i7core_edac.c 53.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Intel 7 core  Memory Controller kernel module (Nehalem)
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
 * Copyright (c) 2009 by:
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
Randy Dunlap's avatar
Randy Dunlap committed
28
#include <linux/delay.h>
29 30
#include <linux/edac.h>
#include <linux/mmzone.h>
31
#include <linux/edac_mce.h>
32
#include <linux/smp.h>
33
#include <asm/processor.h>
34 35 36

#include "edac_core.h"

37 38 39 40 41 42 43 44 45
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 * Alter this version for the module when modifications are made
 */
#define I7CORE_REVISION    " Ver: 1.0.0 " __DATE__
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

65 66 67 68
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90

69 70 71 72 73 74
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

75 76 77 78 79 80 81 82 83 84 85 86
/*
 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

87 88 89 90 91 92 93 94 95 96 97 98
/* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


99 100
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

101 102 103 104 105 106
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

107 108 109 110
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

111 112 113
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

114
#define MC_CHANNEL_ADDR_MATCH	0xf0
115 116 117 118 119 120 121 122 123 124
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
125

126
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
127

128 129 130 131 132 133 134
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
135 136 137 138
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
139
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
140
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
141 142
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
143

144 145
#define MC_RANK_PRESENT		0x7c

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

169 170 171 172 173
/*
 * i7core structs
 */

#define NUM_CHANS 3
174 175 176
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
177 178 179 180 181

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
182
	u32	ch_map;
183 184
};

185 186 187 188 189 190 191 192 193 194 195 196

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

197
struct i7core_channel {
198 199
	u32		ranks;
	u32		dimms;
200 201
};

202
struct pci_id_descr {
203 204 205
	int			dev;
	int			func;
	int 			dev_id;
206
	int			optional;
207 208
};

209 210 211 212 213
struct pci_id_table {
	struct pci_id_descr	*descr;
	int			n_devs;
};

214 215 216 217
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
218
	int			n_devs;
219 220 221
	struct mem_ctl_info	*mci;
};

222
struct i7core_pvt {
223 224 225 226 227
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
228

229
	struct i7core_info	info;
230
	struct i7core_inject	inject;
231
	struct i7core_channel	channel[NUM_CHANS];
232

233
	int		channels; /* Number of active channels */
234

235 236
	int		ce_count_available;
	int 		csrow_map[NUM_CHANS][MAX_DIMMS];
237 238

			/* ECC corrected errors counts per udimm */
239 240
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
241
			/* ECC corrected errors counts per rdimm */
242 243
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
244

245
	unsigned int	is_registered;
246

247 248
	/* mcelog glue */
	struct edac_mce		edac_mce;
249 250

	/* Fifo double buffers */
251
	struct mce		mce_entry[MCE_LOG_LEN];
252 253 254 255 256 257 258
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;
259 260
};

261 262 263
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
264

265 266 267 268 269
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

270
struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
271 272 273
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
274 275
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
295 296 297 298 299 300 301 302

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
303
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },
304

305
};
306

307 308 309 310 311 312 313 314 315 316
struct pci_id_descr pci_dev_descr_lynnfield[] = {
	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },

317 318 319 320
	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
321

322 323 324 325
	/*
	 * This is the PCI device has an alternate address on some
	 * processors like Core i7 860
	 */
326 327 328
	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
};

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },

		/* Generic Non-core registers */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },

};

#define PCI_ID_TABLE_ENTRY(A) { A, ARRAY_SIZE(A) }
struct pci_id_table pci_dev_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
};

367 368 369 370
/*
 *	pci_device_id	table for which devices we are looking for
 */
static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
371
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
372
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
373 374 375
	{0,}			/* 0 terminated list. */
};

376 377 378 379 380 381 382
static struct edac_pci_ctl_info *i7core_pci;

/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
383 384
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
385 386

	/* MC_STATUS bits */
387
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
388
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
389 390

	/* MC_MAX_DOD read functions */
391
static inline int numdimms(u32 dimms)
392
{
393
	return (dimms & 0x3) + 1;
394 395
}

396
static inline int numrank(u32 rank)
397 398 399
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

400
	return ranks[rank & 0x3];
401 402
}

403
static inline int numbank(u32 bank)
404 405 406
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

407
	return banks[bank & 0x3];
408 409
}

410
static inline int numrow(u32 row)
411 412 413 414 415 416
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

417
	return rows[row & 0x7];
418 419
}

420
static inline int numcol(u32 col)
421 422 423 424
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
425
	return cols[col & 0x3];
426 427
}

428
static struct i7core_dev *get_i7core_dev(u8 socket)
429 430 431 432 433 434 435 436 437 438 439
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

440 441 442
/****************************************************************************
			Memory check routines
 ****************************************************************************/
443 444
static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
					  unsigned func)
445
{
446
	struct i7core_dev *i7core_dev = get_i7core_dev(socket);
447 448
	int i;

449 450 451
	if (!i7core_dev)
		return NULL;

452
	for (i = 0; i < i7core_dev->n_devs; i++) {
453
		if (!i7core_dev->pdev[i])
454 455
			continue;

456 457 458
		if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
		    PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
			return i7core_dev->pdev[i];
459 460 461
		}
	}

462 463 464
	return NULL;
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
/**
 * i7core_get_active_channels() - gets the number of channels and csrows
 * @socket:	Quick Path Interconnect socket
 * @channels:	Number of channels that will be returned
 * @csrows:	Number of csrows found
 *
 * Since EDAC core needs to know in advance the number of available channels
 * and csrows, in order to allocate memory for csrows/channels, it is needed
 * to run two similar steps. At the first step, implemented on this function,
 * it checks the number of csrows/channels present at one socket.
 * this is used in order to properly allocate the size of mci components.
 *
 * It should be noticed that none of the current available datasheets explain
 * or even mention how csrows are seen by the memory controller. So, we need
 * to add a fake description for csrows.
 * So, this driver is attributing one DIMM memory for one csrow.
 */
482 483
static int i7core_get_active_channels(u8 socket, unsigned *channels,
				      unsigned *csrows)
484 485 486 487 488 489 490 491
{
	struct pci_dev *pdev = NULL;
	int i, j;
	u32 status, control;

	*channels = 0;
	*csrows = 0;

492
	pdev = get_pdev_slot_func(socket, 3, 0);
493
	if (!pdev) {
494 495
		i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
			      socket);
496
		return -ENODEV;
497
	}
498 499 500 501 502 503

	/* Device 3 function 0 reads */
	pci_read_config_dword(pdev, MC_STATUS, &status);
	pci_read_config_dword(pdev, MC_CONTROL, &control);

	for (i = 0; i < NUM_CHANS; i++) {
504
		u32 dimm_dod[3];
505 506 507 508 509
		/* Check if the channel is active */
		if (!(control & (1 << (8 + i))))
			continue;

		/* Check if the channel is disabled */
510
		if (status & (1 << i))
511 512
			continue;

513
		pdev = get_pdev_slot_func(socket, i + 4, 1);
514
		if (!pdev) {
515 516 517
			i7core_printk(KERN_ERR, "Couldn't find socket %d "
						"fn %d.%d!!!\n",
						socket, i + 4, 1);
518 519 520 521 522 523 524 525 526 527
			return -ENODEV;
		}
		/* Devices 4-6 function 1 */
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM2, &dimm_dod[2]);

528
		(*channels)++;
529 530 531 532 533 534

		for (j = 0; j < 3; j++) {
			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;
			(*csrows)++;
		}
535 536
	}

537
	debugf0("Number of active channels on socket %d: %d\n",
538
		socket, *channels);
539

540 541 542
	return 0;
}

543
static int get_dimm_config(struct mem_ctl_info *mci, int *csrow)
544 545
{
	struct i7core_pvt *pvt = mci->pvt_info;
546
	struct csrow_info *csr;
547
	struct pci_dev *pdev;
548
	int i, j;
549
	unsigned long last_page = 0;
550
	enum edac_type mode;
551
	enum mem_type mtype;
552

553
	/* Get data from the MC register, function 0 */
554
	pdev = pvt->pci_mcr[0];
555
	if (!pdev)
556 557
		return -ENODEV;

558
	/* Device 3 function 0 reads */
559 560 561 562
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
563

564
	debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
565
		pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
566
		pvt->info.max_dod, pvt->info.ch_map);
567

568
	if (ECC_ENABLED(pvt)) {
569
		debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
570 571 572 573 574
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
575
		debugf0("ECC disabled\n");
576 577
		mode = EDAC_NONE;
	}
578 579

	/* FIXME: need to handle the error codes */
580 581
	debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
		"x%x x 0x%x\n",
582 583
		numdimms(pvt->info.max_dod),
		numrank(pvt->info.max_dod >> 2),
584
		numbank(pvt->info.max_dod >> 4),
585 586
		numrow(pvt->info.max_dod >> 6),
		numcol(pvt->info.max_dod >> 9));
587

588
	for (i = 0; i < NUM_CHANS; i++) {
589
		u32 data, dimm_dod[3], value[8];
590

591 592 593
		if (!pvt->pci_ch[i][0])
			continue;

594 595 596 597 598 599 600 601 602
		if (!CH_ACTIVE(pvt, i)) {
			debugf0("Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			debugf0("Channel %i is disabled\n", i);
			continue;
		}

603
		/* Devices 4-6 function 0 */
604
		pci_read_config_dword(pvt->pci_ch[i][0],
605 606
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

607
		pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
608
						4 : 2;
609

610 611
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
612
		else
613 614
			mtype = MEM_DDR3;
#if 0
615 616 617 618 619 620
		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].dimms = 3;
		else if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].dimms = 1;
		else
			pvt->channel[i].dimms = 2;
621 622 623
#endif

		/* Devices 4-6 function 1 */
624
		pci_read_config_dword(pvt->pci_ch[i][1],
625
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
626
		pci_read_config_dword(pvt->pci_ch[i][1],
627
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
628
		pci_read_config_dword(pvt->pci_ch[i][1],
629
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
630

631
		debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
632
			"%d ranks, %cDIMMs\n",
633 634 635
			i,
			RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			data,
636
			pvt->channel[i].ranks,
637
			(data & REGISTERED_DIMM) ? 'R' : 'U');
638 639 640

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
641
			u32 size, npages;
642 643 644 645 646 647 648 649 650

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

651 652 653
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

654
			pvt->channel[i].dimms++;
655

656 657 658
			debugf0("\tdimm %d %d Mb offset: %x, "
				"bank: %d, rank: %d, row: %#x, col: %#x\n",
				j, size,
659 660 661
				RANKOFFSET(dimm_dod[j]),
				banks, ranks, rows, cols);

662 663 664 665 666
#if PAGE_SHIFT > 20
			npages = size >> (PAGE_SHIFT - 20);
#else
			npages = size << (20 - PAGE_SHIFT);
#endif
667

668
			csr = &mci->csrows[*csrow];
669 670 671 672 673
			csr->first_page = last_page + 1;
			last_page += npages;
			csr->last_page = last_page;
			csr->nr_pages = npages;

674
			csr->page_mask = 0;
675
			csr->grain = 8;
676
			csr->csrow_idx = *csrow;
677 678 679 680
			csr->nr_channels = 1;

			csr->channels[0].chan_idx = i;
			csr->channels[0].ce_count = 0;
681

682
			pvt->csrow_map[i][j] = *csrow;
683

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
			switch (banks) {
			case 4:
				csr->dtype = DEV_X4;
				break;
			case 8:
				csr->dtype = DEV_X8;
				break;
			case 16:
				csr->dtype = DEV_X16;
				break;
			default:
				csr->dtype = DEV_UNKNOWN;
			}

			csr->edac_mode = mode;
			csr->mtype = mtype;

701
			(*csrow)++;
702
		}
703

704 705 706 707 708 709 710 711
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
712
		debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
713
		for (j = 0; j < 8; j++)
714
			debugf1("\t\t%#x\t%#x\t%#x\n",
715 716 717
				(value[j] >> 27) & 0x1,
				(value[j] >> 24) & 0x7,
				(value[j] && ((1 << 24) - 1)));
718 719
	}

720 721 722
	return 0;
}

723 724 725 726 727 728 729 730 731 732 733
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
734
static int disable_inject(struct mem_ctl_info *mci)
735 736 737 738 739
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

740
	if (!pvt->pci_ch[pvt->inject.channel][0])
741 742
		return -ENODEV;

743
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
744
				MC_CHANNEL_ERROR_INJECT, 0);
745 746

	return 0;
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
					   const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
764
		disable_inject(mci);
765 766 767

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
768
		return -EIO;
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

	pvt->inject.section = (u32) value;
	return count;
}

static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
797
		disable_inject(mci);
798 799 800

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
801
		return -EIO;
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831

	pvt->inject.type = (u32) value;
	return count;
}

static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
832
		disable_inject(mci);
833 834 835

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
836
		return -EIO;
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859

	pvt->inject.eccmask = (u32) value;
	return count;
}

static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

860 861 862 863 864
#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
		struct mem_ctl_info *mci,			\
		const char *data, size_t count)			\
{								\
865
	struct i7core_pvt *pvt;					\
866 867 868
	long value;						\
	int rc;							\
								\
869 870 871
	debugf1("%s()\n", __func__);				\
	pvt = mci->pvt_info;					\
								\
872 873 874
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
875
	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
		value = -1;					\
	else {							\
		rc = strict_strtoul(data, 10, &value);		\
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
892 893 894 895
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
	debugf1("%s() pvt=%p\n", __func__, pvt);		\
896 897 898 899
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
900 901
}

902 903 904 905 906 907 908 909 910
#define ATTR_ADDR_MATCH(param)					\
	{							\
		.attr = {					\
			.name = #param,				\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_inject_show_##param,		\
		.store = i7core_inject_store_##param,		\
	}
911

912 913 914 915 916 917
DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);
918

919 920 921 922 923
static int write_and_test(struct pci_dev *dev, int where, u32 val)
{
	u32 read;
	int count;

924 925 926 927
	debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val);

928 929
	for (count = 0; count < 10; count++) {
		if (count)
930
			msleep(100);
931 932 933 934 935 936 937
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

938 939 940 941
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
942 943 944 945

	return -EINVAL;
}

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
				       const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

973
	if (!pvt->pci_ch[pvt->inject.channel][0])
974 975
		return 0;

976 977 978 979 980 981 982 983 984 985 986 987 988
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
989
		mask |= 1LL << 41;
990
	else {
991
		if (pvt->channel[pvt->inject.channel].dimms > 2)
992
			mask |= (pvt->inject.dimm & 0x3LL) << 35;
993
		else
994
			mask |= (pvt->inject.dimm & 0x1LL) << 36;
995 996 997 998
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
999
		mask |= 1LL << 40;
1000
	else {
1001
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1002
			mask |= (pvt->inject.rank & 0x1LL) << 34;
1003
		else
1004
			mask |= (pvt->inject.rank & 0x3LL) << 34;
1005 1006 1007 1008
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
1009
		mask |= 1LL << 39;
1010
	else
1011
		mask |= (pvt->inject.bank & 0x15LL) << 30;
1012 1013 1014

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
1015
		mask |= 1LL << 38;
1016
	else
1017
		mask |= (pvt->inject.page & 0xffff) << 14;
1018 1019 1020

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
1021
		mask |= 1LL << 37;
1022
	else
1023
		mask |= (pvt->inject.col & 0x3fff);
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
1037
	pci_write_config_dword(pvt->pci_noncore,
1038
			       MC_CFG_CONTROL, 0x2);
1039

1040
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1041
			       MC_CHANNEL_ADDR_MATCH, mask);
1042
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1043 1044
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

1045
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1046 1047
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

1048
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1049
			       MC_CHANNEL_ERROR_INJECT, injectmask);
1050

1051
	/*
1052 1053 1054
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
1055
	 */
1056
	pci_write_config_dword(pvt->pci_noncore,
1057
			       MC_CFG_CONTROL, 8);
1058

1059 1060
	debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
		" inject 0x%08x\n",
1061 1062
		mask, pvt->inject.eccmask, injectmask);

1063

1064 1065 1066 1067 1068 1069 1070
	return count;
}

static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
					char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
1071 1072
	u32 injectmask;

1073 1074 1075
	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

1076
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1077
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1078 1079 1080 1081 1082 1083

	debugf0("Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1084 1085 1086
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
	debugf1("%s() \n", __func__);				\
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}
1100

1101 1102 1103 1104 1105 1106 1107
#define ATTR_COUNTER(param)					\
	{							\
		.attr = {					\
			.name = __stringify(udimm##param),	\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_show_counter_##param		\
1108
	}
1109

1110 1111 1112
DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);
1113

1114 1115 1116
/*
 * Sysfs struct
 */
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133


static struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
	ATTR_ADDR_MATCH(channel),
	ATTR_ADDR_MATCH(dimm),
	ATTR_ADDR_MATCH(rank),
	ATTR_ADDR_MATCH(bank),
	ATTR_ADDR_MATCH(page),
	ATTR_ADDR_MATCH(col),
	{ .attr = { .name = NULL } }
};

static struct mcidev_sysfs_group i7core_inject_addrmatch = {
	.name  = "inject_addrmatch",
	.mcidev_attr = i7core_addrmatch_attrs,
};

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
static struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
	ATTR_COUNTER(0),
	ATTR_COUNTER(1),
	ATTR_COUNTER(2),
};

static struct mcidev_sysfs_group i7core_udimm_counters = {
	.name  = "all_channel_counts",
	.mcidev_attr = i7core_udimm_counters_attrs,
};

1145
static struct mcidev_sysfs_attribute i7core_sysfs_attrs[] = {
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
1168
		.grp = &i7core_inject_addrmatch,
1169 1170 1171 1172 1173 1174 1175 1176
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	},
1177
	{ .attr = { .name = NULL } },	/* Reserved for udimm counters */
1178
	{ .attr = { .name = NULL } }
1179 1180
};

1181 1182 1183 1184 1185 1186 1187 1188
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
 *	i7core_put_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
1189
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1190
{
1191
	int i;
1192

1193
	debugf0(__FILE__ ": %s()\n", __func__);
1194
	for (i = 0; i < i7core_dev->n_devs; i++) {
1195 1196 1197 1198 1199 1200 1201 1202
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
		debugf0("Removing dev %02x:%02x.%d\n",
			pdev->bus->number,
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
1203
	kfree(i7core_dev->pdev);
1204
	list_del(&i7core_dev->list);
1205 1206
	kfree(i7core_dev);
}
1207

1208 1209
static void i7core_put_all_devices(void)
{
1210
	struct i7core_dev *i7core_dev, *tmp;
1211

1212
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list)
1213
		i7core_put_devices(i7core_dev);
1214 1215
}

1216
static void __init i7core_xeon_pci_fixup(struct pci_id_table *table)
1217 1218 1219 1220 1221 1222 1223 1224
{
	struct pci_dev *pdev = NULL;
	int i;
	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core pci buses
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
1225 1226 1227 1228 1229 1230 1231
	while (table && table->descr) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
		if (unlikely(!pdev)) {
			for (i = 0; i < MAX_SOCKET_BUSES; i++)
				pcibios_scan_specific_bus(255-i);
		}
		table++;
1232 1233 1234
	}
}

1235 1236 1237 1238 1239 1240
/*
 *	i7core_get_devices	Find and perform 'get' operation on the MCH's
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1241 1242
int i7core_get_onedevice(struct pci_dev **prev, int devno,
			 struct pci_id_descr *dev_descr, unsigned n_devs)
1243
{
1244 1245
	struct i7core_dev *i7core_dev;

1246
	struct pci_dev *pdev = NULL;
1247 1248
	u8 bus = 0;
	u8 socket = 0;
1249

1250
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1251
			      dev_descr->dev_id, *prev);
1252 1253 1254 1255 1256 1257

	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
1258
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
1259
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1260
				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
1261

1262
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev)
1263 1264 1265 1266
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
				      *prev);

1267 1268 1269 1270
	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1271 1272
		}

1273
		if (dev_descr->optional)
1274
			return 0;
1275

1276 1277 1278
		if (devno == 0)
			return -ENODEV;

1279 1280
		i7core_printk(KERN_ERR,
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1281 1282
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1283

1284 1285 1286 1287
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1288