rc80211_minstrel_ht.c 32 KB
Newer Older
1
/*
2
 * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/skbuff.h>
#include <linux/debugfs.h>
#include <linux/random.h>
#include <linux/ieee80211.h>
#include <net/mac80211.h>
#include "rate.h"
#include "rc80211_minstrel.h"
#include "rc80211_minstrel_ht.h"

#define AVG_PKT_SIZE	1200

/* Number of bits for an average sized packet */
#define MCS_NBITS (AVG_PKT_SIZE << 3)

/* Number of symbols for a packet with (bps) bits per symbol */
25
#define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
26

27
/* Transmission time (nanoseconds) for a packet containing (syms) symbols */
28 29
#define MCS_SYMBOL_TIME(sgi, syms)					\
	(sgi ?								\
30 31
	  ((syms) * 18000 + 4000) / 5 :	/* syms * 3.6 us */		\
	  ((syms) * 1000) << 2		/* syms * 4 us */		\
32 33 34 35 36
	)

/* Transmit duration for the raw data part of an average sized packet */
#define MCS_DURATION(streams, sgi, bps) MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps)))

37 38 39
#define BW_20			0
#define BW_40			1

40 41 42 43
/*
 * Define group sort order: HT40 -> SGI -> #streams
 */
#define GROUP_IDX(_streams, _sgi, _ht40)	\
44
	MINSTREL_HT_GROUP_0 +			\
45
	MINSTREL_MAX_STREAMS * 2 * _ht40 +	\
46
	MINSTREL_MAX_STREAMS * _sgi +	\
47 48
	_streams - 1

49
/* MCS rate information for an MCS group */
50 51
#define MCS_GROUP(_streams, _sgi, _ht40)				\
	[GROUP_IDX(_streams, _sgi, _ht40)] = {				\
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
	.streams = _streams,						\
	.flags =							\
		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
		(_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),		\
	.duration = {							\
		MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260)		\
	}								\
}

68
#define CCK_DURATION(_bitrate, _short, _len)		\
69
	(1000 * (10 /* SIFS */ +			\
Weilong Chen's avatar
Weilong Chen committed
70
	 (_short ? 72 + 24 : 144 + 48) +		\
71
	 (8 * (_len + 4) * 10) / (_bitrate)))
72 73 74 75 76 77 78 79 80 81 82

#define CCK_ACK_DURATION(_bitrate, _short)			\
	(CCK_DURATION((_bitrate > 10 ? 20 : 10), false, 60) +	\
	 CCK_DURATION(_bitrate, _short, AVG_PKT_SIZE))

#define CCK_DURATION_LIST(_short)			\
	CCK_ACK_DURATION(10, _short),			\
	CCK_ACK_DURATION(20, _short),			\
	CCK_ACK_DURATION(55, _short),			\
	CCK_ACK_DURATION(110, _short)

83 84 85 86 87 88 89
#define CCK_GROUP					\
	[MINSTREL_CCK_GROUP] = {			\
		.streams = 0,				\
		.duration = {				\
			CCK_DURATION_LIST(false),	\
			CCK_DURATION_LIST(true)		\
		}					\
90 91
	}

92 93 94 95
/*
 * To enable sufficiently targeted rate sampling, MCS rates are divided into
 * groups, based on the number of streams and flags (HT40, SGI) that they
 * use.
96 97
 *
 * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
98
 * BW -> SGI -> #streams
99 100
 */
const struct mcs_group minstrel_mcs_groups[] = {
101 102
	MCS_GROUP(1, 0, BW_20),
	MCS_GROUP(2, 0, BW_20),
103
#if MINSTREL_MAX_STREAMS >= 3
104
	MCS_GROUP(3, 0, BW_20),
105 106
#endif

107 108
	MCS_GROUP(1, 1, BW_20),
	MCS_GROUP(2, 1, BW_20),
109
#if MINSTREL_MAX_STREAMS >= 3
110
	MCS_GROUP(3, 1, BW_20),
111 112
#endif

113 114
	MCS_GROUP(1, 0, BW_40),
	MCS_GROUP(2, 0, BW_40),
115
#if MINSTREL_MAX_STREAMS >= 3
116
	MCS_GROUP(3, 0, BW_40),
117 118
#endif

119 120
	MCS_GROUP(1, 1, BW_40),
	MCS_GROUP(2, 1, BW_40),
121
#if MINSTREL_MAX_STREAMS >= 3
122
	MCS_GROUP(3, 1, BW_40),
123
#endif
124 125

	CCK_GROUP
126 127
};

128

129
static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
130

131 132 133
static void
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);

134 135 136 137 138 139
/*
 * Look up an MCS group index based on mac80211 rate information
 */
static int
minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
{
140
	return GROUP_IDX((rate->idx / 8) + 1,
141 142
			 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
			 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
143 144
}

145 146 147 148 149 150 151 152
static struct minstrel_rate_stats *
minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
		      struct ieee80211_tx_rate *rate)
{
	int group, idx;

	if (rate->flags & IEEE80211_TX_RC_MCS) {
		group = minstrel_ht_get_group_idx(rate);
153
		idx = rate->idx % 8;
154 155 156 157 158 159 160 161 162 163 164 165 166 167
	} else {
		group = MINSTREL_CCK_GROUP;

		for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++)
			if (rate->idx == mp->cck_rates[idx])
				break;

		/* short preamble */
		if (!(mi->groups[group].supported & BIT(idx)))
			idx += 4;
	}
	return &mi->groups[group].rates[idx];
}

168 169 170 171 172 173 174 175 176 177 178
static inline struct minstrel_rate_stats *
minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
{
	return &mi->groups[index / MCS_GROUP_RATES].rates[index % MCS_GROUP_RATES];
}


/*
 * Recalculate success probabilities and counters for a rate using EWMA
 */
static void
179
minstrel_calc_rate_ewma(struct minstrel_rate_stats *mr)
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
{
	if (unlikely(mr->attempts > 0)) {
		mr->sample_skipped = 0;
		mr->cur_prob = MINSTREL_FRAC(mr->success, mr->attempts);
		if (!mr->att_hist)
			mr->probability = mr->cur_prob;
		else
			mr->probability = minstrel_ewma(mr->probability,
				mr->cur_prob, EWMA_LEVEL);
		mr->att_hist += mr->attempts;
		mr->succ_hist += mr->success;
	} else {
		mr->sample_skipped++;
	}
	mr->last_success = mr->success;
	mr->last_attempts = mr->attempts;
	mr->success = 0;
	mr->attempts = 0;
}

/*
 * Calculate throughput based on the average A-MPDU length, taking into account
 * the expected number of retransmissions and their expected length
 */
static void
205
minstrel_ht_calc_tp(struct minstrel_ht_sta *mi, int group, int rate)
206 207
{
	struct minstrel_rate_stats *mr;
208 209
	unsigned int nsecs = 0;
	unsigned int tp;
210
	unsigned int prob;
211 212

	mr = &mi->groups[group].rates[rate];
213
	prob = mr->probability;
214

215
	if (prob < MINSTREL_FRAC(1, 10)) {
216 217 218 219
		mr->cur_tp = 0;
		return;
	}

220 221 222 223 224 225 226
	/*
	 * For the throughput calculation, limit the probability value to 90% to
	 * account for collision related packet error rate fluctuation
	 */
	if (prob > MINSTREL_FRAC(9, 10))
		prob = MINSTREL_FRAC(9, 10);

227
	if (group != MINSTREL_CCK_GROUP)
228
		nsecs = 1000 * mi->overhead / MINSTREL_TRUNC(mi->avg_ampdu_len);
229

230 231
	nsecs += minstrel_mcs_groups[group].duration[rate];

232 233
	/* prob is scaled - see MINSTREL_FRAC above */
	tp = 1000000 * ((prob * 1000) / nsecs);
234
	mr->cur_tp = MINSTREL_TRUNC(tp);
235 236
}

237 238 239 240 241 242 243 244
/*
 * Find & sort topmost throughput rates
 *
 * If multiple rates provide equal throughput the sorting is based on their
 * current success probability. Higher success probability is preferred among
 * MCS groups, CCK rates do not provide aggregation and are therefore at last.
 */
static void
245 246
minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
			       u16 *tp_list)
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
{
	int cur_group, cur_idx, cur_thr, cur_prob;
	int tmp_group, tmp_idx, tmp_thr, tmp_prob;
	int j = MAX_THR_RATES;

	cur_group = index / MCS_GROUP_RATES;
	cur_idx = index  % MCS_GROUP_RATES;
	cur_thr = mi->groups[cur_group].rates[cur_idx].cur_tp;
	cur_prob = mi->groups[cur_group].rates[cur_idx].probability;

	tmp_group = tp_list[j - 1] / MCS_GROUP_RATES;
	tmp_idx = tp_list[j - 1] % MCS_GROUP_RATES;
	tmp_thr = mi->groups[tmp_group].rates[tmp_idx].cur_tp;
	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].probability;

	while (j > 0 && (cur_thr > tmp_thr ||
	      (cur_thr == tmp_thr && cur_prob > tmp_prob))) {
		j--;
		tmp_group = tp_list[j - 1] / MCS_GROUP_RATES;
		tmp_idx = tp_list[j - 1] % MCS_GROUP_RATES;
		tmp_thr = mi->groups[tmp_group].rates[tmp_idx].cur_tp;
		tmp_prob = mi->groups[tmp_group].rates[tmp_idx].probability;
	}

	if (j < MAX_THR_RATES - 1) {
		memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
		       (MAX_THR_RATES - (j + 1))));
	}
	if (j < MAX_THR_RATES)
		tp_list[j] = index;
}

/*
 * Find and set the topmost probability rate per sta and per group
 */
static void
283
minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 index)
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
{
	struct minstrel_mcs_group_data *mg;
	struct minstrel_rate_stats *mr;
	int tmp_group, tmp_idx, tmp_tp, tmp_prob, max_tp_group;

	mg = &mi->groups[index / MCS_GROUP_RATES];
	mr = &mg->rates[index % MCS_GROUP_RATES];

	tmp_group = mi->max_prob_rate / MCS_GROUP_RATES;
	tmp_idx = mi->max_prob_rate % MCS_GROUP_RATES;
	tmp_tp = mi->groups[tmp_group].rates[tmp_idx].cur_tp;
	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].probability;

	/* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
	 * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
	max_tp_group = mi->max_tp_rate[0] / MCS_GROUP_RATES;
	if((index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) &&
	    (max_tp_group != MINSTREL_CCK_GROUP))
		return;

	if (mr->probability > MINSTREL_FRAC(75, 100)) {
		if (mr->cur_tp > tmp_tp)
			mi->max_prob_rate = index;
		if (mr->cur_tp > mg->rates[mg->max_group_prob_rate].cur_tp)
			mg->max_group_prob_rate = index;
	} else {
		if (mr->probability > tmp_prob)
			mi->max_prob_rate = index;
		if (mr->probability > mg->rates[mg->max_group_prob_rate].probability)
			mg->max_group_prob_rate = index;
	}
}


/*
 * Assign new rate set per sta and use CCK rates only if the fastest
 * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
 * rate sets where MCS and CCK rates are mixed, because CCK rates can
 * not use aggregation.
 */
static void
minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
326 327
				 u16 tmp_mcs_tp_rate[MAX_THR_RATES],
				 u16 tmp_cck_tp_rate[MAX_THR_RATES])
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
{
	unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp;
	int i;

	tmp_group = tmp_cck_tp_rate[0] / MCS_GROUP_RATES;
	tmp_idx = tmp_cck_tp_rate[0] % MCS_GROUP_RATES;
	tmp_cck_tp = mi->groups[tmp_group].rates[tmp_idx].cur_tp;

	tmp_group = tmp_mcs_tp_rate[0] / MCS_GROUP_RATES;
	tmp_idx = tmp_mcs_tp_rate[0] % MCS_GROUP_RATES;
	tmp_mcs_tp = mi->groups[tmp_group].rates[tmp_idx].cur_tp;

	if (tmp_cck_tp > tmp_mcs_tp) {
		for(i = 0; i < MAX_THR_RATES; i++) {
			minstrel_ht_sort_best_tp_rates(mi, tmp_cck_tp_rate[i],
						       tmp_mcs_tp_rate);
		}
	}

}

/*
 * Try to increase robustness of max_prob rate by decrease number of
 * streams if possible.
 */
static inline void
minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;
	struct minstrel_rate_stats *mr;
	int tmp_max_streams, group;
	int tmp_tp = 0;

	tmp_max_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
			  MCS_GROUP_RATES].streams;
	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
		mg = &mi->groups[group];
		if (!mg->supported || group == MINSTREL_CCK_GROUP)
			continue;
		mr = minstrel_get_ratestats(mi, mg->max_group_prob_rate);
		if (tmp_tp < mr->cur_tp &&
		   (minstrel_mcs_groups[group].streams < tmp_max_streams)) {
				mi->max_prob_rate = mg->max_group_prob_rate;
				tmp_tp = mr->cur_tp;
		}
	}
}

376 377 378 379 380 381
/*
 * Update rate statistics and select new primary rates
 *
 * Rules for rate selection:
 *  - max_prob_rate must use only one stream, as a tradeoff between delivery
 *    probability and throughput during strong fluctuations
382
 *  - as long as the max prob rate has a probability of more than 75%, pick
383 384 385 386 387 388 389
 *    higher throughput rates, even if the probablity is a bit lower
 */
static void
minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;
	struct minstrel_rate_stats *mr;
390
	int group, i, j;
391 392
	u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
	u16 tmp_cck_tp_rate[MAX_THR_RATES], index;
393 394 395 396 397 398 399 400 401 402 403

	if (mi->ampdu_packets > 0) {
		mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
			MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets), EWMA_LEVEL);
		mi->ampdu_len = 0;
		mi->ampdu_packets = 0;
	}

	mi->sample_slow = 0;
	mi->sample_count = 0;

404 405 406 407 408
	/* Initialize global rate indexes */
	for(j = 0; j < MAX_THR_RATES; j++){
		tmp_mcs_tp_rate[j] = 0;
		tmp_cck_tp_rate[j] = 0;
	}
409

410 411
	/* Find best rate sets within all MCS groups*/
	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
412 413 414 415 416 417 418

		mg = &mi->groups[group];
		if (!mg->supported)
			continue;

		mi->sample_count++;

419 420 421 422
		/* (re)Initialize group rate indexes */
		for(j = 0; j < MAX_THR_RATES; j++)
			tmp_group_tp_rate[j] = group;

423 424 425 426
		for (i = 0; i < MCS_GROUP_RATES; i++) {
			if (!(mg->supported & BIT(i)))
				continue;

427 428
			index = MCS_GROUP_RATES * group + i;

429 430
			mr = &mg->rates[i];
			mr->retry_updated = false;
431 432
			minstrel_calc_rate_ewma(mr);
			minstrel_ht_calc_tp(mi, group, i);
433 434 435 436

			if (!mr->cur_tp)
				continue;

437 438 439 440 441 442 443
			/* Find max throughput rate set */
			if (group != MINSTREL_CCK_GROUP) {
				minstrel_ht_sort_best_tp_rates(mi, index,
							       tmp_mcs_tp_rate);
			} else if (group == MINSTREL_CCK_GROUP) {
				minstrel_ht_sort_best_tp_rates(mi, index,
							       tmp_cck_tp_rate);
444 445
			}

446 447 448
			/* Find max throughput rate set within a group */
			minstrel_ht_sort_best_tp_rates(mi, index,
						       tmp_group_tp_rate);
449

450 451
			/* Find max probability rate per group and global */
			minstrel_ht_set_best_prob_rate(mi, index);
452 453
		}

454 455
		memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
		       sizeof(mg->max_group_tp_rate));
456 457
	}

458 459 460
	/* Assign new rate set per sta */
	minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate, tmp_cck_tp_rate);
	memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
461

462 463 464 465 466
	/* Try to increase robustness of max_prob_rate*/
	minstrel_ht_prob_rate_reduce_streams(mi);

	/* try to sample all available rates during each interval */
	mi->sample_count *= 8;
467

468 469 470
#ifdef CONFIG_MAC80211_DEBUGFS
	/* use fixed index if set */
	if (mp->fixed_rate_idx != -1) {
471 472
		for (i = 0; i < 4; i++)
			mi->max_tp_rate[i] = mp->fixed_rate_idx;
473 474 475
		mi->max_prob_rate = mp->fixed_rate_idx;
	}
#endif
476

477
	/* Reset update timer */
478 479 480 481
	mi->stats_update = jiffies;
}

static bool
482
minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct ieee80211_tx_rate *rate)
483
{
484
	if (rate->idx < 0)
485 486
		return false;

487
	if (!rate->count)
488 489
		return false;

490 491 492 493 494 495 496
	if (rate->flags & IEEE80211_TX_RC_MCS)
		return true;

	return rate->idx == mp->cck_rates[0] ||
	       rate->idx == mp->cck_rates[1] ||
	       rate->idx == mp->cck_rates[2] ||
	       rate->idx == mp->cck_rates[3];
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
}

static void
minstrel_next_sample_idx(struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;

	for (;;) {
		mi->sample_group++;
		mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups);
		mg = &mi->groups[mi->sample_group];

		if (!mg->supported)
			continue;

		if (++mg->index >= MCS_GROUP_RATES) {
			mg->index = 0;
			if (++mg->column >= ARRAY_SIZE(sample_table))
				mg->column = 0;
		}
		break;
	}
}

static void
522
minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
{
	int group, orig_group;

	orig_group = group = *idx / MCS_GROUP_RATES;
	while (group > 0) {
		group--;

		if (!mi->groups[group].supported)
			continue;

		if (minstrel_mcs_groups[group].streams >
		    minstrel_mcs_groups[orig_group].streams)
			continue;

		if (primary)
538
			*idx = mi->groups[group].max_group_tp_rate[0];
539
		else
540
			*idx = mi->groups[group].max_group_tp_rate[1];
541 542 543 544 545
		break;
	}
}

static void
546
minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb)
547 548 549 550 551 552 553 554
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
	u16 tid;

	if (unlikely(!ieee80211_is_data_qos(hdr->frame_control)))
		return;

555
	if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE)))
556 557 558
		return;

	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
559
	if (likely(sta->ampdu_mlme.tid_tx[tid]))
560 561
		return;

562 563 564
	if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
		return;

565
	ieee80211_start_tx_ba_session(pubsta, tid, 5000);
566 567 568 569 570 571 572 573 574 575 576 577 578
}

static void
minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
                      struct ieee80211_sta *sta, void *priv_sta,
                      struct sk_buff *skb)
{
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
	struct ieee80211_tx_rate *ar = info->status.rates;
	struct minstrel_rate_stats *rate, *rate2;
	struct minstrel_priv *mp = priv;
579
	bool last, update = false;
580
	int i;
581 582 583 584 585 586 587 588 589

	if (!msp->is_ht)
		return mac80211_minstrel.tx_status(priv, sband, sta, &msp->legacy, skb);

	/* This packet was aggregated but doesn't carry status info */
	if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
	    !(info->flags & IEEE80211_TX_STAT_AMPDU))
		return;

590 591 592
	if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
		info->status.ampdu_ack_len =
			(info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
593 594 595 596 597 598 599
		info->status.ampdu_len = 1;
	}

	mi->ampdu_packets++;
	mi->ampdu_len += info->status.ampdu_len;

	if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) {
600
		mi->sample_wait = 16 + 2 * MINSTREL_TRUNC(mi->avg_ampdu_len);
601
		mi->sample_tries = 1;
602 603 604
		mi->sample_count--;
	}

605
	if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
606 607
		mi->sample_packets += info->status.ampdu_len;

608
	last = !minstrel_ht_txstat_valid(mp, &ar[0]);
609 610
	for (i = 0; !last; i++) {
		last = (i == IEEE80211_TX_MAX_RATES - 1) ||
611
		       !minstrel_ht_txstat_valid(mp, &ar[i + 1]);
612

613
		rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
614

615
		if (last)
616 617 618 619 620 621 622 623 624
			rate->success += info->status.ampdu_ack_len;

		rate->attempts += ar[i].count * info->status.ampdu_len;
	}

	/*
	 * check for sudden death of spatial multiplexing,
	 * downgrade to a lower number of streams if necessary.
	 */
625
	rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
626 627
	if (rate->attempts > 30 &&
	    MINSTREL_FRAC(rate->success, rate->attempts) <
628
	    MINSTREL_FRAC(20, 100)) {
629
		minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
630 631
		update = true;
	}
632

633
	rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
634 635
	if (rate2->attempts > 30 &&
	    MINSTREL_FRAC(rate2->success, rate2->attempts) <
636
	    MINSTREL_FRAC(20, 100)) {
637
		minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
638 639
		update = true;
	}
640 641

	if (time_after(jiffies, mi->stats_update + (mp->update_interval / 2 * HZ) / 1000)) {
642
		update = true;
643
		minstrel_ht_update_stats(mp, mi);
644 645
		if (!(info->flags & IEEE80211_TX_CTL_AMPDU) &&
		    mi->max_prob_rate / MCS_GROUP_RATES != MINSTREL_CCK_GROUP)
646
			minstrel_aggr_check(sta, skb);
647
	}
648 649 650

	if (update)
		minstrel_ht_update_rates(mp, mi);
651 652 653 654 655 656 657 658 659 660
}

static void
minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
                         int index)
{
	struct minstrel_rate_stats *mr;
	const struct mcs_group *group;
	unsigned int tx_time, tx_time_rtscts, tx_time_data;
	unsigned int cw = mp->cw_min;
661
	unsigned int ctime = 0;
662 663
	unsigned int t_slot = 9; /* FIXME */
	unsigned int ampdu_len = MINSTREL_TRUNC(mi->avg_ampdu_len);
664
	unsigned int overhead = 0, overhead_rtscts = 0;
665 666 667 668 669 670 671 672 673 674 675 676 677

	mr = minstrel_get_ratestats(mi, index);
	if (mr->probability < MINSTREL_FRAC(1, 10)) {
		mr->retry_count = 1;
		mr->retry_count_rtscts = 1;
		return;
	}

	mr->retry_count = 2;
	mr->retry_count_rtscts = 2;
	mr->retry_updated = true;

	group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
678
	tx_time_data = group->duration[index % MCS_GROUP_RATES] * ampdu_len / 1000;
679 680 681 682 683 684 685

	/* Contention time for first 2 tries */
	ctime = (t_slot * cw) >> 1;
	cw = min((cw << 1) | 1, mp->cw_max);
	ctime += (t_slot * cw) >> 1;
	cw = min((cw << 1) | 1, mp->cw_max);

686 687 688 689 690
	if (index / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) {
		overhead = mi->overhead;
		overhead_rtscts = mi->overhead_rtscts;
	}

691
	/* Total TX time for data and Contention after first 2 tries */
692 693
	tx_time = ctime + 2 * (overhead + tx_time_data);
	tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
694 695

	/* See how many more tries we can fit inside segment size */
696
	do {
697 698 699 700 701
		/* Contention time for this try */
		ctime = (t_slot * cw) >> 1;
		cw = min((cw << 1) | 1, mp->cw_max);

		/* Total TX time after this try */
702 703
		tx_time += ctime + overhead + tx_time_data;
		tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
704

705 706 707 708 709 710 711 712 713
		if (tx_time_rtscts < mp->segment_size)
			mr->retry_count_rtscts++;
	} while ((tx_time < mp->segment_size) &&
	         (++mr->retry_count < mp->max_retry));
}


static void
minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
714
                     struct ieee80211_sta_rates *ratetbl, int offset, int index)
715 716 717
{
	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
	struct minstrel_rate_stats *mr;
718 719
	u8 idx;
	u16 flags;
720 721 722 723 724

	mr = minstrel_get_ratestats(mi, index);
	if (!mr->retry_updated)
		minstrel_calc_retransmit(mp, mi, index);

725 726 727 728 729 730 731 732 733
	if (mr->probability < MINSTREL_FRAC(20, 100) || !mr->retry_count) {
		ratetbl->rate[offset].count = 2;
		ratetbl->rate[offset].count_rts = 2;
		ratetbl->rate[offset].count_cts = 2;
	} else {
		ratetbl->rate[offset].count = mr->retry_count;
		ratetbl->rate[offset].count_cts = mr->retry_count;
		ratetbl->rate[offset].count_rts = mr->retry_count_rtscts;
	}
734 735

	if (index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) {
736 737 738
		idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
		flags = 0;
	} else {
739
		idx = index % MCS_GROUP_RATES + (group->streams - 1) * 8;
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
		flags = IEEE80211_TX_RC_MCS | group->flags;
	}

	if (offset > 0) {
		ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
		flags |= IEEE80211_TX_RC_USE_RTS_CTS;
	}

	ratetbl->rate[offset].idx = idx;
	ratetbl->rate[offset].flags = flags;
}

static void
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct ieee80211_sta_rates *rates;
	int i = 0;

	rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
	if (!rates)
760
		return;
761

762 763
	/* Start with max_tp_rate[0] */
	minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]);
764 765

	if (mp->hw->max_rates >= 3) {
766 767
		/* At least 3 tx rates supported, use max_tp_rate[1] next */
		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[1]);
768 769 770 771 772 773
	}

	if (mp->hw->max_rates >= 2) {
		/*
		 * At least 2 tx rates supported, use max_prob_rate next */
		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
774 775
	}

776 777
	rates->rate[i].idx = -1;
	rate_control_set_rates(mp->hw, mi->sta, rates);
778 779 780 781 782 783 784 785 786 787 788 789 790 791
}

static inline int
minstrel_get_duration(int index)
{
	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
	return group->duration[index % MCS_GROUP_RATES];
}

static int
minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct minstrel_rate_stats *mr;
	struct minstrel_mcs_group_data *mg;
792
	unsigned int sample_dur, sample_group, cur_max_tp_streams;
793 794 795 796 797 798 799 800 801 802
	int sample_idx = 0;

	if (mi->sample_wait > 0) {
		mi->sample_wait--;
		return -1;
	}

	if (!mi->sample_tries)
		return -1;

803 804
	sample_group = mi->sample_group;
	mg = &mi->groups[sample_group];
805
	sample_idx = sample_table[mg->column][mg->index];
806 807 808 809 810
	minstrel_next_sample_idx(mi);

	if (!(mg->supported & BIT(sample_idx)))
		return -1;

811
	mr = &mg->rates[sample_idx];
812
	sample_idx += sample_group * MCS_GROUP_RATES;
813

814 815 816
	/*
	 * Sampling might add some overhead (RTS, no aggregation)
	 * to the frame. Hence, don't use sampling for the currently
817
	 * used rates.
818
	 */
819 820
	if (sample_idx == mi->max_tp_rate[0] ||
	    sample_idx == mi->max_tp_rate[1] ||
821
	    sample_idx == mi->max_prob_rate)
822
		return -1;
823

824
	/*
825 826
	 * Do not sample if the probability is already higher than 95%
	 * to avoid wasting airtime.
827
	 */
828
	if (mr->probability > MINSTREL_FRAC(95, 100))
829
		return -1;
830 831 832 833 834

	/*
	 * Make sure that lower rates get sampled only occasionally,
	 * if the link is working perfectly.
	 */
835 836 837

	cur_max_tp_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
		MCS_GROUP_RATES].streams;
838
	sample_dur = minstrel_get_duration(sample_idx);
839 840
	if (sample_dur >= minstrel_get_duration(mi->max_tp_rate[1]) &&
	    (cur_max_tp_streams - 1 <
841 842
	     minstrel_mcs_groups[sample_group].streams ||
	     sample_dur >= minstrel_get_duration(mi->max_prob_rate))) {
843
		if (mr->sample_skipped < 20)
844
			return -1;
845 846

		if (mi->sample_slow++ > 2)
847
			return -1;
848
	}
849
	mi->sample_tries--;
850 851 852 853

	return sample_idx;
}

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
static void
minstrel_ht_check_cck_shortpreamble(struct minstrel_priv *mp,
				    struct minstrel_ht_sta *mi, bool val)
{
	u8 supported = mi->groups[MINSTREL_CCK_GROUP].supported;

	if (!supported || !mi->cck_supported_short)
		return;

	if (supported & (mi->cck_supported_short << (val * 4)))
		return;

	supported ^= mi->cck_supported_short | (mi->cck_supported_short << 4);
	mi->groups[MINSTREL_CCK_GROUP].supported = supported;
}

870 871 872 873
static void
minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
                     struct ieee80211_tx_rate_control *txrc)
{
874
	const struct mcs_group *sample_group;
875
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
876
	struct ieee80211_tx_rate *rate = &info->status.rates[0];
877 878 879 880 881 882 883 884 885 886 887 888
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct minstrel_priv *mp = priv;
	int sample_idx;

	if (rate_control_send_low(sta, priv_sta, txrc))
		return;

	if (!msp->is_ht)
		return mac80211_minstrel.get_rate(priv, sta, &msp->legacy, txrc);

	info->flags |= mi->tx_flags;
889
	minstrel_ht_check_cck_shortpreamble(mp, mi, txrc->short_preamble);
890

891 892 893 894 895
#ifdef CONFIG_MAC80211_DEBUGFS
	if (mp->fixed_rate_idx != -1)
		return;
#endif

896 897
	/* Don't use EAPOL frames for sampling on non-mrr hw */
	if (mp->hw->max_rates == 1 &&
898
	    (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
899 900 901
		sample_idx = -1;
	else
		sample_idx = minstrel_get_sample_rate(mp, mi);
902

903 904 905 906 907 908 909
	mi->total_packets++;

	/* wraparound */
	if (mi->total_packets == ~0) {
		mi->total_packets = 0;
		mi->sample_packets = 0;
	}
910 911 912 913 914 915

	if (sample_idx < 0)
		return;

	sample_group = &minstrel_mcs_groups[sample_idx / MCS_GROUP_RATES];
	info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
916 917 918 919 920 921 922 923 924
	rate->count = 1;

	if (sample_idx / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) {
		int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
		rate->idx = mp->cck_rates[idx];
		rate->flags = 0;
		return;
	}

925
	rate->idx = sample_idx % MCS_GROUP_RATES +
926
		    (sample_group->streams - 1) * 8;
927
	rate->flags = IEEE80211_TX_RC_MCS | sample_group->flags;
928 929
}

930 931 932 933 934 935 936 937 938 939
static void
minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
		       struct ieee80211_supported_band *sband,
		       struct ieee80211_sta *sta)
{
	int i;

	if (sband->band != IEEE80211_BAND_2GHZ)
		return;

940 941 942
	if (!(mp->hw->flags & IEEE80211_HW_SUPPORTS_HT_CCK_RATES))
		return;

943 944 945 946 947 948 949 950 951 952 953 954 955 956
	mi->cck_supported = 0;
	mi->cck_supported_short = 0;
	for (i = 0; i < 4; i++) {
		if (!rate_supported(sta, sband->band, mp->cck_rates[i]))
			continue;

		mi->cck_supported |= BIT(i);
		if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
			mi->cck_supported_short |= BIT(i);
	}

	mi->groups[MINSTREL_CCK_GROUP].supported = mi->cck_supported;
}

957 958
static void
minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
959
			struct cfg80211_chan_def *chandef,
960
                        struct ieee80211_sta *sta, void *priv_sta)
961 962 963 964 965 966
{
	struct minstrel_priv *mp = priv;
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
	u16 sta_cap = sta->ht_cap.cap;
967
	int n_supported = 0;
968 969 970 971 972
	int ack_dur;
	int stbc;
	int i;

	/* fall back to the old minstrel for legacy stations */
973 974
	if (!sta->ht_cap.ht_supported)
		goto use_legacy;
975

976
	BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB);
977 978 979

	msp->is_ht = true;
	memset(mi, 0, sizeof(*mi));
980 981

	mi->sta = sta;
982 983
	mi->stats_update = jiffies;

984 985 986
	ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
	mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
	mi->overhead += ack_dur;
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	mi->overhead_rtscts = mi->overhead + 2 * ack_dur;

	mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);

	/* When using MRR, sample more on the first attempt, without delay */
	if (mp->has_mrr) {
		mi->sample_count = 16;
		mi->sample_wait = 0;
	} else {
		mi->sample_count = 8;
		mi->sample_wait = 8;
	}
	mi->sample_tries = 4;

	stbc = (sta_cap & IEEE80211_HT_CAP_RX_STBC) >>
		IEEE80211_HT_CAP_RX_STBC_SHIFT;
	mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;

	if (sta_cap & IEEE80211_HT_CAP_LDPC_CODING)
		mi->tx_flags |= IEEE80211_TX_CTL_LDPC;

	for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
		mi->groups[i].supported = 0;
1010 1011 1012 1013 1014
		if (i == MINSTREL_CCK_GROUP) {
			minstrel_ht_update_cck(mp, mi, sband, sta);
			continue;
		}

1015
		if (minstrel_mcs_groups[i].flags & IEEE80211_TX_RC_SHORT_GI) {
1016 1017 1018 1019 1020 1021 1022
			if (minstrel_mcs_groups[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
				if (!(sta_cap & IEEE80211_HT_CAP_SGI_40))
					continue;
			} else {
				if (!(sta_cap & IEEE80211_HT_CAP_SGI_20))
					continue;
			}
1023 1024
		}

1025 1026
		if (minstrel_mcs_groups[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
		    sta->bandwidth < IEEE80211_STA_RX_BW_40)
1027 1028
			continue;

1029
		/* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
1030
		if (sta->smps_mode == IEEE80211_SMPS_STATIC &&
1031 1032 1033
		    minstrel_mcs_groups[i].streams > 1)
			continue;

1034 1035
		mi->groups[i].supported =
			mcs->rx_mask[minstrel_mcs_groups[i].streams - 1];
1036 1037 1038

		if (mi->groups[i].supported)
			n_supported++;
1039
	}
1040 1041 1042 1043

	if (!n_supported)
		goto use_legacy;

1044
	/* create an initial rate table with the lowest supported rates */
1045
	minstrel_ht_update_stats(mp, mi);
1046
	minstrel_ht_update_rates(mp, mi);
1047

1048 1049 1050 1051 1052 1053 1054
	return;

use_legacy:
	msp->is_ht = false;
	memset(&msp->legacy, 0, sizeof(msp->legacy));
	msp->legacy.r = msp->ratelist;
	msp->legacy.sample_table = msp->sample_table;
1055 1056
	return mac80211_minstrel.rate_init(priv, sband, chandef, sta,
					   &msp->legacy);
1057 1058 1059 1060
}

static void
minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
1061
		      struct cfg80211_chan_def *chandef,
1062 1063
                      struct ieee80211_sta *sta, void *priv_sta)
{
1064
	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1065 1066 1067 1068
}

static void
minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
1069
			struct cfg80211_chan_def *chandef,
1070
                        struct ieee80211_sta *sta, void *priv_sta,