rt2400pci.c 47.5 KB
Newer Older
1
/*
2
	Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2400pci
	Abstract: rt2400pci device specific routines.
	Supported chipsets: RT2460.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2400pci.h"

/*
 * Register access.
 * All access to the CSR registers will go through the methods
 * rt2x00pci_register_read and rt2x00pci_register_write.
 * BBP and RF register require indirect register access,
 * and use the CSR registers BBPCSR and RFCSR to achieve this.
 * These indirect registers work with busy bits,
 * and we will try maximal REGISTER_BUSY_COUNT times to access
 * the register while taking a REGISTER_BUSY_DELAY us delay
 * between each attampt. When the busy bit is still set at that time,
 * the access attempt is considered to have failed,
 * and we will print an error.
 */
Adam Baker's avatar
Adam Baker committed
52
static u32 rt2400pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53
54
55
56
57
58
59
60
61
62
63
64
65
66
{
	u32 reg;
	unsigned int i;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
		if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
			break;
		udelay(REGISTER_BUSY_DELAY);
	}

	return reg;
}

Adam Baker's avatar
Adam Baker committed
67
static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
				const unsigned int word, const u8 value)
{
	u32 reg;

	/*
	 * Wait until the BBP becomes ready.
	 */
	reg = rt2400pci_bbp_check(rt2x00dev);
	if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
		ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
		return;
	}

	/*
	 * Write the data into the BBP.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
	rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
	rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
	rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);

	rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
}

Adam Baker's avatar
Adam Baker committed
93
static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
			       const unsigned int word, u8 *value)
{
	u32 reg;

	/*
	 * Wait until the BBP becomes ready.
	 */
	reg = rt2400pci_bbp_check(rt2x00dev);
	if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
		ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
		return;
	}

	/*
	 * Write the request into the BBP.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
	rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
	rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);

	rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);

	/*
	 * Wait until the BBP becomes ready.
	 */
	reg = rt2400pci_bbp_check(rt2x00dev);
	if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
		ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
		*value = 0xff;
		return;
	}

	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
}

Adam Baker's avatar
Adam Baker committed
130
static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
			       const unsigned int word, const u32 value)
{
	u32 reg;
	unsigned int i;

	if (!word)
		return;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
		if (!rt2x00_get_field32(reg, RFCSR_BUSY))
			goto rf_write;
		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
	return;

rf_write:
	reg = 0;
	rt2x00_set_field32(&reg, RFCSR_VALUE, value);
	rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
	rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
	rt2x00_set_field32(&reg, RFCSR_BUSY, 1);

	rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
	rt2x00_rf_write(rt2x00dev, word, value);
}

static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
}

static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

	rt2x00pci_register_write(rt2x00dev, CSR21, reg);
}

#ifdef CONFIG_RT2X00_LIB_DEBUGFS
#define CSR_OFFSET(__word)	( CSR_REG_BASE + ((__word) * sizeof(u32)) )

Adam Baker's avatar
Adam Baker committed
193
static void rt2400pci_read_csr(struct rt2x00_dev *rt2x00dev,
194
195
196
197
198
			       const unsigned int word, u32 *data)
{
	rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
}

Adam Baker's avatar
Adam Baker committed
199
static void rt2400pci_write_csr(struct rt2x00_dev *rt2x00dev,
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
				const unsigned int word, u32 data)
{
	rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
}

static const struct rt2x00debug rt2400pci_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
		.read		= rt2400pci_read_csr,
		.write		= rt2400pci_write_csr,
		.word_size	= sizeof(u32),
		.word_count	= CSR_REG_SIZE / sizeof(u32),
	},
	.eeprom	= {
		.read		= rt2x00_eeprom_read,
		.write		= rt2x00_eeprom_write,
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
		.read		= rt2400pci_bbp_read,
		.write		= rt2400pci_bbp_write,
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
		.read		= rt2x00_rf_read,
		.write		= rt2400pci_rf_write,
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

#ifdef CONFIG_RT2400PCI_RFKILL
static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
	return rt2x00_get_field32(reg, GPIOCSR_BIT0);
}
242
243
#else
#define rt2400pci_rfkill_poll	NULL
244
245
#endif /* CONFIG_RT2400PCI_RFKILL */

246
#ifdef CONFIG_RT2400PCI_LEDS
247
static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
248
249
250
251
252
253
254
255
256
				     enum led_brightness brightness)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	unsigned int enabled = brightness != LED_OFF;
	u32 reg;

	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);

257
	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
258
		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
259
260
	else if (led->type == LED_TYPE_ACTIVITY)
		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
261
262
263

	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
}
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

static int rt2400pci_blink_set(struct led_classdev *led_cdev,
			       unsigned long *delay_on,
			       unsigned long *delay_off)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	u32 reg;

	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);

	return 0;
}
280
281
#endif /* CONFIG_RT2400PCI_LEDS */

282
283
284
/*
 * Configuration handlers.
 */
Ivo van Doorn's avatar
Ivo van Doorn committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
				    const unsigned int filter_flags)
{
	u32 reg;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * since there is no filter for it at this time.
	 */
	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
			   !(filter_flags & FIF_FCSFAIL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
			   !(filter_flags & FIF_PLCPFAIL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
			   !(filter_flags & FIF_PROMISC_IN_BSS));
	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
305
306
			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
			   !rt2x00dev->intf_ap_count);
Ivo van Doorn's avatar
Ivo van Doorn committed
307
308
309
310
	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
}

311
312
313
314
static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
				  struct rt2x00_intf *intf,
				  struct rt2x00intf_conf *conf,
				  const unsigned int flags)
315
{
316
317
	unsigned int bcn_preload;
	u32 reg;
318

319
320
321
322
323
324
325
326
	if (flags & CONFIG_UPDATE_TYPE) {
		/*
		 * Enable beacon config
		 */
		bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
		rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
		rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
327

328
329
330
331
		/*
		 * Enable synchronisation.
		 */
		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
332
		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
333
		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
334
		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
335
336
		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
	}
337

338
339
340
	if (flags & CONFIG_UPDATE_MAC)
		rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
					      conf->mac, sizeof(conf->mac));
341

342
343
344
	if (flags & CONFIG_UPDATE_BSSID)
		rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
					      conf->bssid, sizeof(conf->bssid));
345
346
}

Ivo van Doorn's avatar
Ivo van Doorn committed
347
348
static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
				 struct rt2x00lib_erp *erp)
349
{
350
	int preamble_mask;
351
352
	u32 reg;

353
354
355
	/*
	 * When short preamble is enabled, we should set bit 0x08
	 */
356
	preamble_mask = erp->short_preamble << 3;
357
358

	rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
359
360
361
362
	rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
			   erp->ack_timeout);
	rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
			   erp->ack_consume_time);
363
364
365
	rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
366
	rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
367
368
369
370
371
	rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
	rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
372
	rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
373
374
375
376
377
	rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
	rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
378
	rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
379
380
381
382
383
	rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
	rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
384
	rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
385
386
387
388
389
390
	rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
	rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
}

static void rt2400pci_config_phymode(struct rt2x00_dev *rt2x00dev,
391
				     const int basic_rate_mask)
392
{
393
	rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
394
395
396
}

static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
397
				     struct rf_channel *rf)
398
399
400
401
{
	/*
	 * Switch on tuning bits.
	 */
402
403
	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
404

405
406
407
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
408
409
410
411
412
413
414
415
416
417
418
419

	/*
	 * RF2420 chipset don't need any additional actions.
	 */
	if (rt2x00_rf(&rt2x00dev->chip, RF2420))
		return;

	/*
	 * For the RT2421 chipsets we need to write an invalid
	 * reference clock rate to activate auto_tune.
	 * After that we set the value back to the correct channel.
	 */
420
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
421
	rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
422
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
423
424
425

	msleep(1);

426
427
428
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
429
430
431
432
433
434

	msleep(1);

	/*
	 * Switch off tuning bits.
	 */
435
436
	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
437

438
439
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
440
441
442
443

	/*
	 * Clear false CRC during channel switch.
	 */
444
	rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
445
446
447
448
449
450
451
452
}

static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
{
	rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
}

static void rt2400pci_config_antenna(struct rt2x00_dev *rt2x00dev,
453
				     struct antenna_setup *ant)
454
455
456
457
{
	u8 r1;
	u8 r4;

458
459
460
461
462
463
464
	/*
	 * We should never come here because rt2x00lib is supposed
	 * to catch this and send us the correct antenna explicitely.
	 */
	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
	       ant->tx == ANTENNA_SW_DIVERSITY);

465
466
467
468
469
470
	rt2400pci_bbp_read(rt2x00dev, 4, &r4);
	rt2400pci_bbp_read(rt2x00dev, 1, &r1);

	/*
	 * Configure the TX antenna.
	 */
471
	switch (ant->tx) {
472
473
474
475
476
477
478
	case ANTENNA_HW_DIVERSITY:
		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
		break;
	case ANTENNA_A:
		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
		break;
	case ANTENNA_B:
479
	default:
480
481
482
483
484
485
486
		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
		break;
	}

	/*
	 * Configure the RX antenna.
	 */
487
	switch (ant->rx) {
488
489
490
491
492
493
494
	case ANTENNA_HW_DIVERSITY:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
		break;
	case ANTENNA_A:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
		break;
	case ANTENNA_B:
495
	default:
496
497
498
499
500
501
502
503
504
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
		break;
	}

	rt2400pci_bbp_write(rt2x00dev, 4, r4);
	rt2400pci_bbp_write(rt2x00dev, 1, r1);
}

static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
505
				      struct rt2x00lib_conf *libconf)
506
507
508
509
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
510
	rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
511
512
513
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);

	rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
514
515
	rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
	rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
516
517
518
	rt2x00pci_register_write(rt2x00dev, CSR18, reg);

	rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
519
520
	rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
	rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
521
522
523
524
525
526
527
528
	rt2x00pci_register_write(rt2x00dev, CSR19, reg);

	rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
	rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
	rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
	rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);

	rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
529
530
531
532
	rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
			   libconf->conf->beacon_int * 16);
	rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
			   libconf->conf->beacon_int * 16);
533
534
535
536
	rt2x00pci_register_write(rt2x00dev, CSR12, reg);
}

static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
537
538
			     struct rt2x00lib_conf *libconf,
			     const unsigned int flags)
539
540
{
	if (flags & CONFIG_UPDATE_PHYMODE)
541
		rt2400pci_config_phymode(rt2x00dev, libconf->basic_rates);
542
	if (flags & CONFIG_UPDATE_CHANNEL)
543
		rt2400pci_config_channel(rt2x00dev, &libconf->rf);
544
	if (flags & CONFIG_UPDATE_TXPOWER)
545
546
		rt2400pci_config_txpower(rt2x00dev,
					 libconf->conf->power_level);
547
	if (flags & CONFIG_UPDATE_ANTENNA)
548
		rt2400pci_config_antenna(rt2x00dev, &libconf->ant);
549
	if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
550
		rt2400pci_config_duration(rt2x00dev, libconf);
551
552
553
}

static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
554
				const int cw_min, const int cw_max)
555
556
557
558
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
559
560
	rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
	rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
561
562
563
564
565
566
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
}

/*
 * Link tuning
 */
567
568
static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual)
569
570
571
572
573
574
575
576
{
	u32 reg;
	u8 bbp;

	/*
	 * Update FCS error count from register.
	 */
	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
577
	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
578
579
580
581
582

	/*
	 * Update False CCA count from register.
	 */
	rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
583
	qual->false_cca = bbp;
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
}

static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
{
	rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
	rt2x00dev->link.vgc_level = 0x08;
}

static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
{
	u8 reg;

	/*
	 * The link tuner should not run longer then 60 seconds,
	 * and should run once every 2 seconds.
	 */
	if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
		return;

	/*
	 * Base r13 link tuning on the false cca count.
	 */
	rt2400pci_bbp_read(rt2x00dev, 13, &reg);

608
	if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
609
610
		rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
		rt2x00dev->link.vgc_level = reg;
611
	} else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
612
613
614
615
616
617
618
619
		rt2400pci_bbp_write(rt2x00dev, 13, --reg);
		rt2x00dev->link.vgc_level = reg;
	}
}

/*
 * Initialization functions.
 */
620
static void rt2400pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
621
				   struct queue_entry *entry)
622
{
623
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
624
625
	u32 word;

626
	rt2x00_desc_read(entry_priv->desc, 2, &word);
627
628
	rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH,
			   entry->queue->data_size);
629
	rt2x00_desc_write(entry_priv->desc, 2, word);
630

631
632
633
	rt2x00_desc_read(entry_priv->desc, 1, &word);
	rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, entry_priv->data_dma);
	rt2x00_desc_write(entry_priv->desc, 1, word);
634

635
	rt2x00_desc_read(entry_priv->desc, 0, &word);
636
	rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
637
	rt2x00_desc_write(entry_priv->desc, 0, word);
638
639
}

640
static void rt2400pci_init_txentry(struct rt2x00_dev *rt2x00dev,
641
				   struct queue_entry *entry)
642
{
643
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
644
645
	u32 word;

646
	rt2x00_desc_read(entry_priv->desc, 0, &word);
647
648
	rt2x00_set_field32(&word, TXD_W0_VALID, 0);
	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
649
	rt2x00_desc_write(entry_priv->desc, 0, word);
650
651
}

652
static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
653
{
654
	struct queue_entry_priv_pci *entry_priv;
655
656
657
658
659
660
	u32 reg;

	/*
	 * Initialize registers.
	 */
	rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
661
662
663
664
	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
665
666
	rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);

667
	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
668
	rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
669
	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
670
			   entry_priv->desc_dma);
671
672
	rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);

673
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
674
	rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
675
	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
676
			   entry_priv->desc_dma);
677
678
	rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);

679
	entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
680
	rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
681
	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
682
			   entry_priv->desc_dma);
683
684
	rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);

685
	entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
686
	rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
687
	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
688
			   entry_priv->desc_dma);
689
690
691
692
	rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);

	rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
693
	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
694
695
	rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);

696
	entry_priv = rt2x00dev->rx->entries[0].priv_data;
697
	rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
698
699
	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
			   entry_priv->desc_dma);
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
	rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);

	return 0;
}

static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
	rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
	rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
	rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);

	rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
	rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);

	rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
			   (rt2x00dev->rx->data_size / 128));
	rt2x00pci_register_write(rt2x00dev, CSR9, reg);

	rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);

	rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
	rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);

	rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);

	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);

	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
		return -EBUSY;

	rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
	rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);

	rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
	rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);

	rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
	rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);

	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
	rt2x00pci_register_write(rt2x00dev, CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
	rt2x00pci_register_write(rt2x00dev, CSR1, reg);

	/*
	 * We must clear the FCS and FIFO error count.
	 * These registers are cleared on read,
	 * so we may pass a useless variable to store the value.
	 */
	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
	rt2x00pci_register_read(rt2x00dev, CNT4, &reg);

	return 0;
}

static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u16 eeprom;
	u8 reg_id;
	u8 value;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2400pci_bbp_read(rt2x00dev, 0, &value);
		if ((value != 0xff) && (value != 0x00))
			goto continue_csr_init;
		NOTICE(rt2x00dev, "Waiting for BBP register.\n");
		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
	return -EACCES;

continue_csr_init:
	rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
	rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
	rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
	rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
	rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
	rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
	rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
	rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
	rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
	rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
	rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
	rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
	rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
	rt2400pci_bbp_write(rt2x00dev, 31, 0x00);

	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);

		if (eeprom != 0xffff && eeprom != 0x0000) {
			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
			rt2400pci_bbp_write(rt2x00dev, reg_id, value);
		}
	}

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
				enum dev_state state)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
	rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
			   state == STATE_RADIO_RX_OFF);
	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
}

static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
	int mask = (state == STATE_RADIO_IRQ_OFF);
	u32 reg;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
		rt2x00pci_register_write(rt2x00dev, CSR7, reg);
	}

	/*
	 * Only toggle the interrupts bits we are going to use.
	 * Non-checked interrupt bits are disabled by default.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
}

static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Initialize all registers.
	 */
878
	if (rt2400pci_init_queues(rt2x00dev) ||
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
	    rt2400pci_init_registers(rt2x00dev) ||
	    rt2400pci_init_bbp(rt2x00dev)) {
		ERROR(rt2x00dev, "Register initialization failed.\n");
		return -EIO;
	}

	/*
	 * Enable interrupts.
	 */
	rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);

	return 0;
}

static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);

	/*
	 * Disable synchronisation.
	 */
	rt2x00pci_register_write(rt2x00dev, CSR14, 0);

	/*
	 * Cancel RX and TX.
	 */
	rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
	rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
	rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);

	/*
	 * Disable interrupts.
	 */
	rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
}

static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	u32 reg;
	unsigned int i;
	char put_to_sleep;
	char bbp_state;
	char rf_state;

	put_to_sleep = (state != STATE_AWAKE);

	rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
	rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);

	/*
	 * Device is not guaranteed to be in the requested state yet.
	 * We must wait until the register indicates that the
	 * device has entered the correct state.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
		bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
		rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
		if (bbp_state == state && rf_state == state)
			return 0;
		msleep(10);
	}

	NOTICE(rt2x00dev, "Device failed to enter state %d, "
	       "current device state: bbp %d and rf %d.\n",
	       state, bbp_state, rf_state);

	return -EBUSY;
}

static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt2400pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		rt2400pci_disable_radio(rt2x00dev);
		break;
	case STATE_RADIO_RX_ON:
969
970
971
	case STATE_RADIO_RX_ON_LINK:
		rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
		break;
972
	case STATE_RADIO_RX_OFF:
973
974
	case STATE_RADIO_RX_OFF_LINK:
		rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2400pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

	return retval;
}

/*
 * TX descriptor initialization
 */
static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
994
				    struct sk_buff *skb,
995
				    struct txentry_desc *txdesc)
996
{
997
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
998
	struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
999
	__le32 *txd = skbdesc->desc;
1000
1001
1002
1003
1004
	u32 word;

	/*
	 * Start writing the descriptor words.
	 */
1005
1006
1007
1008
	rt2x00_desc_read(entry_priv->desc, 1, &word);
	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, entry_priv->data_dma);
	rt2x00_desc_write(entry_priv->desc, 1, word);

1009
	rt2x00_desc_read(txd, 2, &word);
1010
	rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skbdesc->data_len);
1011
	rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skbdesc->data_len);
1012
1013
1014
	rt2x00_desc_write(txd, 2, word);

	rt2x00_desc_read(txd, 3, &word);
1015
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1016
1017
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1018
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1019
1020
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1021
1022
1023
	rt2x00_desc_write(txd, 3, word);

	rt2x00_desc_read(txd, 4, &word);
1024
	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1025
1026
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1027
	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1028
1029
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1030
1031
1032
1033
1034
1035
	rt2x00_desc_write(txd, 4, word);

	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1036
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1037
	rt2x00_set_field32(&word, TXD_W0_ACK,
1038
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1039
	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1040
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1041
	rt2x00_set_field32(&word, TXD_W0_RTS,
1042
1043
			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1044
	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
Ivo van Doorn's avatar
Ivo van Doorn committed
1045
			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1046
1047
1048
1049
1050
1051
1052
	rt2x00_desc_write(txd, 0, word);
}

/*
 * TX data initialization
 */
static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1053
				    const enum data_queue_qid queue)
1054
1055
1056
{
	u32 reg;

1057
	if (queue == QID_BEACON) {
1058
1059
		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
		if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1060
1061
			rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
			rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1062
1063
1064
1065
1066
1067
1068
			rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
			rt2x00pci_register_write(rt2x00dev, CSR14, reg);
		}
		return;
	}

	rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1069
1070
1071
	rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
	rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
	rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1072
1073
1074
1075
1076
1077
	rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
}

/*
 * RX control handlers
 */
1078
1079
static void rt2400pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
1080
{
1081
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1082
1083
	u32 word0;
	u32 word2;
Ivo van Doorn's avatar
Ivo van Doorn committed
1084
	u32 word3;
1085

1086
1087
1088
	rt2x00_desc_read(entry_priv->desc, 0, &word0);
	rt2x00_desc_read(entry_priv->desc, 2, &word2);
	rt2x00_desc_read(entry_priv->desc, 3, &word3);
1089

1090
	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1091
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1092
	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1093
		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1094
1095
1096

	/*
	 * Obtain the status about this packet.
1097
1098
	 * The signal is the PLCP value, and needs to be stripped
	 * of the preamble bit (0x08).
1099
	 */
1100
	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
Ivo van Doorn's avatar
Ivo van Doorn committed
1101
	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1102
1103
	    entry->queue->rt2x00dev->rssi_offset;
	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1104

1105
	rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1106
1107
	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
		rxdesc->dev_flags |= RXDONE_MY_BSS;
1108
1109
1110
1111
1112
}

/*
 * Interrupt functions.
 */
1113
static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1114
			     const enum data_queue_qid queue_idx)
1115
{
1116
	struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1117
	struct queue_entry_priv_pci *entry_priv;
1118
1119
	struct queue_entry *entry;
	struct txdone_entry_desc txdesc;
1120
1121
	u32 word;

1122
1123
	while (!rt2x00queue_empty(queue)) {
		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1124
1125
		entry_priv = entry->priv_data;
		rt2x00_desc_read(entry_priv->desc, 0, &word);
1126
1127
1128
1129
1130
1131
1132
1133

		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		    !rt2x00_get_field32(word, TXD_W0_VALID))
			break;

		/*
		 * Obtain the status about this packet.
		 */
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
		txdesc.flags = 0;
		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
		case 0: /* Success */
		case 1: /* Success with retry */
			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
			break;
		case 2: /* Failure, excessive retries */
			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
			/* Don't break, this is a failed frame! */
		default: /* Failure */
			__set_bit(TXDONE_FAILURE, &txdesc.flags);
		}
1146
		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1147

1148
		rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
	}
}

static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg;

	/*
	 * Get the interrupt sources & saved to local variable.
	 * Write register value back to clear pending interrupts.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
	rt2x00pci_register_write(rt2x00dev, CSR7, reg);

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

	/*
	 * Handle interrupts, walk through all bits
	 * and run the tasks, the bits are checked in order of
	 * priority.
	 */

	/*
	 * 1 - Beacon timer expired interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
		rt2x00lib_beacondone(rt2x00dev);

	/*
	 * 2 - Rx ring done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_RXDONE))
		rt2x00pci_rxdone(rt2x00dev);

	/*
	 * 3 - Atim ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1192
		rt2400pci_txdone(rt2x00dev, QID_ATIM);
1193
1194
1195
1196
1197

	/*
	 * 4 - Priority ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1198
		rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1199
1200
1201
1202
1203

	/*
	 * 5 - Tx ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1204
		rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238

	return IRQ_HANDLED;
}

/*
 * Device probe functions.
 */
static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;
	u16 word;
	u8 *mac;

	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2400pci_eepromregister_read;
	eeprom.register_write = rt2400pci_eepromregister_write;
	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));

	/*
	 * Start validation of the data that has been read.
	 */
	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
	if (!is_valid_ether_addr(mac)) {
1239
1240
		DECLARE_MAC_BUF(macbuf);

1241
		random_ether_addr(mac);
1242
		EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
	if (word == 0xffff) {
		ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
		return -EINVAL;
	}

	return 0;
}

static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 value;
	u16 eeprom;

	/*
	 * Read EEPROM word for configuration.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);

	/*
	 * Identify RF chipset.
	 */
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
	rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
	rt2x00_set_chip(rt2x00dev, RT2460, value, reg);

	if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
		return -ENODEV;
	}

	/*
	 * Identify default antenna configuration.
	 */
1281
	rt2x00dev->default_ant.tx =
1282
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1283
	rt2x00dev->default_ant.rx =
1284
1285
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);

1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
	/*
	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
	 * I am not 100% sure about this, but the legacy drivers do not
	 * indicate antenna swapping in software is required when
	 * diversity is enabled.
	 */
	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;

1297
1298
1299
	/*
	 * Store led mode, for correct led behaviour.
	 */
1300
1301
1302
#ifdef CONFIG_RT2400PCI_LEDS
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);

1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
	rt2x00dev->led_radio.rt2x00dev = rt2x00dev;
	rt2x00dev->led_radio.type = LED_TYPE_RADIO;
	rt2x00dev->led_radio.led_dev.brightness_set =
	    rt2400pci_brightness_set;
	rt2x00dev->led_radio.led_dev.blink_set =
	    rt2400pci_blink_set;
	rt2x00dev->led_radio.flags = LED_INITIALIZED;

	if (value == LED_MODE_TXRX_ACTIVITY) {
		rt2x00dev->led_qual.rt2x00dev = rt2x00dev;
1313
		rt2x00dev->led_qual.type = LED_TYPE_ACTIVITY;
1314
1315
1316
1317
1318
		rt2x00dev->led_qual.led_dev.brightness_set =
		    rt2400pci_brightness_set;
		rt2x00dev->led_qual.led_dev.blink_set =
		    rt2400pci_blink_set;
		rt2x00dev->led_qual.flags = LED_INITIALIZED;
1319
1320
	}
#endif /* CONFIG_RT2400PCI_LEDS */
1321
1322
1323
1324

	/*
	 * Detect if this device has an hardware controlled radio.
	 */
1325
#ifdef CONFIG_RT2400PCI_RFKILL
1326
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1327
		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1328
#endif /* CONFIG_RT2400PCI_RFKILL */
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368

	/*
	 * Check if the BBP tuning should be enabled.
	 */
	if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
		__set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);

	return 0;
}

/*
 * RF value list for RF2420 & RF2421
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg[] = {
	{ 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
	{ 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
	{ 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
	{ 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
	{ 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
	{ 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
	{ 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
	{ 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
	{ 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
	{ 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
	{ 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
	{ 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
	{ 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
	{ 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
};

static void rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
	u8 *txpower;
	unsigned int i;

	/*
	 * Initialize all hw fields.
	 */
1369
1370
	rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
			       IEEE80211_HW_SIGNAL_DBM;
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
	rt2x00dev->hw->extra_tx_headroom = 0;

	SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
				rt2x00_eeprom_addr(rt2x00dev,
						   EEPROM_MAC_ADDR_0));

	/*
	 * Convert tx_power array in eeprom.
	 */
	txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
	for (i = 0; i < 14; i++)
		txpower[i] = TXPOWER_FROM_DEV(txpower[i]);

	/*
	 * Initialize hw_mode information.
	 */
1388
1389
	spec->supported_bands = SUPPORT_BAND_2GHZ;
	spec->supported_rates = SUPPORT_RATE_CCK;
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
	spec->tx_power_a = NULL;
	spec->tx_power_bg = txpower;
	spec->tx_power_default = DEFAULT_TXPOWER;

	spec->num_channels = ARRAY_SIZE(rf_vals_bg);
	spec->channels = rf_vals_bg;
}

static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2400pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

	retval = rt2400pci_init_eeprom(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
	rt2400pci_probe_hw_mode(rt2x00dev);

	/*
1419
	 * This device requires the atim queue
1420
	 */
1421
	__set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

/*
 * IEEE80211 stack callback functions.
 */
static int rt2400pci_set_retry_limit(struct ieee80211_hw *hw,
				     u32 short_retry, u32 long_retry)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
	rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);

	return 0;
}

Johannes Berg's avatar
Johannes Berg committed
1448
static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1449
1450
1451
1452
1453
1454
1455
1456
1457
			     const struct ieee80211_tx_queue_params *params)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;

	/*
	 * We don't support variating cw_min and cw_max variables
	 * per queue. So by default we only configure the TX queue,
	 * and ignore all other configurations.
	 */
Johannes Berg's avatar
Johannes Berg committed
1458
	if (queue != 0)
1459
1460
1461
1462
1463
1464
1465
1466
		return -EINVAL;

	if (rt2x00mac_conf_tx(hw, queue, params))
		return -EINVAL;

	/*
	 * Write configuration to register.
	 */
1467
1468
	rt2400pci_config_cw(rt2x00dev,
			    rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486

	return 0;
}

static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u64 tsf;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
	rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);

	return tsf;
}

1487
static int rt2400pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb)
1488
1489
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
1490
1491
	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
	struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
1492
	struct queue_entry_priv_pci *entry_priv;
1493
	struct skb_frame_desc *skbdesc;
1494
	struct txentry_desc txdesc;
1495