xc4000.c 44.8 KB
Newer Older
1 2 3 4 5 6 7
/*
 *  Driver for Xceive XC4000 "QAM/8VSB single chip tuner"
 *
 *  Copyright (c) 2007 Xceive Corporation
 *  Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
 *  Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
 *  Copyright (c) 2009 Davide Ferri <d.ferri@zero11.it>
8
 *  Copyright (c) 2010 Istvan Varga <istvan_v@mailbox.hu>
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/videodev2.h>
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include <linux/i2c.h>
Istvan Varga's avatar
Istvan Varga committed
31
#include <linux/mutex.h>
32
#include <asm/unaligned.h>
33 34 35 36 37

#include "dvb_frontend.h"

#include "xc4000.h"
#include "tuner-i2c.h"
38
#include "tuner-xc2028-types.h"
39

40
static int debug;
41
module_param(debug, int, 0644);
42
MODULE_PARM_DESC(debug, "Debugging level (0 to 2, default: 0 (off)).");
43 44 45

static int no_poweroff;
module_param(no_poweroff, int, 0644);
46 47
MODULE_PARM_DESC(no_poweroff, "Power management (1: disabled, 2: enabled, "
	"0 (default): use device-specific default mode).");
48 49 50

static int audio_std;
module_param(audio_std, int, 0644);
51 52 53 54 55 56 57 58 59
MODULE_PARM_DESC(audio_std, "Audio standard. XC4000 audio decoder explicitly "
	"needs to know what audio standard is needed for some video standards "
	"with audio A2 or NICAM. The valid settings are a sum of:\n"
	" 1: use NICAM/B or A2/B instead of NICAM/A or A2/A\n"
	" 2: use A2 instead of NICAM or BTSC\n"
	" 4: use SECAM/K3 instead of K1\n"
	" 8: use PAL-D/K audio for SECAM-D/K\n"
	"16: use FM radio input 1 instead of input 2\n"
	"32: use mono audio (the lower three bits are ignored)");
60 61 62

static char firmware_name[30];
module_param_string(firmware_name, firmware_name, sizeof(firmware_name), 0);
63 64
MODULE_PARM_DESC(firmware_name, "Firmware file name. Allows overriding the "
	"default firmware name.");
65

66 67 68 69 70 71
static DEFINE_MUTEX(xc4000_list_mutex);
static LIST_HEAD(hybrid_tuner_instance_list);

#define dprintk(level, fmt, arg...) if (debug >= level) \
	printk(KERN_INFO "%s: " fmt, "xc4000", ## arg)

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
/* struct for storing firmware table */
struct firmware_description {
	unsigned int  type;
	v4l2_std_id   id;
	__u16         int_freq;
	unsigned char *ptr;
	unsigned int  size;
};

struct firmware_properties {
	unsigned int	type;
	v4l2_std_id	id;
	v4l2_std_id	std_req;
	__u16		int_freq;
	unsigned int	scode_table;
87
	int		scode_nr;
88
};
89 90 91 92

struct xc4000_priv {
	struct tuner_i2c_props i2c_props;
	struct list_head hybrid_tuner_instance_list;
93
	struct firmware_description *firm;
Istvan Varga's avatar
Istvan Varga committed
94 95
	int	firm_size;
	u32	if_khz;
96
	u32	freq_hz, freq_offset;
Istvan Varga's avatar
Istvan Varga committed
97 98 99
	u32	bandwidth;
	u8	video_standard;
	u8	rf_mode;
100 101 102
	u8	default_pm;
	u8	dvb_amplitude;
	u8	set_smoothedcvbs;
Istvan Varga's avatar
Istvan Varga committed
103
	u8	ignore_i2c_write_errors;
104
	__u16	firm_version;
105
	struct firmware_properties cur_fw;
Istvan Varga's avatar
Istvan Varga committed
106 107
	__u16	hwmodel;
	__u16	hwvers;
Istvan Varga's avatar
Istvan Varga committed
108
	struct mutex	lock;
109 110
};

111 112 113 114 115 116 117 118
#define XC4000_AUDIO_STD_B		 1
#define XC4000_AUDIO_STD_A2		 2
#define XC4000_AUDIO_STD_K3		 4
#define XC4000_AUDIO_STD_L		 8
#define XC4000_AUDIO_STD_INPUT1		16
#define XC4000_AUDIO_STD_MONO		32

#define XC4000_DEFAULT_FIRMWARE "dvb-fe-xc4000-1.4.fw"
119
#define XC4000_DEFAULT_FIRMWARE_NEW "dvb-fe-xc4000-1.4.1.fw"
120

121
/* Misc Defines */
122
#define MAX_TV_STANDARD			24
123
#define XC_MAX_I2C_WRITE_LENGTH		64
124
#define XC_POWERED_DOWN			0x80000000U
125 126 127 128 129 130 131

/* Signal Types */
#define XC_RF_MODE_AIR			0
#define XC_RF_MODE_CABLE		1

/* Product id */
#define XC_PRODUCT_ID_FW_NOT_LOADED	0x2000
132 133
#define XC_PRODUCT_ID_XC4000		0x0FA0
#define XC_PRODUCT_ID_XC4100		0x1004
134

135
/* Registers (Write-only) */
136 137 138 139 140
#define XREG_INIT         0x00
#define XREG_VIDEO_MODE   0x01
#define XREG_AUDIO_MODE   0x02
#define XREG_RF_FREQ      0x03
#define XREG_D_CODE       0x04
141 142 143 144
#define XREG_DIRECTSITTING_MODE 0x05
#define XREG_SEEK_MODE    0x06
#define XREG_POWER_DOWN   0x08
#define XREG_SIGNALSOURCE 0x0A
145
#define XREG_SMOOTHEDCVBS 0x0E
146
#define XREG_AMPLITUDE    0x10
147

148
/* Registers (Read-only) */
149 150 151 152 153 154 155 156 157
#define XREG_ADC_ENV      0x00
#define XREG_QUALITY      0x01
#define XREG_FRAME_LINES  0x02
#define XREG_HSYNC_FREQ   0x03
#define XREG_LOCK         0x04
#define XREG_FREQ_ERROR   0x05
#define XREG_SNR          0x06
#define XREG_VERSION      0x07
#define XREG_PRODUCT_ID   0x08
158 159
#define XREG_SIGNAL_LEVEL 0x0A
#define XREG_NOISE_LEVEL  0x0B
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

/*
   Basic firmware description. This will remain with
   the driver for documentation purposes.

   This represents an I2C firmware file encoded as a
   string of unsigned char. Format is as follows:

   char[0  ]=len0_MSB  -> len = len_MSB * 256 + len_LSB
   char[1  ]=len0_LSB  -> length of first write transaction
   char[2  ]=data0 -> first byte to be sent
   char[3  ]=data1
   char[4  ]=data2
   char[   ]=...
   char[M  ]=dataN  -> last byte to be sent
   char[M+1]=len1_MSB  -> len = len_MSB * 256 + len_LSB
   char[M+2]=len1_LSB  -> length of second write transaction
   char[M+3]=data0
   char[M+4]=data1
   ...
   etc.

   The [len] value should be interpreted as follows:

   len= len_MSB _ len_LSB
   len=1111_1111_1111_1111   : End of I2C_SEQUENCE
   len=0000_0000_0000_0000   : Reset command: Do hardware reset
   len=0NNN_NNNN_NNNN_NNNN   : Normal transaction: number of bytes = {1:32767)
   len=1WWW_WWWW_WWWW_WWWW   : Wait command: wait for {1:32767} ms

   For the RESET and WAIT commands, the two following bytes will contain
   immediately the length of the following transaction.
*/
Istvan Varga's avatar
Istvan Varga committed
193

194
struct XC_TV_STANDARD {
Istvan Varga's avatar
Istvan Varga committed
195
	const char  *Name;
196 197
	u16	    audio_mode;
	u16	    video_mode;
198
	u16	    int_freq;
199 200 201
};

/* Tuner standards */
202 203 204 205 206 207 208 209 210 211 212 213 214
#define XC4000_MN_NTSC_PAL_BTSC		0
#define XC4000_MN_NTSC_PAL_A2		1
#define XC4000_MN_NTSC_PAL_EIAJ		2
#define XC4000_MN_NTSC_PAL_Mono		3
#define XC4000_BG_PAL_A2		4
#define XC4000_BG_PAL_NICAM		5
#define XC4000_BG_PAL_MONO		6
#define XC4000_I_PAL_NICAM		7
#define XC4000_I_PAL_NICAM_MONO		8
#define XC4000_DK_PAL_A2		9
#define XC4000_DK_PAL_NICAM		10
#define XC4000_DK_PAL_MONO		11
#define XC4000_DK_SECAM_A2DK1		12
215 216
#define XC4000_DK_SECAM_A2LDK3		13
#define XC4000_DK_SECAM_A2MONO		14
217 218 219 220 221 222 223 224 225
#define XC4000_DK_SECAM_NICAM		15
#define XC4000_L_SECAM_NICAM		16
#define XC4000_LC_SECAM_NICAM		17
#define XC4000_DTV6			18
#define XC4000_DTV8			19
#define XC4000_DTV7_8			20
#define XC4000_DTV7			21
#define XC4000_FM_Radio_INPUT2		22
#define XC4000_FM_Radio_INPUT1		23
226

227
static struct XC_TV_STANDARD xc4000_standard[MAX_TV_STANDARD] = {
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	{"M/N-NTSC/PAL-BTSC",	0x0000, 0x80A0, 4500},
	{"M/N-NTSC/PAL-A2",	0x0000, 0x80A0, 4600},
	{"M/N-NTSC/PAL-EIAJ",	0x0040, 0x80A0, 4500},
	{"M/N-NTSC/PAL-Mono",	0x0078, 0x80A0, 4500},
	{"B/G-PAL-A2",		0x0000, 0x8159, 5640},
	{"B/G-PAL-NICAM",	0x0004, 0x8159, 5740},
	{"B/G-PAL-MONO",	0x0078, 0x8159, 5500},
	{"I-PAL-NICAM",		0x0080, 0x8049, 6240},
	{"I-PAL-NICAM-MONO",	0x0078, 0x8049, 6000},
	{"D/K-PAL-A2",		0x0000, 0x8049, 6380},
	{"D/K-PAL-NICAM",	0x0080, 0x8049, 6200},
	{"D/K-PAL-MONO",	0x0078, 0x8049, 6500},
	{"D/K-SECAM-A2 DK1",	0x0000, 0x8049, 6340},
	{"D/K-SECAM-A2 L/DK3",	0x0000, 0x8049, 6000},
	{"D/K-SECAM-A2 MONO",	0x0078, 0x8049, 6500},
	{"D/K-SECAM-NICAM",	0x0080, 0x8049, 6200},
	{"L-SECAM-NICAM",	0x8080, 0x0009, 6200},
	{"L'-SECAM-NICAM",	0x8080, 0x4009, 6200},
	{"DTV6",		0x00C0, 0x8002,    0},
	{"DTV8",		0x00C0, 0x800B,    0},
	{"DTV7/8",		0x00C0, 0x801B,    0},
	{"DTV7",		0x00C0, 0x8007,    0},
250 251
	{"FM Radio-INPUT2",	0x0008, 0x9800, 10700},
	{"FM Radio-INPUT1",	0x0008, 0x9000, 10700}
252 253 254
};

static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val);
255
static int xc4000_tuner_reset(struct dvb_frontend *fe);
256
static void xc_debug_dump(struct xc4000_priv *priv);
257 258 259 260 261 262

static int xc_send_i2c_data(struct xc4000_priv *priv, u8 *buf, int len)
{
	struct i2c_msg msg = { .addr = priv->i2c_props.addr,
			       .flags = 0, .buf = buf, .len = len };
	if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
263 264 265 266
		if (priv->ignore_i2c_write_errors == 0) {
			printk(KERN_ERR "xc4000: I2C write failed (len=%i)\n",
			       len);
			if (len == 4) {
267
				printk(KERN_ERR "bytes %*ph\n", 4, buf);
268
			}
269
			return -EREMOTEIO;
270
		}
271
	}
272
	return 0;
273 274
}

275
static int xc4000_tuner_reset(struct dvb_frontend *fe)
276 277 278 279 280 281 282 283 284 285 286 287 288 289
{
	struct xc4000_priv *priv = fe->tuner_priv;
	int ret;

	dprintk(1, "%s()\n", __func__);

	if (fe->callback) {
		ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
					   fe->dvb->priv :
					   priv->i2c_props.adap->algo_data,
					   DVB_FRONTEND_COMPONENT_TUNER,
					   XC4000_TUNER_RESET, 0);
		if (ret) {
			printk(KERN_ERR "xc4000: reset failed\n");
290
			return -EREMOTEIO;
291 292
		}
	} else {
293 294 295
		printk(KERN_ERR "xc4000: no tuner reset callback function, "
				"fatal\n");
		return -EINVAL;
296
	}
297
	return 0;
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
}

static int xc_write_reg(struct xc4000_priv *priv, u16 regAddr, u16 i2cData)
{
	u8 buf[4];
	int result;

	buf[0] = (regAddr >> 8) & 0xFF;
	buf[1] = regAddr & 0xFF;
	buf[2] = (i2cData >> 8) & 0xFF;
	buf[3] = i2cData & 0xFF;
	result = xc_send_i2c_data(priv, buf, 4);

	return result;
}

static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
{
	struct xc4000_priv *priv = fe->tuner_priv;

	int i, nbytes_to_send, result;
	unsigned int len, pos, index;
	u8 buf[XC_MAX_I2C_WRITE_LENGTH];

	index = 0;
	while ((i2c_sequence[index] != 0xFF) ||
		(i2c_sequence[index + 1] != 0xFF)) {
		len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
		if (len == 0x0000) {
			/* RESET command */
328 329
			/* NOTE: this is ignored, as the reset callback was */
			/* already called by check_firmware() */
330 331 332
			index += 2;
		} else if (len & 0x8000) {
			/* WAIT command */
333
			msleep(len & 0x7FFF);
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
			index += 2;
		} else {
			/* Send i2c data whilst ensuring individual transactions
			 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
			 */
			index += 2;
			buf[0] = i2c_sequence[index];
			buf[1] = i2c_sequence[index + 1];
			pos = 2;
			while (pos < len) {
				if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
					nbytes_to_send =
						XC_MAX_I2C_WRITE_LENGTH;
				else
					nbytes_to_send = (len - pos + 2);
				for (i = 2; i < nbytes_to_send; i++) {
					buf[i] = i2c_sequence[index + pos +
						i - 2];
				}
				result = xc_send_i2c_data(priv, buf,
					nbytes_to_send);

356
				if (result != 0)
357 358 359 360 361 362 363
					return result;

				pos += nbytes_to_send - 2;
			}
			index += len;
		}
	}
364
	return 0;
365 366
}

367 368
static int xc_set_tv_standard(struct xc4000_priv *priv,
	u16 video_mode, u16 audio_mode)
369 370
{
	int ret;
371
	dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, video_mode, audio_mode);
372 373
	dprintk(1, "%s() Standard = %s\n",
		__func__,
374
		xc4000_standard[priv->video_standard].Name);
375

376 377 378
	/* Don't complain when the request fails because of i2c stretching */
	priv->ignore_i2c_write_errors = 1;

379 380 381
	ret = xc_write_reg(priv, XREG_VIDEO_MODE, video_mode);
	if (ret == 0)
		ret = xc_write_reg(priv, XREG_AUDIO_MODE, audio_mode);
382

383 384
	priv->ignore_i2c_write_errors = 0;

385 386 387
	return ret;
}

388
static int xc_set_signal_source(struct xc4000_priv *priv, u16 rf_mode)
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
{
	dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
		rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");

	if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
		rf_mode = XC_RF_MODE_CABLE;
		printk(KERN_ERR
			"%s(), Invalid mode, defaulting to CABLE",
			__func__);
	}
	return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
}

static const struct dvb_tuner_ops xc4000_tuner_ops;

404
static int xc_set_rf_frequency(struct xc4000_priv *priv, u32 freq_hz)
405 406 407 408 409 410
{
	u16 freq_code;

	dprintk(1, "%s(%u)\n", __func__, freq_hz);

	if ((freq_hz > xc4000_tuner_ops.info.frequency_max) ||
411 412
	    (freq_hz < xc4000_tuner_ops.info.frequency_min))
		return -EINVAL;
413 414 415 416 417 418

	freq_code = (u16)(freq_hz / 15625);

	/* WAS: Starting in firmware version 1.1.44, Xceive recommends using the
	   FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
	   only be used for fast scanning for channel lock) */
419 420
	/* WAS: XREG_FINERFREQ */
	return xc_write_reg(priv, XREG_RF_FREQ, freq_code);
421 422
}

423
static int xc_get_adc_envelope(struct xc4000_priv *priv, u16 *adc_envelope)
424 425 426 427 428 429 430 431 432 433 434
{
	return xc4000_readreg(priv, XREG_ADC_ENV, adc_envelope);
}

static int xc_get_frequency_error(struct xc4000_priv *priv, u32 *freq_error_hz)
{
	int result;
	u16 regData;
	u32 tmp;

	result = xc4000_readreg(priv, XREG_FREQ_ERROR, &regData);
435
	if (result != 0)
436 437
		return result;

438 439 440
	tmp = (u32)regData & 0xFFFFU;
	tmp = (tmp < 0x8000U ? tmp : 0x10000U - tmp);
	(*freq_error_hz) = tmp * 15625;
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
	return result;
}

static int xc_get_lock_status(struct xc4000_priv *priv, u16 *lock_status)
{
	return xc4000_readreg(priv, XREG_LOCK, lock_status);
}

static int xc_get_version(struct xc4000_priv *priv,
	u8 *hw_majorversion, u8 *hw_minorversion,
	u8 *fw_majorversion, u8 *fw_minorversion)
{
	u16 data;
	int result;

	result = xc4000_readreg(priv, XREG_VERSION, &data);
457
	if (result != 0)
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
		return result;

	(*hw_majorversion) = (data >> 12) & 0x0F;
	(*hw_minorversion) = (data >>  8) & 0x0F;
	(*fw_majorversion) = (data >>  4) & 0x0F;
	(*fw_minorversion) = data & 0x0F;

	return 0;
}

static int xc_get_hsync_freq(struct xc4000_priv *priv, u32 *hsync_freq_hz)
{
	u16 regData;
	int result;

	result = xc4000_readreg(priv, XREG_HSYNC_FREQ, &regData);
474
	if (result != 0)
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
		return result;

	(*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
	return result;
}

static int xc_get_frame_lines(struct xc4000_priv *priv, u16 *frame_lines)
{
	return xc4000_readreg(priv, XREG_FRAME_LINES, frame_lines);
}

static int xc_get_quality(struct xc4000_priv *priv, u16 *quality)
{
	return xc4000_readreg(priv, XREG_QUALITY, quality);
}

491 492 493 494 495 496 497 498 499 500
static int xc_get_signal_level(struct xc4000_priv *priv, u16 *signal)
{
	return xc4000_readreg(priv, XREG_SIGNAL_LEVEL, signal);
}

static int xc_get_noise_level(struct xc4000_priv *priv, u16 *noise)
{
	return xc4000_readreg(priv, XREG_NOISE_LEVEL, noise);
}

501
static u16 xc_wait_for_lock(struct xc4000_priv *priv)
502
{
503 504 505 506 507 508 509 510
	u16	lock_state = 0;
	int	watchdog_count = 40;

	while ((lock_state == 0) && (watchdog_count > 0)) {
		xc_get_lock_status(priv, &lock_state);
		if (lock_state != 1) {
			msleep(5);
			watchdog_count--;
511 512
		}
	}
513
	return lock_state;
514 515
}

516
static int xc_tune_channel(struct xc4000_priv *priv, u32 freq_hz)
517
{
518 519
	int	found = 1;
	int	result;
520 521 522

	dprintk(1, "%s(%u)\n", __func__, freq_hz);

523 524
	/* Don't complain when the request fails because of i2c stretching */
	priv->ignore_i2c_write_errors = 1;
525
	result = xc_set_rf_frequency(priv, freq_hz);
526 527
	priv->ignore_i2c_write_errors = 0;

528
	if (result != 0)
529 530
		return 0;

531 532
	/* wait for lock only in analog TV mode */
	if ((priv->cur_fw.type & (FM | DTV6 | DTV7 | DTV78 | DTV8)) == 0) {
533
		if (xc_wait_for_lock(priv) != 1)
534
			found = 0;
535 536
	}

537 538 539 540
	/* Wait for stats to stabilize.
	 * Frame Lines needs two frame times after initial lock
	 * before it is valid.
	 */
541
	msleep(debug ? 100 : 10);
542 543 544 545

	if (debug)
		xc_debug_dump(priv);

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	return found;
}

static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val)
{
	u8 buf[2] = { reg >> 8, reg & 0xff };
	u8 bval[2] = { 0, 0 };
	struct i2c_msg msg[2] = {
		{ .addr = priv->i2c_props.addr,
			.flags = 0, .buf = &buf[0], .len = 2 },
		{ .addr = priv->i2c_props.addr,
			.flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
	};

	if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
561
		printk(KERN_ERR "xc4000: I2C read failed\n");
562 563 564 565
		return -EREMOTEIO;
	}

	*val = (bval[0] << 8) | bval[1];
566
	return 0;
567 568
}

569
#define dump_firm_type(t)	dump_firm_type_and_int_freq(t, 0)
570 571
static void dump_firm_type_and_int_freq(unsigned int type, u16 int_freq)
{
572
	if (type & BASE)
573
		printk(KERN_CONT "BASE ");
574
	if (type & INIT1)
575
		printk(KERN_CONT "INIT1 ");
576
	if (type & F8MHZ)
577
		printk(KERN_CONT "F8MHZ ");
578
	if (type & MTS)
579
		printk(KERN_CONT "MTS ");
580
	if (type & D2620)
581
		printk(KERN_CONT "D2620 ");
582
	if (type & D2633)
583
		printk(KERN_CONT "D2633 ");
584
	if (type & DTV6)
585
		printk(KERN_CONT "DTV6 ");
586
	if (type & QAM)
587
		printk(KERN_CONT "QAM ");
588
	if (type & DTV7)
589
		printk(KERN_CONT "DTV7 ");
590
	if (type & DTV78)
591
		printk(KERN_CONT "DTV78 ");
592
	if (type & DTV8)
593
		printk(KERN_CONT "DTV8 ");
594
	if (type & FM)
595
		printk(KERN_CONT "FM ");
596
	if (type & INPUT1)
597
		printk(KERN_CONT "INPUT1 ");
598
	if (type & LCD)
599
		printk(KERN_CONT "LCD ");
600
	if (type & NOGD)
601
		printk(KERN_CONT "NOGD ");
602
	if (type & MONO)
603
		printk(KERN_CONT "MONO ");
604
	if (type & ATSC)
605
		printk(KERN_CONT "ATSC ");
606
	if (type & IF)
607
		printk(KERN_CONT "IF ");
608
	if (type & LG60)
609
		printk(KERN_CONT "LG60 ");
610
	if (type & ATI638)
611
		printk(KERN_CONT "ATI638 ");
612
	if (type & OREN538)
613
		printk(KERN_CONT "OREN538 ");
614
	if (type & OREN36)
615
		printk(KERN_CONT "OREN36 ");
616
	if (type & TOYOTA388)
617
		printk(KERN_CONT "TOYOTA388 ");
618
	if (type & TOYOTA794)
619
		printk(KERN_CONT "TOYOTA794 ");
620
	if (type & DIBCOM52)
621
		printk(KERN_CONT "DIBCOM52 ");
622
	if (type & ZARLINK456)
623
		printk(KERN_CONT "ZARLINK456 ");
624
	if (type & CHINA)
625
		printk(KERN_CONT "CHINA ");
626
	if (type & F6MHZ)
627
		printk(KERN_CONT "F6MHZ ");
628
	if (type & INPUT2)
629
		printk(KERN_CONT "INPUT2 ");
630
	if (type & SCODE)
631
		printk(KERN_CONT "SCODE ");
632
	if (type & HAS_IF)
633
		printk(KERN_CONT "HAS_IF_%d ", int_freq);
634 635
}

636 637 638 639
static int seek_firmware(struct dvb_frontend *fe, unsigned int type,
			 v4l2_std_id *id)
{
	struct xc4000_priv *priv = fe->tuner_priv;
640 641
	int		i, best_i = -1;
	unsigned int	best_nr_diffs = 255U;
642 643

	if (!priv->firm) {
644
		printk(KERN_ERR "Error! firmware not loaded\n");
645 646 647 648 649 650 651 652
		return -EINVAL;
	}

	if (((type & ~SCODE) == 0) && (*id == 0))
		*id = V4L2_STD_PAL;

	/* Seek for generic video standard match */
	for (i = 0; i < priv->firm_size; i++) {
653 654 655 656 657 658 659 660 661
		v4l2_std_id	id_diff_mask =
			(priv->firm[i].id ^ (*id)) & (*id);
		unsigned int	type_diff_mask =
			(priv->firm[i].type ^ type)
			& (BASE_TYPES | DTV_TYPES | LCD | NOGD | MONO | SCODE);
		unsigned int	nr_diffs;

		if (type_diff_mask
		    & (BASE | INIT1 | FM | DTV6 | DTV7 | DTV78 | DTV8 | SCODE))
662 663
			continue;

664 665 666
		nr_diffs = hweight64(id_diff_mask) + hweight32(type_diff_mask);
		if (!nr_diffs)	/* Supports all the requested standards */
			goto found;
667

668 669
		if (nr_diffs < best_nr_diffs) {
			best_nr_diffs = nr_diffs;
670 671 672 673
			best_i = i;
		}
	}

674 675 676 677 678 679 680
	/* FIXME: Would make sense to seek for type "hint" match ? */
	if (best_i < 0) {
		i = -ENOENT;
		goto ret;
	}

	if (best_nr_diffs > 0U) {
681 682
		printk(KERN_WARNING
		       "Selecting best matching firmware (%u bits differ) for "
683 684
		       "type=(%x), id %016llx:\n",
		       best_nr_diffs, type, (unsigned long long)*id);
685 686 687 688 689 690 691 692
		i = best_i;
	}

found:
	*id = priv->firm[i].id;

ret:
	if (debug) {
693
		printk(KERN_DEBUG "%s firmware for type=",
694
		       (i < 0) ? "Can't find" : "Found");
695
		dump_firm_type(type);
696
		printk(KERN_DEBUG "(%x), id %016llx.\n", type, (unsigned long long)*id);
697 698 699 700 701 702 703 704 705
	}
	return i;
}

static int load_firmware(struct dvb_frontend *fe, unsigned int type,
			 v4l2_std_id *id)
{
	struct xc4000_priv *priv = fe->tuner_priv;
	int                pos, rc;
706
	unsigned char      *p;
707 708 709 710 711 712 713

	pos = seek_firmware(fe, type, id);
	if (pos < 0)
		return pos;

	p = priv->firm[pos].ptr;

714 715 716
	/* Don't complain when the request fails because of i2c stretching */
	priv->ignore_i2c_write_errors = 1;

717
	rc = xc_load_i2c_sequence(fe, p);
718

719 720
	priv->ignore_i2c_write_errors = 0;

721
	return rc;
722 723
}

724 725 726
static int xc4000_fwupload(struct dvb_frontend *fe)
{
	struct xc4000_priv *priv = fe->tuner_priv;
727 728 729 730 731
	const struct firmware *fw   = NULL;
	const unsigned char   *p, *endp;
	int                   rc = 0;
	int		      n, n_array;
	char		      name[33];
Istvan Varga's avatar
Istvan Varga committed
732
	const char	      *fname;
733

734
	if (firmware_name[0] != '\0') {
735
		fname = firmware_name;
736

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
		dprintk(1, "Reading custom firmware %s\n", fname);
		rc = request_firmware(&fw, fname,
				      priv->i2c_props.adap->dev.parent);
	} else {
		fname = XC4000_DEFAULT_FIRMWARE_NEW;
		dprintk(1, "Trying to read firmware %s\n", fname);
		rc = request_firmware(&fw, fname,
				      priv->i2c_props.adap->dev.parent);
		if (rc == -ENOENT) {
			fname = XC4000_DEFAULT_FIRMWARE;
			dprintk(1, "Trying to read firmware %s\n", fname);
			rc = request_firmware(&fw, fname,
					      priv->i2c_props.adap->dev.parent);
		}
	}

753 754
	if (rc < 0) {
		if (rc == -ENOENT)
755
			printk(KERN_ERR "Error: firmware %s not found.\n", fname);
756
		else
757
			printk(KERN_ERR "Error %d while requesting firmware %s\n",
758
			       rc, fname);
759

760 761
		return rc;
	}
762 763
	dprintk(1, "Loading Firmware: %s\n", fname);

764 765
	p = fw->data;
	endp = p + fw->size;
766

767
	if (fw->size < sizeof(name) - 1 + 2 + 2) {
768 769
		printk(KERN_ERR "Error: firmware file %s has invalid size!\n",
		       fname);
770
		goto corrupt;
771 772
	}

773
	memcpy(name, p, sizeof(name) - 1);
774
	name[sizeof(name) - 1] = '\0';
775 776 777 778 779 780 781 782
	p += sizeof(name) - 1;

	priv->firm_version = get_unaligned_le16(p);
	p += 2;

	n_array = get_unaligned_le16(p);
	p += 2;

783 784 785
	dprintk(1, "Loading %d firmware images from %s, type: %s, ver %d.%d\n",
		n_array, fname, name,
		priv->firm_version >> 8, priv->firm_version & 0xff);
786

787
	priv->firm = kcalloc(n_array, sizeof(*priv->firm), GFP_KERNEL);
788
	if (priv->firm == NULL) {
789
		printk(KERN_ERR "Not enough memory to load firmware file.\n");
790
		rc = -ENOMEM;
791
		goto done;
792 793 794 795 796 797 798 799 800 801 802
	}
	priv->firm_size = n_array;

	n = -1;
	while (p < endp) {
		__u32 type, size;
		v4l2_std_id id;
		__u16 int_freq = 0;

		n++;
		if (n >= n_array) {
803
			printk(KERN_ERR "More firmware images in file than "
Istvan Varga's avatar
Istvan Varga committed
804
			       "were expected!\n");
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
			goto corrupt;
		}

		/* Checks if there's enough bytes to read */
		if (endp - p < sizeof(type) + sizeof(id) + sizeof(size))
			goto header;

		type = get_unaligned_le32(p);
		p += sizeof(type);

		id = get_unaligned_le64(p);
		p += sizeof(id);

		if (type & HAS_IF) {
			int_freq = get_unaligned_le16(p);
			p += sizeof(int_freq);
			if (endp - p < sizeof(size))
				goto header;
		}

		size = get_unaligned_le32(p);
		p += sizeof(size);

		if (!size || size > endp - p) {
829
			printk(KERN_ERR "Firmware type (%x), id %llx is corrupted (size=%d, expected %d)\n",
830 831 832 833 834 835 836
			       type, (unsigned long long)id,
			       (unsigned)(endp - p), size);
			goto corrupt;
		}

		priv->firm[n].ptr = kzalloc(size, GFP_KERNEL);
		if (priv->firm[n].ptr == NULL) {
837
			printk(KERN_ERR "Not enough memory to load firmware file.\n");
838
			rc = -ENOMEM;
839
			goto done;
840
		}
841

842
		if (debug) {
843
			printk(KERN_DEBUG "Reading firmware type ");
844
			dump_firm_type_and_int_freq(type, int_freq);
845
			printk(KERN_DEBUG "(%x), id %llx, size=%d.\n",
846 847 848 849 850 851 852 853 854 855
			       type, (unsigned long long)id, size);
		}

		memcpy(priv->firm[n].ptr, p, size);
		priv->firm[n].type = type;
		priv->firm[n].id   = id;
		priv->firm[n].size = size;
		priv->firm[n].int_freq = int_freq;

		p += size;
856 857
	}

858
	if (n + 1 != priv->firm_size) {
859
		printk(KERN_ERR "Firmware file is incomplete!\n");
860 861 862 863 864 865
		goto corrupt;
	}

	goto done;

header:
866
	printk(KERN_ERR "Firmware header is incomplete!\n");
867 868
corrupt:
	rc = -EINVAL;
869
	printk(KERN_ERR "Error: firmware file is corrupted!\n");
870 871

done:
872
	release_firmware(fw);
873
	if (rc == 0)
874
		dprintk(1, "Firmware files loaded.\n");
875 876

	return rc;
877 878
}

879 880 881 882
static int load_scode(struct dvb_frontend *fe, unsigned int type,
			 v4l2_std_id *id, __u16 int_freq, int scode)
{
	struct xc4000_priv *priv = fe->tuner_priv;
883 884 885 886
	int		pos, rc;
	unsigned char	*p;
	u8		scode_buf[13];
	u8		indirect_mode[5];
887

888
	dprintk(1, "%s called int_freq=%d\n", __func__, int_freq);
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905

	if (!int_freq) {
		pos = seek_firmware(fe, type, id);
		if (pos < 0)
			return pos;
	} else {
		for (pos = 0; pos < priv->firm_size; pos++) {
			if ((priv->firm[pos].int_freq == int_freq) &&
			    (priv->firm[pos].type & HAS_IF))
				break;
		}
		if (pos == priv->firm_size)
			return -ENOENT;
	}

	p = priv->firm[pos].ptr;

906 907 908
	if (priv->firm[pos].size != 12 * 16 || scode >= 16)
		return -EINVAL;
	p += 12 * scode;
909

910 911 912 913 914 915 916
	if (debug) {
		tuner_info("Loading SCODE for type=");
		dump_firm_type_and_int_freq(priv->firm[pos].type,
					    priv->firm[pos].int_freq);
		printk(KERN_CONT "(%x), id %016llx.\n", priv->firm[pos].type,
		       (unsigned long long)*id);
	}
917

918 919
	scode_buf[0] = 0x00;
	memcpy(&scode_buf[1], p, 12);
920 921

	/* Enter direct-mode */
922 923
	rc = xc_write_reg(priv, XREG_DIRECTSITTING_MODE, 0);
	if (rc < 0) {
924
		printk(KERN_ERR "failed to put device into direct mode!\n");
925
		return -EIO;
926
	}
927

928
	rc = xc_send_i2c_data(priv, scode_buf, 13);
929
	if (rc != 0) {
930 931
		/* Even if the send failed, make sure we set back to indirect
		   mode */
932
		printk(KERN_ERR "Failed to set scode %d\n", rc);
933
	}
934 935 936 937

	/* Switch back to indirect-mode */
	memset(indirect_mode, 0, sizeof(indirect_mode));
	indirect_mode[4] = 0x88;
938 939
	xc_send_i2c_data(priv, indirect_mode, sizeof(indirect_mode));
	msleep(10);
940 941 942 943 944 945 946 947 948 949

	return 0;
}

static int check_firmware(struct dvb_frontend *fe, unsigned int type,
			  v4l2_std_id std, __u16 int_freq)
{
	struct xc4000_priv         *priv = fe->tuner_priv;
	struct firmware_properties new_fw;
	int			   rc = 0, is_retry = 0;
950
	u16			   hwmodel;
951
	v4l2_std_id		   std0;
952
	u8			   hw_major = 0, hw_minor = 0, fw_major = 0, fw_minor = 0;
953 954 955 956 957 958 959 960 961 962 963 964 965

	dprintk(1, "%s called\n", __func__);

	if (!priv->firm) {
		rc = xc4000_fwupload(fe);
		if (rc < 0)
			return rc;
	}

retry:
	new_fw.type = type;
	new_fw.id = std;
	new_fw.std_req = std;
966
	new_fw.scode_table = SCODE;
967 968 969 970 971 972
	new_fw.scode_nr = 0;
	new_fw.int_freq = int_freq;

	dprintk(1, "checking firmware, user requested type=");
	if (debug) {
		dump_firm_type(new_fw.type);
973
		printk(KERN_CONT "(%x), id %016llx, ", new_fw.type,
974
		       (unsigned long long)new_fw.std_req);
975 976 977 978 979
		if (!int_freq)
			printk(KERN_CONT "scode_tbl ");
		else
			printk(KERN_CONT "int_freq %d, ", new_fw.int_freq);
		printk(KERN_CONT "scode_nr %d\n", new_fw.scode_nr);
980 981 982
	}

	/* No need to reload base firmware if it matches */
983
	if (priv->cur_fw.type & BASE) {
984 985 986 987 988 989 990 991
		dprintk(1, "BASE firmware not changed.\n");
		goto skip_base;
	}

	/* Updating BASE - forget about all currently loaded firmware */
	memset(&priv->cur_fw, 0, sizeof(priv->cur_fw));

	/* Reset is needed before loading firmware */
992
	rc = xc4000_tuner_reset(fe);
993 994 995 996 997
	if (rc < 0)
		goto fail;

	/* BASE firmwares are all std0 */
	std0 = 0;
998
	rc = load_firmware(fe, BASE, &std0);
999
	if (rc < 0) {
1000
		printk(KERN_ERR "Error %d while loading base firmware\n", rc);
1001 1002 1003 1004 1005 1006
		goto fail;
	}

	/* Load INIT1, if needed */
	dprintk(1, "Load init1 firmware, if exists\n");

1007
	rc = load_firmware(fe, BASE | INIT1, &std0);
1008
	if (rc == -ENOENT)
1009
		rc = load_firmware(fe, BASE | INIT1, &std0);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	if (rc < 0 && rc != -ENOENT) {
		tuner_err("Error %d while loading init1 firmware\n",
			  rc);
		goto fail;
	}

skip_base:
	/*
	 * No need to reload standard specific firmware if base firmware
	 * was not reloaded and requested video standards have not changed.
	 */
	if (priv->cur_fw.type == (BASE | new_fw.type) &&
	    priv->cur_fw.std_req == std) {
		dprintk(1, "Std-specific firmware already loaded.\n");
		goto skip_std_specific;
	}

	/* Reloading std-specific firmware forces a SCODE update */
	priv->cur_fw.scode_table = 0;

1030
	/* Load the standard firmware */
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	rc = load_firmware(fe, new_fw.type, &new_fw.id);

	if (rc < 0)
		goto fail;

skip_std_specific:
	if (priv->cur_fw.scode_table == new_fw.scode_table &&
	    priv->cur_fw.scode_nr == new_fw.scode_nr) {
		dprintk(1, "SCODE firmware already loaded.\n");
		goto check_device;
	}

	/* Load SCODE firmware, if exists */
	rc = load_scode(fe, new_fw.type | new_fw.scode_table, &new_fw.id,
			new_fw.int_freq, new_fw.scode_nr);
1046
	if (rc != 0)
1047
		dprintk(1, "load scode failed %d\n", rc);
1048 1049 1050 1051

check_device:
	rc = xc4000_readreg(priv, XREG_PRODUCT_ID, &hwmodel);

1052
	if (xc_get_version(priv, &hw_major, &hw_minor, &fw_major,
1053
			   &fw_minor) != 0) {
1054
		printk(KERN_ERR "Unable to read tuner registers.\n");
1055 1056 1057 1058 1059 1060 1061 1062
		goto fail;
	}

	dprintk(1, "Device is Xceive %d version %d.%d, "
		"firmware version %d.%d\n",
		hwmodel, hw_major, hw_minor, fw_major, fw_minor);

	/* Check firmware version against what we downloaded. */
1063 1064 1065 1066
	if (priv->firm_version != ((fw_major << 8) | fw_minor)) {
		printk(KERN_WARNING
		       "Incorrect readback of firmware version %d.%d.\n",
		       fw_major, fw_minor);
1067 1068 1069 1070
		goto fail;
	}

	/* Check that the tuner hardware model remains consistent over time. */
1071 1072 1073
	if (priv->hwmodel == 0 &&
	    (hwmodel == XC_PRODUCT_ID_XC4000 ||
	     hwmodel == XC_PRODUCT_ID_XC4100)) {
1074
		priv->hwmodel = hwmodel;
1075
		priv->hwvers = (hw_major << 8) | hw_minor;
1076
	} else if (priv->hwmodel == 0 || priv->hwmodel != hwmodel ||
1077 1078 1079
		   priv->hwvers != ((hw_major << 8) | hw_minor)) {
		printk(KERN_WARNING
		       "Read invalid device hardware information - tuner "
Istvan Varga's avatar
Istvan Varga committed
1080
		       "hung?\n");
1081 1082 1083
		goto fail;
	}

1084
	priv->cur_fw = new_fw;
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

	/*
	 * By setting BASE in cur_fw.type only after successfully loading all
	 * firmwares, we can:
	 * 1. Identify that BASE firmware with type=0 has been loaded;
	 * 2. Tell whether BASE firmware was just changed the next time through.
	 */
	priv->cur_fw.type |= BASE;

	return 0;

fail:
	memset(&priv->cur_fw, 0, sizeof(priv->cur_fw));
	if (!is_retry) {
		msleep(50);
		is_retry = 1;
		dprintk(1, "Retrying firmware load\n");
		goto retry;
	}

	if (rc == -ENOENT)
		rc = -EINVAL;
	return rc;
}
1109

1110 1111
static void xc_debug_dump(struct xc4000_priv *priv)
{
Istvan Varga's avatar
Istvan Varga committed
1112 1113 1114 1115 1116 1117
	u16	adc_envelope;
	u32	freq_error_hz = 0;
	u16	lock_status;
	u32	hsync_freq_hz = 0;
	u16	frame_lines;
	u16	quality;
1118 1119
	u16	signal = 0;
	u16	noise = 0;
Istvan Varga's avatar
Istvan Varga committed
1120 1121
	u8	hw_majorversion = 0, hw_minorversion = 0;
	u8	fw_majorversion = 0, fw_minorversion = 0;
1122

1123
	xc_get_adc_envelope(priv, &adc_envelope);
1124 1125 1126 1127 1128
	dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);

	xc_get_frequency_error(priv, &freq_error_hz);
	dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);

Istvan Varga's avatar
Istvan Varga committed
1129
	xc_get_lock_status(priv, &lock_status);
1130 1131 1132
	dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
		lock_status);

Istvan Varga's avatar
Istvan Varga committed
1133 1134
	xc_get_version(priv, &hw_majorversion, &hw_minorversion,
		       &fw_majorversion, &fw_minorversion);
1135 1136 1137 1138
	dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
		hw_majorversion, hw_minorversion,
		fw_majorversion, fw_minorversion);

1139 1140 1141 1142
	if (priv->video_standard < XC4000_DTV6) {
		xc_get_hsync_freq(priv, &hsync_freq_hz);
		dprintk(1, "*** Horizontal sync frequency = %d Hz\n",
			hsync_freq_hz);
1143

1144 1145 1146
		xc_get_frame_lines(priv, &frame_lines);
		dprintk(1, "*** Frame lines = %d\n", frame_lines);
	}
1147

Istvan Varga's avatar
Istvan Varga committed
1148
	xc_get_quality(priv, &quality);
1149
	dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
1150 1151 1152 1153 1154 1155

	xc_get_signal_level(priv, &signal);
	dprintk(1, "*** Signal level = -%ddB (%d)\n", signal >> 8, signal);

	xc_get_noise_level(priv, &noise);
	dprintk(1, "*** Noise level = %ddB (%d)\n", noise >> 8, noise);
1156 1157
}

1158
static int xc4000_set_params(struct dvb_frontend *fe)
1159
{
1160 1161 1162
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
	u32 delsys = c->delivery_system;
	u32 bw = c->bandwidth_hz;
1163
	struct xc4000_priv *priv = fe->tuner_priv;
1164
	unsigned int type;
Istvan Varga's avatar
Istvan Varga committed
1165
	int	ret = -EREMOTEIO;
1166

1167
	dprintk(1, "%s() frequency=%d (Hz)\n", __func__, c->frequency);
1168

Istvan Varga's avatar
Istvan Varga committed
1169 1170
	mutex_lock(&priv->lock);

1171 1172 1173 1174
	switch (delsys) {
	case SYS_ATSC:
		dprintk(1, "%s() VSB modulation\n", __func__);
		priv->rf_mode = XC_RF_MODE_AIR;
1175
		priv->freq_offset = 1750000;
1176 1177 1178 1179 1180 1181
		priv->video_standard = XC4000_DTV6;
		type = DTV6;
		break;
	case SYS_DVBC_ANNEX_B:
		dprintk(1, "%s() QAM modulation\n", __func__);
		priv->rf_mode = XC_RF_MODE_CABLE;
1182
		priv->freq_offset = 1750000;
1183 1184 1185 1186 1187
		priv->video_standard = XC4000_DTV6;
		type = DTV6;
		break;
	case SYS_DVBT:
	case SYS_DVBT2:
1188
		dprintk(1, "%s() OFDM\n", __func__);
1189 1190
		if (bw == 0) {
			if (c->frequency < 400000000) {
1191
				priv->freq_offset = 2250000;
1192
			} else {
1193
				priv->freq_offset = 2750000;
1194 1195 1196 1197
			}
			priv->video_standard = XC4000_DTV7_8;
			type = DTV78;
		} else if (bw <= 6000000) {
1198
			priv->video_standard = XC4000_DTV6;
1199
			priv->freq_offset = 1750000;
1200
			type = DTV6;