel_calc_rate_ewma(mr);
			minstrel_ht_calc_tp(mi, group, i);
297
298
299
300
301
302
303
304

			if (!mr->cur_tp)
				continue;

			if ((mr->cur_tp > cur_prob_tp && mr->probability >
			     MINSTREL_FRAC(3, 4)) || mr->probability > cur_prob) {
				mg->max_prob_rate = index;
				cur_prob = mr->probability;
305
				cur_prob_tp = mr->cur_tp;
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
			}

			if (mr->cur_tp > cur_tp) {
				swap(index, mg->max_tp_rate);
				cur_tp = mr->cur_tp;
				mr = minstrel_get_ratestats(mi, index);
			}

			if (index >= mg->max_tp_rate)
				continue;

			if (mr->cur_tp > cur_tp2) {
				mg->max_tp_rate2 = index;
				cur_tp2 = mr->cur_tp;
			}
		}
	}

324
325
	/* try to sample all available rates during each interval */
	mi->sample_count *= 8;
326
327
328
329
330
331
332
333
334
335
336
337

	cur_prob = 0;
	cur_prob_tp = 0;
	cur_tp = 0;
	cur_tp2 = 0;
	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
		mg = &mi->groups[group];
		if (!mg->supported)
			continue;

		mr = minstrel_get_ratestats(mi, mg->max_tp_rate);
		if (cur_tp < mr->cur_tp) {
338
339
			mi->max_tp_rate2 = mi->max_tp_rate;
			cur_tp2 = cur_tp;
340
341
			mi->max_tp_rate = mg->max_tp_rate;
			cur_tp = mr->cur_tp;
342
			mi->max_prob_streams = minstrel_mcs_groups[group].streams - 1;
343
344
345
346
347
348
349
350
351
		}

		mr = minstrel_get_ratestats(mi, mg->max_tp_rate2);
		if (cur_tp2 < mr->cur_tp) {
			mi->max_tp_rate2 = mg->max_tp_rate2;
			cur_tp2 = mr->cur_tp;
		}
	}

352
353
	if (mi->max_prob_streams < 1)
		mi->max_prob_streams = 1;
354
355
356
357
358
359
360

	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
		mg = &mi->groups[group];
		if (!mg->supported)
			continue;
		mr = minstrel_get_ratestats(mi, mg->max_prob_rate);
		if (cur_prob_tp < mr->cur_tp &&
361
		    minstrel_mcs_groups[group].streams <= mi->max_prob_streams) {
362
363
364
365
366
367
368
			mi->max_prob_rate = mg->max_prob_rate;
			cur_prob = mr->cur_prob;
			cur_prob_tp = mr->cur_tp;
		}
	}


369
370
371
372
	mi->stats_update = jiffies;
}

static bool
373
minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct ieee80211_tx_rate *rate)
374
{
375
	if (rate->idx < 0)
376
377
		return false;

378
	if (!rate->count)
379
380
		return false;

381
382
383
384
385
386
387
	if (rate->flags & IEEE80211_TX_RC_MCS)
		return true;

	return rate->idx == mp->cck_rates[0] ||
	       rate->idx == mp->cck_rates[1] ||
	       rate->idx == mp->cck_rates[2] ||
	       rate->idx == mp->cck_rates[3];
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
}

static void
minstrel_next_sample_idx(struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;

	for (;;) {
		mi->sample_group++;
		mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups);
		mg = &mi->groups[mi->sample_group];

		if (!mg->supported)
			continue;

		if (++mg->index >= MCS_GROUP_RATES) {
			mg->index = 0;
			if (++mg->column >= ARRAY_SIZE(sample_table))
				mg->column = 0;
		}
		break;
	}
}

static void
413
414
minstrel_downgrade_rate(struct minstrel_ht_sta *mi, unsigned int *idx,
			bool primary)
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
{
	int group, orig_group;

	orig_group = group = *idx / MCS_GROUP_RATES;
	while (group > 0) {
		group--;

		if (!mi->groups[group].supported)
			continue;

		if (minstrel_mcs_groups[group].streams >
		    minstrel_mcs_groups[orig_group].streams)
			continue;

		if (primary)
			*idx = mi->groups[group].max_tp_rate;
		else
			*idx = mi->groups[group].max_tp_rate2;
		break;
	}
}

static void
438
minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb)
439
440
441
442
443
444
445
446
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
	u16 tid;

	if (unlikely(!ieee80211_is_data_qos(hdr->frame_control)))
		return;

447
	if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE)))
448
449
450
		return;

	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
451
	if (likely(sta->ampdu_mlme.tid_tx[tid]))
452
453
		return;

454
455
456
	if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
		return;

457
	ieee80211_start_tx_ba_session(pubsta, tid, 5000);
458
459
460
461
462
463
464
465
466
467
468
469
470
}

static void
minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
                      struct ieee80211_sta *sta, void *priv_sta,
                      struct sk_buff *skb)
{
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
	struct ieee80211_tx_rate *ar = info->status.rates;
	struct minstrel_rate_stats *rate, *rate2;
	struct minstrel_priv *mp = priv;
471
	bool last, update = false;
472
	int i;
473
474
475
476
477
478
479
480
481

	if (!msp->is_ht)
		return mac80211_minstrel.tx_status(priv, sband, sta, &msp->legacy, skb);

	/* This packet was aggregated but doesn't carry status info */
	if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
	    !(info->flags & IEEE80211_TX_STAT_AMPDU))
		return;

482
483
484
	if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
		info->status.ampdu_ack_len =
			(info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
485
486
487
488
489
490
491
		info->status.ampdu_len = 1;
	}

	mi->ampdu_packets++;
	mi->ampdu_len += info->status.ampdu_len;

	if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) {
492
		mi->sample_wait = 16 + 2 * MINSTREL_TRUNC(mi->avg_ampdu_len);
493
		mi->sample_tries = 1;
494
495
496
		mi->sample_count--;
	}

497
	if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
498
499
		mi->sample_packets += info->status.ampdu_len;

500
	last = !minstrel_ht_txstat_valid(mp, &ar[0]);
501
502
	for (i = 0; !last; i++) {
		last = (i == IEEE80211_TX_MAX_RATES - 1) ||
503
		       !minstrel_ht_txstat_valid(mp, &ar[i + 1]);
504

505
		rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
506

507
		if (last)
508
509
510
511
512
513
514
515
516
517
518
519
			rate->success += info->status.ampdu_ack_len;

		rate->attempts += ar[i].count * info->status.ampdu_len;
	}

	/*
	 * check for sudden death of spatial multiplexing,
	 * downgrade to a lower number of streams if necessary.
	 */
	rate = minstrel_get_ratestats(mi, mi->max_tp_rate);
	if (rate->attempts > 30 &&
	    MINSTREL_FRAC(rate->success, rate->attempts) <
520
	    MINSTREL_FRAC(20, 100)) {
521
		minstrel_downgrade_rate(mi, &mi->max_tp_rate, true);
522
523
		update = true;
	}
524
525

	rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate2);
526
527
	if (rate2->attempts > 30 &&
	    MINSTREL_FRAC(rate2->success, rate2->attempts) <
528
	    MINSTREL_FRAC(20, 100)) {
529
		minstrel_downgrade_rate(mi, &mi->max_tp_rate2, false);
530
531
		update = true;
	}
532
533

	if (time_after(jiffies, mi->stats_update + (mp->update_interval / 2 * HZ) / 1000)) {
534
		update = true;
535
		minstrel_ht_update_stats(mp, mi);
536
537
		if (!(info->flags & IEEE80211_TX_CTL_AMPDU) &&
		    mi->max_prob_rate / MCS_GROUP_RATES != MINSTREL_CCK_GROUP)
538
			minstrel_aggr_check(sta, skb);
539
	}
540
541
542

	if (update)
		minstrel_ht_update_rates(mp, mi);
543
544
545
546
547
548
549
550
551
552
}

static void
minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
                         int index)
{
	struct minstrel_rate_stats *mr;
	const struct mcs_group *group;
	unsigned int tx_time, tx_time_rtscts, tx_time_data;
	unsigned int cw = mp->cw_min;
553
	unsigned int ctime = 0;
554
555
	unsigned int t_slot = 9; /* FIXME */
	unsigned int ampdu_len = MINSTREL_TRUNC(mi->avg_ampdu_len);
556
	unsigned int overhead = 0, overhead_rtscts = 0;
557
558
559
560
561
562
563
564
565
566
567
568
569

	mr = minstrel_get_ratestats(mi, index);
	if (mr->probability < MINSTREL_FRAC(1, 10)) {
		mr->retry_count = 1;
		mr->retry_count_rtscts = 1;
		return;
	}

	mr->retry_count = 2;
	mr->retry_count_rtscts = 2;
	mr->retry_updated = true;

	group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
570
	tx_time_data = group->duration[index % MCS_GROUP_RATES] * ampdu_len / 1000;
571
572
573
574
575
576
577

	/* Contention time for first 2 tries */
	ctime = (t_slot * cw) >> 1;
	cw = min((cw << 1) | 1, mp->cw_max);
	ctime += (t_slot * cw) >> 1;
	cw = min((cw << 1) | 1, mp->cw_max);

578
579
580
581
582
	if (index / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) {
		overhead = mi->overhead;
		overhead_rtscts = mi->overhead_rtscts;
	}

583
	/* Total TX time for data and Contention after first 2 tries */
584
585
	tx_time = ctime + 2 * (overhead + tx_time_data);
	tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
586
587

	/* See how many more tries we can fit inside segment size */
588
	do {
589
590
591
592
593
		/* Contention time for this try */
		ctime = (t_slot * cw) >> 1;
		cw = min((cw << 1) | 1, mp->cw_max);

		/* Total TX time after this try */
594
595
		tx_time += ctime + overhead + tx_time_data;
		tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
596

597
598
599
600
601
602
603
604
605
		if (tx_time_rtscts < mp->segment_size)
			mr->retry_count_rtscts++;
	} while ((tx_time < mp->segment_size) &&
	         (++mr->retry_count < mp->max_retry));
}


static void
minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
606
                     struct ieee80211_sta_rates *ratetbl, int offset, int index)
607
608
609
{
	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
	struct minstrel_rate_stats *mr;
610
611
	u8 idx;
	u16 flags;
612
613
614
615
616

	mr = minstrel_get_ratestats(mi, index);
	if (!mr->retry_updated)
		minstrel_calc_retransmit(mp, mi, index);

617
618
619
620
621
622
623
624
625
	if (mr->probability < MINSTREL_FRAC(20, 100) || !mr->retry_count) {
		ratetbl->rate[offset].count = 2;
		ratetbl->rate[offset].count_rts = 2;
		ratetbl->rate[offset].count_cts = 2;
	} else {
		ratetbl->rate[offset].count = mr->retry_count;
		ratetbl->rate[offset].count_cts = mr->retry_count;
		ratetbl->rate[offset].count_rts = mr->retry_count_rtscts;
	}
626
627

	if (index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) {
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
		idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
		flags = 0;
	} else {
		idx = index % MCS_GROUP_RATES +
		      (group->streams - 1) * MCS_GROUP_RATES;
		flags = IEEE80211_TX_RC_MCS | group->flags;
	}

	if (offset > 0) {
		ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
		flags |= IEEE80211_TX_RC_USE_RTS_CTS;
	}

	ratetbl->rate[offset].idx = idx;
	ratetbl->rate[offset].flags = flags;
}

static void
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct ieee80211_sta_rates *rates;
	int i = 0;

	rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
	if (!rates)
653
		return;
654
655
656
657
658
659
660
661
662
663
664
665
666

	/* Start with max_tp_rate */
	minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate);

	if (mp->hw->max_rates >= 3) {
		/* At least 3 tx rates supported, use max_tp_rate2 next */
		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate2);
	}

	if (mp->hw->max_rates >= 2) {
		/*
		 * At least 2 tx rates supported, use max_prob_rate next */
		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
667
668
	}

669
670
	rates->rate[i].idx = -1;
	rate_control_set_rates(mp->hw, mi->sta, rates);
671
672
673
674
675
676
677
678
679
680
681
682
683
684
}

static inline int
minstrel_get_duration(int index)
{
	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
	return group->duration[index % MCS_GROUP_RATES];
}

static int
minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct minstrel_rate_stats *mr;
	struct minstrel_mcs_group_data *mg;
685
	unsigned int sample_dur, sample_group;
686
687
688
689
690
691
692
693
694
695
696
697
698
	int sample_idx = 0;

	if (mi->sample_wait > 0) {
		mi->sample_wait--;
		return -1;
	}

	if (!mi->sample_tries)
		return -1;

	mg = &mi->groups[mi->sample_group];
	sample_idx = sample_table[mg->column][mg->index];
	mr = &mg->rates[sample_idx];
699
700
	sample_group = mi->sample_group;
	sample_idx += sample_group * MCS_GROUP_RATES;
701
	minstrel_next_sample_idx(mi);
702

703
704
705
	/*
	 * Sampling might add some overhead (RTS, no aggregation)
	 * to the frame. Hence, don't use sampling for the currently
706
	 * used rates.
707
	 */
708
709
710
	if (sample_idx == mi->max_tp_rate ||
	    sample_idx == mi->max_tp_rate2 ||
	    sample_idx == mi->max_prob_rate)
711
		return -1;
712

713
	/*
714
715
	 * Do not sample if the probability is already higher than 95%
	 * to avoid wasting airtime.
716
	 */
717
	if (mr->probability > MINSTREL_FRAC(95, 100))
718
		return -1;
719
720
721
722
723

	/*
	 * Make sure that lower rates get sampled only occasionally,
	 * if the link is working perfectly.
	 */
724
725
726
727
728
	sample_dur = minstrel_get_duration(sample_idx);
	if (sample_dur >= minstrel_get_duration(mi->max_tp_rate2) &&
	    (mi->max_prob_streams <
	     minstrel_mcs_groups[sample_group].streams ||
	     sample_dur >= minstrel_get_duration(mi->max_prob_rate))) {
729
		if (mr->sample_skipped < 20)
730
			return -1;
731
732

		if (mi->sample_slow++ > 2)
733
			return -1;
734
	}
735
	mi->sample_tries--;
736
737
738
739

	return sample_idx;
}

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
static void
minstrel_ht_check_cck_shortpreamble(struct minstrel_priv *mp,
				    struct minstrel_ht_sta *mi, bool val)
{
	u8 supported = mi->groups[MINSTREL_CCK_GROUP].supported;

	if (!supported || !mi->cck_supported_short)
		return;

	if (supported & (mi->cck_supported_short << (val * 4)))
		return;

	supported ^= mi->cck_supported_short | (mi->cck_supported_short << 4);
	mi->groups[MINSTREL_CCK_GROUP].supported = supported;
}

756
757
758
759
static void
minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
                     struct ieee80211_tx_rate_control *txrc)
{
760
	const struct mcs_group *sample_group;
761
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
762
	struct ieee80211_tx_rate *rate = &info->status.rates[0];
763
764
765
766
767
768
769
770
771
772
773
774
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct minstrel_priv *mp = priv;
	int sample_idx;

	if (rate_control_send_low(sta, priv_sta, txrc))
		return;

	if (!msp->is_ht)
		return mac80211_minstrel.get_rate(priv, sta, &msp->legacy, txrc);

	info->flags |= mi->tx_flags;
775
	minstrel_ht_check_cck_shortpreamble(mp, mi, txrc->short_preamble);
776
777
778

	/* Don't use EAPOL frames for sampling on non-mrr hw */
	if (mp->hw->max_rates == 1 &&
779
	    (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
780
781
782
		sample_idx = -1;
	else
		sample_idx = minstrel_get_sample_rate(mp, mi);
783
784
785

#ifdef CONFIG_MAC80211_DEBUGFS
	/* use fixed index if set */
786
787
788
789
790
791
	if (mp->fixed_rate_idx != -1) {
		mi->max_tp_rate = mp->fixed_rate_idx;
		mi->max_tp_rate2 = mp->fixed_rate_idx;
		mi->max_prob_rate = mp->fixed_rate_idx;
		sample_idx = -1;
	}
792
793
#endif

794
795
796
797
798
799
800
	mi->total_packets++;

	/* wraparound */
	if (mi->total_packets == ~0) {
		mi->total_packets = 0;
		mi->sample_packets = 0;
	}
801
802
803
804
805
806
807
808
809
810

	if (sample_idx < 0)
		return;

	sample_group = &minstrel_mcs_groups[sample_idx / MCS_GROUP_RATES];
	info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
	rate->idx = sample_idx % MCS_GROUP_RATES +
		    (sample_group->streams - 1) * MCS_GROUP_RATES;
	rate->flags = IEEE80211_TX_RC_MCS | sample_group->flags;
	rate->count = 1;
811
812
}

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
static void
minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
		       struct ieee80211_supported_band *sband,
		       struct ieee80211_sta *sta)
{
	int i;

	if (sband->band != IEEE80211_BAND_2GHZ)
		return;

	mi->cck_supported = 0;
	mi->cck_supported_short = 0;
	for (i = 0; i < 4; i++) {
		if (!rate_supported(sta, sband->band, mp->cck_rates[i]))
			continue;

		mi->cck_supported |= BIT(i);
		if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
			mi->cck_supported_short |= BIT(i);
	}

	mi->groups[MINSTREL_CCK_GROUP].supported = mi->cck_supported;
}

837
838
static void
minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
839
			struct cfg80211_chan_def *chandef,
840
                        struct ieee80211_sta *sta, void *priv_sta)
841
842
843
844
845
846
{
	struct minstrel_priv *mp = priv;
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
	u16 sta_cap = sta->ht_cap.cap;
847
	int n_supported = 0;
848
849
850
851
852
	int ack_dur;
	int stbc;
	int i;

	/* fall back to the old minstrel for legacy stations */
853
854
	if (!sta->ht_cap.ht_supported)
		goto use_legacy;
855
856

	BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) !=
857
		MINSTREL_MAX_STREAMS * MINSTREL_STREAM_GROUPS + 1);
858
859
860

	msp->is_ht = true;
	memset(mi, 0, sizeof(*mi));
861
862

	mi->sta = sta;
863
864
	mi->stats_update = jiffies;

865
866
867
	ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
	mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
	mi->overhead += ack_dur;
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
	mi->overhead_rtscts = mi->overhead + 2 * ack_dur;

	mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);

	/* When using MRR, sample more on the first attempt, without delay */
	if (mp->has_mrr) {
		mi->sample_count = 16;
		mi->sample_wait = 0;
	} else {
		mi->sample_count = 8;
		mi->sample_wait = 8;
	}
	mi->sample_tries = 4;

	stbc = (sta_cap & IEEE80211_HT_CAP_RX_STBC) >>
		IEEE80211_HT_CAP_RX_STBC_SHIFT;
	mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;

	if (sta_cap & IEEE80211_HT_CAP_LDPC_CODING)
		mi->tx_flags |= IEEE80211_TX_CTL_LDPC;

	for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
		mi->groups[i].supported = 0;
891
892
893
894
895
		if (i == MINSTREL_CCK_GROUP) {
			minstrel_ht_update_cck(mp, mi, sband, sta);
			continue;
		}

896
		if (minstrel_mcs_groups[i].flags & IEEE80211_TX_RC_SHORT_GI) {
897
898
899
900
901
902
903
			if (minstrel_mcs_groups[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
				if (!(sta_cap & IEEE80211_HT_CAP_SGI_40))
					continue;
			} else {
				if (!(sta_cap & IEEE80211_HT_CAP_SGI_20))
					continue;
			}
904
905
		}

906
907
		if (minstrel_mcs_groups[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
		    sta->bandwidth < IEEE80211_STA_RX_BW_40)
908
909
			continue;

910
		/* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
911
		if (sta->smps_mode == IEEE80211_SMPS_STATIC &&
912
913
914
		    minstrel_mcs_groups[i].streams > 1)
			continue;

915
916
		mi->groups[i].supported =
			mcs->rx_mask[minstrel_mcs_groups[i].streams - 1];
917
918
919

		if (mi->groups[i].supported)
			n_supported++;
920
	}
921
922
923
924

	if (!n_supported)
		goto use_legacy;

925
	/* create an initial rate table with the lowest supported rates */
926
	minstrel_ht_update_stats(mp, mi);
927
	minstrel_ht_update_rates(mp, mi);
928

929
930
931
932
933
934
935
	return;

use_legacy:
	msp->is_ht = false;
	memset(&msp->legacy, 0, sizeof(msp->legacy));
	msp->legacy.r = msp->ratelist;
	msp->legacy.sample_table = msp->sample_table;
936
937
	return mac80211_minstrel.rate_init(priv, sband, chandef, sta,
					   &msp->legacy);
938
939
940
941
}

static void
minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
942
		      struct cfg80211_chan_def *chandef,
943
944
                      struct ieee80211_sta *sta, void *priv_sta)
{
945
	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
946
947
948
949
}

static void
minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
950
			struct cfg80211_chan_def *chandef,
951
                        struct ieee80211_sta *sta, void *priv_sta,
952
                        u32 changed)
953
{
954
	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
}

static void *
minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
{
	struct ieee80211_supported_band *sband;
	struct minstrel_ht_sta_priv *msp;
	struct minstrel_priv *mp = priv;
	struct ieee80211_hw *hw = mp->hw;
	int max_rates = 0;
	int i;

	for (i = 0; i < IEEE80211_NUM_BANDS; i++) {
		sband = hw->wiphy->bands[i];
		if (sband && sband->n_bitrates > max_rates)
			max_rates = sband->n_bitrates;
	}

973
	msp = kzalloc(sizeof(*msp), gfp);
974
975
976
977
978
979
980
981
982
983
984
985
986
987
	if (!msp)
		return NULL;

	msp->ratelist = kzalloc(sizeof(struct minstrel_rate) * max_rates, gfp);
	if (!msp->ratelist)
		goto error;

	msp->sample_table = kmalloc(SAMPLE_COLUMNS * max_rates, gfp);
	if (!msp->sample_table)
		goto error1;

	return msp;

error1:
988
	kfree(msp->ratelist);
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
error:
	kfree(msp);
	return NULL;
}

static void
minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
{
	struct minstrel_ht_sta_priv *msp = priv_sta;

	kfree(msp->sample_table);
	kfree(msp->ratelist);
	kfree(msp);
}

static void *
minstrel_ht_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
{
	return mac80211_minstrel.alloc(hw, debugfsdir);
}

static void
minstrel_ht_free(void *priv)
{
	mac80211_minstrel.free(priv);
}

static struct rate_control_ops mac80211_minstrel_ht = {
	.name = "minstrel_ht",
	.tx_status = minstrel_ht_tx_status,
	.get_rate = minstrel_ht_get_rate,
	.rate_init = minstrel_ht_rate_init,
	.rate_update = minstrel_ht_rate_update,
	.alloc_sta = minstrel_ht_alloc_sta,
	.free_sta = minstrel_ht_free_sta,
	.alloc = minstrel_ht_alloc,
	.free = minstrel_ht_free,
#ifdef CONFIG_MAC80211_DEBUGFS
	.add_sta_debugfs = minstrel_ht_add_sta_debugfs,
	.remove_sta_debugfs = minstrel_ht_remove_sta_debugfs,
#endif
};


static void
init_sample_table(void)
{
	int col, i, new_idx;
	u8 rnd[MCS_GROUP_RATES];

	memset(sample_table, 0xff, sizeof(sample_table));
	for (col = 0; col < SAMPLE_COLUMNS; col++) {
		for (i = 0; i < MCS_GROUP_RATES; i++) {
			get_random_bytes(rnd, sizeof(rnd));
			new_idx = (i + rnd[i]) % MCS_GROUP_RATES;

			while (sample_table[col][new_idx] != 0xff)
				new_idx = (new_idx + 1) % MCS_GROUP_RATES;

			sample_table[col][new_idx] = i;
		}
	}
}

int __init
rc80211_minstrel_ht_init(void)
{
	init_sample_table();
	return ieee80211_rate_control_register(&mac80211_minstrel_ht);
}

void
rc80211_minstrel_ht_exit(void)
{
	ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
}