slab.c 107 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
29
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
Ingo Molnar's avatar
Ingo Molnar committed
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
Pekka Enberg's avatar
Pekka Enberg committed
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
Linus Torvalds's avatar
Linus Torvalds committed
119

120 121
#include	<net/sock.h>

Linus Torvalds's avatar
Linus Torvalds committed
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

Linus Torvalds's avatar
Linus Torvalds committed
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

171 172 173 174 175 176
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

Linus Torvalds's avatar
Linus Torvalds committed
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
194
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
195 196 197
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
198 199 200 201
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
Andrew Morton's avatar
Andrew Morton committed
202
			 */
Linus Torvalds's avatar
Linus Torvalds committed
203 204
};

Joonsoo Kim's avatar
Joonsoo Kim committed
205 206 207 208 209
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

Andrew Morton's avatar
Andrew Morton committed
227 228 229
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
Linus Torvalds's avatar
Linus Torvalds committed
230 231 232 233
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
234
	void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds's avatar
Linus Torvalds committed
235 236
};

237 238 239
/*
 * Need this for bootstrapping a per node allocator.
 */
240
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242
#define	CACHE_CACHE 0
243
#define	SIZE_NODE (MAX_NUMNODES)
244

245
static int drain_freelist(struct kmem_cache *cache,
246
			struct kmem_cache_node *n, int tofree);
247
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248 249
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251
static void cache_reap(struct work_struct *unused);
252

253 254
static int slab_early_init = 1;

255
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
Linus Torvalds's avatar
Linus Torvalds committed
256

257
static void kmem_cache_node_init(struct kmem_cache_node *parent)
258 259 260 261 262 263
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
264
	parent->colour_next = 0;
265 266 267 268 269
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
270 271 272
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
273
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
274 275
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
276 277
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
278 279 280 281
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
282 283 284

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
285
#define OFF_SLAB_MIN_SIZE (max_t(size_t, PAGE_SIZE >> 5, KMALLOC_MIN_SIZE + 1))
Linus Torvalds's avatar
Linus Torvalds committed
286 287

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
288 289 290
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
291
 *
Adrian Bunk's avatar
Adrian Bunk committed
292
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
293 294
 * which could lock up otherwise freeable slabs.
 */
295 296
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
Linus Torvalds's avatar
Linus Torvalds committed
297 298 299 300 301 302

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
303
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
304 305 306 307 308
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
309 310
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
311
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
312
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
313 314 315 316 317
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
318 319 320 321 322 323 324 325 326
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
327
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
328 329 330
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
331
#define	STATS_INC_NODEFREES(x)	do { } while (0)
332
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
333
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
334 335 336 337 338 339 340 341
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
342 343
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
344
 * 0		: objp
345
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
346 347
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
348
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
349
 * 		redzone word.
350
 * cachep->obj_offset: The real object.
351 352
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
Andrew Morton's avatar
Andrew Morton committed
353
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
354
 */
355
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
356
{
357
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
358 359
}

360
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
361 362
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
363 364
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
365 366
}

367
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
368 369 370
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
371
		return (unsigned long long *)(objp + cachep->size -
372
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
373
					      REDZONE_ALIGN);
374
	return (unsigned long long *) (objp + cachep->size -
375
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
376 377
}

378
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
379 380
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
381
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
382 383 384 385
}

#else

386
#define obj_offset(x)			0
387 388
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
389 390 391 392
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
#define OBJECT_FREE (0)
#define OBJECT_ACTIVE (1)

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void set_obj_status(struct page *page, int idx, int val)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;
	status[idx] = val;
}

static inline unsigned int get_obj_status(struct page *page, int idx)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;

	return status[idx];
}

#else
static inline void set_obj_status(struct page *page, int idx, int val) {}

#endif

Linus Torvalds's avatar
Linus Torvalds committed
426
/*
427 428
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
Linus Torvalds's avatar
Linus Torvalds committed
429
 */
430 431 432
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
433
static bool slab_max_order_set __initdata;
Linus Torvalds's avatar
Linus Torvalds committed
434

435 436
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
437
	struct page *page = virt_to_head_page(obj);
438
	return page->slab_cache;
439 440
}

441
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
442 443
				 unsigned int idx)
{
444
	return page->s_mem + cache->size * idx;
445 446
}

447
/*
448 449 450
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
451 452 453
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
454
					const struct page *page, void *obj)
455
{
456
	u32 offset = (obj - page->s_mem);
457
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
458 459
}

Linus Torvalds's avatar
Linus Torvalds committed
460
/* internal cache of cache description objs */
461
static struct kmem_cache kmem_cache_boot = {
462 463 464
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
465
	.size = sizeof(struct kmem_cache),
466
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
467 468
};

469 470
#define BAD_ALIEN_MAGIC 0x01020304ul

471
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
472

473
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
474
{
475
	return this_cpu_ptr(cachep->cpu_cache);
Linus Torvalds's avatar
Linus Torvalds committed
476 477
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491
static size_t calculate_freelist_size(int nr_objs, size_t align)
{
	size_t freelist_size;

	freelist_size = nr_objs * sizeof(freelist_idx_t);
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		freelist_size += nr_objs * sizeof(char);

	if (align)
		freelist_size = ALIGN(freelist_size, align);

	return freelist_size;
}

492 493
static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
				size_t idx_size, size_t align)
Linus Torvalds's avatar
Linus Torvalds committed
494
{
495
	int nr_objs;
496
	size_t remained_size;
497
	size_t freelist_size;
498
	int extra_space = 0;
499

500 501
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		extra_space = sizeof(char);
502 503 504 505 506 507 508 509
	/*
	 * Ignore padding for the initial guess. The padding
	 * is at most @align-1 bytes, and @buffer_size is at
	 * least @align. In the worst case, this result will
	 * be one greater than the number of objects that fit
	 * into the memory allocation when taking the padding
	 * into account.
	 */
510
	nr_objs = slab_size / (buffer_size + idx_size + extra_space);
511 512 513 514 515

	/*
	 * This calculated number will be either the right
	 * amount, or one greater than what we want.
	 */
516 517 518
	remained_size = slab_size - nr_objs * buffer_size;
	freelist_size = calculate_freelist_size(nr_objs, align);
	if (remained_size < freelist_size)
519 520 521
		nr_objs--;

	return nr_objs;
522
}
Linus Torvalds's avatar
Linus Torvalds committed
523

Andrew Morton's avatar
Andrew Morton committed
524 525 526
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
527 528 529 530 531 532 533
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
534

535 536 537 538 539
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
Joonsoo Kim's avatar
Joonsoo Kim committed
540
	 * - One unsigned int for each object
541 542 543 544 545 546 547 548 549 550 551 552 553
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
554
		nr_objs = calculate_nr_objs(slab_size, buffer_size,
555
					sizeof(freelist_idx_t), align);
556
		mgmt_size = calculate_freelist_size(nr_objs, align);
557 558 559
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds's avatar
Linus Torvalds committed
560 561
}

562
#if DEBUG
563
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
564

Andrew Morton's avatar
Andrew Morton committed
565 566
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
567 568
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
569
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
570
	dump_stack();
571
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
Linus Torvalds's avatar
Linus Torvalds committed
572
}
573
#endif
Linus Torvalds's avatar
Linus Torvalds committed
574

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

591 592 593 594 595 596 597 598 599 600 601
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

602 603 604 605 606 607 608
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
609
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
610 611 612 613 614

static void init_reap_node(int cpu)
{
	int node;

615
	node = next_node(cpu_to_mem(cpu), node_online_map);
616
	if (node == MAX_NUMNODES)
617
		node = first_node(node_online_map);
618

619
	per_cpu(slab_reap_node, cpu) = node;
620 621 622 623
}

static void next_reap_node(void)
{
624
	int node = __this_cpu_read(slab_reap_node);
625 626 627 628

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
629
	__this_cpu_write(slab_reap_node, node);
630 631 632 633 634 635 636
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
637 638 639 640 641 642 643
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
644
static void start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
645
{
646
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
647 648 649 650 651 652

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
653
	if (keventd_up() && reap_work->work.func == NULL) {
654
		init_reap_node(cpu);
655
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
656 657
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
658 659 660
	}
}

661
static void init_arraycache(struct array_cache *ac, int limit, int batch)
Linus Torvalds's avatar
Linus Torvalds committed
662
{
663 664
	/*
	 * The array_cache structures contain pointers to free object.
Lucas De Marchi's avatar
Lucas De Marchi committed
665
	 * However, when such objects are allocated or transferred to another
666 667 668 669
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
670 671 672 673 674 675
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
Linus Torvalds's avatar
Linus Torvalds committed
676
	}
677 678 679 680 681
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
682
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
683 684 685 686 687
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
Linus Torvalds's avatar
Linus Torvalds committed
688 689
}

690
static inline bool is_slab_pfmemalloc(struct page *page)
691 692 693 694 695 696 697 698
{
	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
699
	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
700
	struct page *page;
701 702 703 704 705
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

706
	spin_lock_irqsave(&n->list_lock, flags);
707 708
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
709 710
			goto out;

711 712
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
713 714
			goto out;

715 716
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
717 718 719 720
			goto out;

	pfmemalloc_active = false;
out:
721
	spin_unlock_irqrestore(&n->list_lock, flags);
722 723
}

724
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
725 726 727 728 729 730 731
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
732
		struct kmem_cache_node *n;
733 734 735 736 737 738 739

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
740
		for (i = 0; i < ac->avail; i++) {
741 742 743 744 745 746 747 748 749 750 751 752 753
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
754
		n = get_node(cachep, numa_mem_id());
755
		if (!list_empty(&n->slabs_free) && force_refill) {
756
			struct page *page = virt_to_head_page(objp);
757
			ClearPageSlabPfmemalloc(page);
758 759 760 761 762 763 764 765 766 767 768 769 770
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

771 772 773 774 775 776 777 778 779 780 781 782 783
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

Joonsoo Kim's avatar
Joonsoo Kim committed
784 785
static noinline void *__ac_put_obj(struct kmem_cache *cachep,
			struct array_cache *ac, void *objp)
786 787 788
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
789
		struct page *page = virt_to_head_page(objp);
790 791 792 793
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

794 795 796 797 798 799 800 801 802
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

803 804 805
	ac->entry[ac->avail++] = objp;
}

806 807 808 809 810 811 812 813 814 815
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
816
	int nr = min3(from->avail, max, to->limit - to->avail);
817 818 819 820 821 822 823 824 825 826 827 828

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

829 830 831
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
832
#define reap_alien(cachep, n) do { } while (0)
833

Joonsoo Kim's avatar
Joonsoo Kim committed
834 835
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
836
{
837
	return (struct alien_cache **)BAD_ALIEN_MAGIC;
838 839
}

Joonsoo Kim's avatar
Joonsoo Kim committed
840
static inline void free_alien_cache(struct alien_cache **ac_ptr)
841 842 843 844 845 846 847 848 849 850 851 852 853 854
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

855
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
856 857 858 859 860
		 gfp_t flags, int nodeid)
{
	return NULL;
}

David Rientjes's avatar
David Rientjes committed
861 862 863 864 865
static inline gfp_t gfp_exact_node(gfp_t flags)
{
	return flags;
}

866 867
#else	/* CONFIG_NUMA */

868
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
869
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
870

Joonsoo Kim's avatar
Joonsoo Kim committed
871 872 873
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
874
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
Joonsoo Kim's avatar
Joonsoo Kim committed
875 876 877 878
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
879
	spin_lock_init(&alc->lock);
Joonsoo Kim's avatar
Joonsoo Kim committed
880 881 882 883
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
884
{
Joonsoo Kim's avatar
Joonsoo Kim committed
885
	struct alien_cache **alc_ptr;
886
	size_t memsize = sizeof(void *) * nr_node_ids;
887 888 889 890
	int i;

	if (limit > 1)
		limit = 12;
Joonsoo Kim's avatar
Joonsoo Kim committed
891 892 893 894 895 896 897 898 899 900 901 902 903
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
904 905
		}
	}
Joonsoo Kim's avatar
Joonsoo Kim committed
906
	return alc_ptr;
907 908
}

Joonsoo Kim's avatar
Joonsoo Kim committed
909
static void free_alien_cache(struct alien_cache **alc_ptr)
910 911 912
{
	int i;

Joonsoo Kim's avatar
Joonsoo Kim committed
913
	if (!alc_ptr)
914 915
		return;
	for_each_node(i)
Joonsoo Kim's avatar
Joonsoo Kim committed
916 917
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
918 919
}

920
static void __drain_alien_cache(struct kmem_cache *cachep,
921 922
				struct array_cache *ac, int node,
				struct list_head *list)
923
{
924
	struct kmem_cache_node *n = get_node(cachep, node);
925 926

	if (ac->avail) {
927
		spin_lock(&n->list_lock);
928 929 930 931 932
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
933 934
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
935

936
		free_block(cachep, ac->entry, ac->avail, node, list);
937
		ac->avail = 0;
938
		spin_unlock(&n->list_lock);
939 940 941
	}
}

942 943 944
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
945
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
946
{
947
	int node = __this_cpu_read(slab_reap_node);
948

949
	if (n->alien) {
Joonsoo Kim's avatar
Joonsoo Kim committed
950 951 952 953 954
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
955
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
956 957 958
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
959
				spin_unlock_irq(&alc->lock);
960
				slabs_destroy(cachep, &list);
Joonsoo Kim's avatar
Joonsoo Kim committed
961
			}
962 963 964 965
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
966
static void drain_alien_cache(struct kmem_cache *cachep,
Joonsoo Kim's avatar
Joonsoo Kim committed
967
				struct alien_cache **alien)
968
{
969
	int i = 0;
Joonsoo Kim's avatar
Joonsoo Kim committed
970
	struct alien_cache *alc;
971 972 973 974
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
Joonsoo Kim's avatar
Joonsoo Kim committed
975 976
		alc = alien[i];
		if (alc) {
977 978
			LIST_HEAD(list);

Joonsoo Kim's avatar
Joonsoo Kim committed
979
			ac = &alc->ac;
980
			spin_lock_irqsave(&alc->lock, flags);
981
			__drain_alien_cache(cachep, ac, i, &list);
982
			spin_unlock_irqrestore(&alc->lock, flags);
983
			slabs_destroy(cachep, &list);
984 985 986
		}
	}
}
987

988 989
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
990
{
991
	struct kmem_cache_node *n;
Joonsoo Kim's avatar
Joonsoo Kim committed
992 993
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
994
	LIST_HEAD(list);
995

996
	n = get_node(cachep, node);
997
	STATS_INC_NODEFREES(cachep);
998 999
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
Joonsoo Kim's avatar
Joonsoo Kim committed
1000
		ac = &alien->ac;
1001
		spin_lock(&alien->lock);
Joonsoo Kim's avatar
Joonsoo Kim committed
1002
		if (unlikely(ac->avail == ac->limit)) {
1003
			STATS_INC_ACOVERFLOW(cachep);
1004
			__drain_alien_cache(cachep, ac, page_node, &list);
1005
		}
Joonsoo Kim's avatar
Joonsoo Kim committed
1006
		ac_put_obj(cachep, ac, objp);
1007
		spin_unlock(&alien->lock);
1008
		slabs_destroy(cachep, &list);
1009
	} else {
1010
		n = get_node(cachep, page_node);
1011
		spin_lock(&n->list_lock);
1012
		free_block(cachep, &objp, 1, page_node, &list);
1013
		spin_unlock(&n->list_lock);