iwl-trans.h 17.4 KB
Newer Older
1
2
3
4
5
6
7
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
Wey-Yi Guy's avatar
Wey-Yi Guy committed
8
 * Copyright(c) 2007 - 2012 Intel Corporation. All rights reserved.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
 * USA
 *
 * The full GNU General Public License is included in this distribution
 * in the file called LICENSE.GPL.
 *
 * Contact Information:
 *  Intel Linux Wireless <ilw@linux.intel.com>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
Wey-Yi Guy's avatar
Wey-Yi Guy committed
33
 * Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *****************************************************************************/
63
64
#ifndef __iwl_trans_h__
#define __iwl_trans_h__
65

66
#include <linux/debugfs.h>
67
68
69
70
#include <linux/skbuff.h>

#include "iwl-shared.h"
#include "iwl-commands.h"
71
#include "iwl-ucode.h"
72
#include "iwl-debug.h"
73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
/**
 * DOC: Transport layer - what is it ?
 *
 * The tranport layer is the layer that deals with the HW directly. It provides
 * an abstraction of the underlying HW to the upper layer. The transport layer
 * doesn't provide any policy, algorithm or anything of this kind, but only
 * mechanisms to make the HW do something.It is not completely stateless but
 * close to it.
 * We will have an implementation for each different supported bus.
 */

/**
 * DOC: Life cycle of the transport layer
 *
 * The transport layer has a very precise life cycle.
 *
 *	1) A helper function is called during the module initialization and
 *	   registers the bus driver's ops with the transport's alloc function.
 *	2) Bus's probe calls to the transport layer's allocation functions.
 *	   Of course this function is bus specific.
 *	3) This allocation functions will spawn the upper layer which will
 *	   register mac80211.
 *
 *	4) At some point (i.e. mac80211's start call), the op_mode will call
 *	   the following sequence:
 *	   start_hw
 *	   start_fw
 *
 *	5) Then when finished (or reset):
 *	   stop_fw (a.k.a. stop device for the moment)
 *	   stop_hw
 *
 *	6) Eventually, the free function will be called.
 */

/**
 * DOC: API needed by the transport layer from the op_mode
 *
 * TODO
 */
114

115
struct iwl_priv;
116
struct iwl_shared;
117

118
119
120
121
122
123
124
125
/**
 * DOC: Host command section
 *
 * A host command is a commaned issued by the upper layer to the fw. There are
 * several versions of fw that have several APIs. The transport layer is
 * completely agnostic to these differences.
 * The transport does provide helper functionnality (i.e. SYNC / ASYNC mode),
 */
126
127
128
129
#define SEQ_TO_SN(seq) (((seq) & IEEE80211_SCTL_SEQ) >> 4)
#define SN_TO_SEQ(ssn) (((ssn) << 4) & IEEE80211_SCTL_SEQ)
#define MAX_SN ((IEEE80211_SCTL_SEQ) >> 4)

130
131
132
133
134
135
136
137
138
139
/**
 * enum CMD_MODE - how to send the host commands ?
 *
 * @CMD_SYNC: The caller will be stalled until the fw responds to the command
 * @CMD_ASYNC: Return right away and don't want for the response
 * @CMD_WANT_SKB: valid only with CMD_SYNC. The caller needs the buffer of the
 *	response.
 * @CMD_ON_DEMAND: This command is sent by the test mode pipe.
 */
enum CMD_MODE {
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
	CMD_SYNC = 0,
	CMD_ASYNC = BIT(0),
	CMD_WANT_SKB = BIT(1),
	CMD_ON_DEMAND = BIT(2),
};

#define DEF_CMD_PAYLOAD_SIZE 320

/**
 * struct iwl_device_cmd
 *
 * For allocation of the command and tx queues, this establishes the overall
 * size of the largest command we send to uCode, except for commands that
 * aren't fully copied and use other TFD space.
 */
struct iwl_device_cmd {
	struct iwl_cmd_header hdr;	/* uCode API */
157
	u8 payload[DEF_CMD_PAYLOAD_SIZE];
158
159
160
161
162
163
} __packed;

#define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))

#define IWL_MAX_CMD_TFDS	2

164
165
166
167
168
169
170
171
172
/**
 * struct iwl_hcmd_dataflag - flag for each one of the chunks of the command
 *
 * IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
 *	ring. The transport layer doesn't map the command's buffer to DMA, but
 *	rather copies it to an previously allocated DMA buffer. This flag tells
 *	the transport layer not to copy the command, but to map the existing
 *	buffer. This can save memcpy and is worth with very big comamnds.
 */
173
174
175
176
177
178
enum iwl_hcmd_dataflag {
	IWL_HCMD_DFL_NOCOPY	= BIT(0),
};

/**
 * struct iwl_host_cmd - Host command to the uCode
179
 *
180
181
 * @data: array of chunks that composes the data of the host command
 * @reply_page: pointer to the page that holds the response to the host command
182
183
 * @handler_status: return value of the handler of the command
 *	(put in setup_rx_handlers) - valid for SYNC mode only
184
 * @flags: can be CMD_*
185
 * @len: array of the lenths of the chunks in data
186
 * @dataflags: IWL_HCMD_DFL_*
187
188
189
190
191
 * @id: id of the host command
 */
struct iwl_host_cmd {
	const void *data[IWL_MAX_CMD_TFDS];
	unsigned long reply_page;
192
193
	int handler_status;

194
195
196
197
198
	u32 flags;
	u16 len[IWL_MAX_CMD_TFDS];
	u8 dataflags[IWL_MAX_CMD_TFDS];
	u8 id;
};
199
200
201

/**
 * struct iwl_trans_ops - transport specific operations
202
203
204
 *
 * All the handlers MUST be implemented
 *
205
 * @start_hw: starts the HW- from that point on, the HW can send interrupts
206
 *	May sleep
207
208
 * @stop_hw: stops the HW- from that point on, the HW will be in low power but
 *	will still issue interrupt if the HW RF kill is triggered.
209
 *	May sleep
210
 * @start_fw: allocates and inits all the resources for the transport
211
212
 *	layer. Also kick a fw image.
 *	May sleep
213
 * @fw_alive: called when the fw sends alive notification
214
 *	May sleep
215
 * @wake_any_queue: wake all the queues of a specfic context IWL_RXON_CTX_*
216
 * @stop_device:stops the whole device (embedded CPU put to reset)
217
 *	May sleep
218
 * @send_cmd:send a host command
219
 *	May sleep only if CMD_SYNC is set
220
 * @tx: send an skb
221
 *	Must be atomic
222
 * @reclaim: free packet until ssn. Returns a list of freed packets.
223
 *	Must be atomic
224
 * @tx_agg_alloc: allocate resources for a TX BA session
225
 *	May sleep
226
 * @tx_agg_setup: setup a tx queue for AMPDU - will be called once the HW is
227
228
 *	ready and a successful ADDBA response has been received.
 *	May sleep
229
 * @tx_agg_disable: de-configure a Tx queue to send AMPDUs
230
 *	May sleep
231
 * @free: release all the ressource for the transport layer itself such as
232
233
234
 *	irq, tasklet etc... From this point on, the device may not issue
 *	any interrupt (incl. RFKILL).
 *	May sleep
235
 * @stop_queue: stop a specific queue
236
 * @check_stuck_queue: check if a specific queue is stuck
237
 * @wait_tx_queue_empty: wait until all tx queues are empty
238
 *	May sleep
239
240
 * @dbgfs_register: add the dbgfs files under this directory. Files will be
 *	automatically deleted.
241
242
 * @suspend: stop the device unless WoWLAN is configured
 * @resume: resume activity of the device
243
244
245
 * @write8: write a u8 to a register at offset ofs from the BAR
 * @write32: write a u32 to a register at offset ofs from the BAR
 * @read32: read a u32 register at offset ofs from the BAR
246
247
248
 */
struct iwl_trans_ops {

249
	int (*start_hw)(struct iwl_trans *iwl_trans);
250
	void (*stop_hw)(struct iwl_trans *iwl_trans);
251
	int (*start_fw)(struct iwl_trans *trans, struct fw_img *fw);
252
	void (*fw_alive)(struct iwl_trans *trans);
253
	void (*stop_device)(struct iwl_trans *trans);
254

255
	void (*wake_any_queue)(struct iwl_trans *trans,
256
257
			       enum iwl_rxon_context_id ctx,
			       const char *msg);
258

259
	int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
260

261
	int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
262
		struct iwl_device_cmd *dev_cmd, enum iwl_rxon_context_id ctx,
263
		u8 sta_id, u8 tid);
264
	int (*reclaim)(struct iwl_trans *trans, int sta_id, int tid,
265
266
			int txq_id, int ssn, u32 status,
			struct sk_buff_head *skbs);
267

268
	int (*tx_agg_disable)(struct iwl_trans *trans,
269
			      int sta_id, int tid);
270
	int (*tx_agg_alloc)(struct iwl_trans *trans,
271
			    int sta_id, int tid);
272
273
	void (*tx_agg_setup)(struct iwl_trans *trans,
			     enum iwl_rxon_context_id ctx, int sta_id, int tid,
274
			     int frame_limit, u16 ssn);
275

276
	void (*free)(struct iwl_trans *trans);
277

278
	void (*stop_queue)(struct iwl_trans *trans, int q, const char *msg);
279

280
	int (*dbgfs_register)(struct iwl_trans *trans, struct dentry* dir);
281
	int (*check_stuck_queue)(struct iwl_trans *trans, int q);
282
	int (*wait_tx_queue_empty)(struct iwl_trans *trans);
Johannes Berg's avatar
Johannes Berg committed
283
#ifdef CONFIG_PM_SLEEP
284
285
	int (*suspend)(struct iwl_trans *trans);
	int (*resume)(struct iwl_trans *trans);
Johannes Berg's avatar
Johannes Berg committed
286
#endif
287
288
289
	void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
	void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
	u32 (*read32)(struct iwl_trans *trans, u32 ofs);
290
291
};

292
293
294
295
296
297
298
299
/* Opaque calibration results */
struct iwl_calib_result {
	struct list_head list;
	size_t cmd_len;
	struct iwl_calib_hdr hdr;
	/* data follows */
};

300
301
302
303
304
305
306
307
308
309
310
/**
 * enum iwl_trans_state - state of the transport layer
 *
 * @IWL_TRANS_NO_FW: no fw has sent an alive response
 * @IWL_TRANS_FW_ALIVE: a fw has sent an alive response
 */
enum iwl_trans_state {
	IWL_TRANS_NO_FW = 0,
	IWL_TRANS_FW_ALIVE	= 1,
};

311
312
/**
 * struct iwl_trans - transport common data
313
 *
314
315
 * @ops - pointer to iwl_trans_ops
 * @shrd - pointer to iwl_shared which holds shared data from the upper layer
316
 * @hcmd_lock: protects HCMD
317
 * @reg_lock - protect hw register access
318
319
 * @dev - pointer to struct device * that represents the device
 * @irq - the irq number for the device
320
 * @hw_id: a u32 with the ID of the device / subdevice.
321
 *	Set during transport allocation.
322
 * @hw_id_str: a string with info about HW ID. Set during transport allocation.
323
 * @ucode_write_complete: indicates that the ucode has been copied.
324
325
326
 * @ucode_rt: run time ucode image
 * @ucode_init: init ucode image
 * @ucode_wowlan: wake on wireless ucode image (optional)
327
 * @nvm_device_type: indicates OTP or eeprom
328
 * @pm_support: set to true in start_hw if link pm is supported
329
 * @calib_results: list head for init calibration results
330
 */
331
332
struct iwl_trans {
	const struct iwl_trans_ops *ops;
333
	struct iwl_shared *shrd;
334
	enum iwl_trans_state state;
335
	spinlock_t hcmd_lock;
336
	spinlock_t reg_lock;
337

338
339
	struct device *dev;
	unsigned int irq;
340
	u32 hw_rev;
341
	u32 hw_id;
342
	char hw_id_str[52];
343

344
	u8 ucode_write_complete;
345

346
	int    nvm_device_type;
347
	bool pm_support;
348

349
350
	struct list_head calib_results;

351
352
353
	/* pointer to trans specific struct */
	/*Ensure that this pointer will always be aligned to sizeof pointer */
	char trans_specific[0] __attribute__((__aligned__(sizeof(void *))));
354
355
};

356
static inline int iwl_trans_start_hw(struct iwl_trans *trans)
357
{
358
359
	might_sleep();

360
	return trans->ops->start_hw(trans);
361
362
}

363
364
static inline void iwl_trans_stop_hw(struct iwl_trans *trans)
{
365
366
	might_sleep();

367
	trans->ops->stop_hw(trans);
368
369

	trans->state = IWL_TRANS_NO_FW;
370
371
}

372
373
static inline void iwl_trans_fw_alive(struct iwl_trans *trans)
{
374
375
	might_sleep();

376
	trans->ops->fw_alive(trans);
377
378

	trans->state = IWL_TRANS_FW_ALIVE;
379
380
}

381
static inline int iwl_trans_start_fw(struct iwl_trans *trans, struct fw_img *fw)
382
{
383
384
385
	might_sleep();

	return trans->ops->start_fw(trans, fw);
386
387
}

388
static inline void iwl_trans_stop_device(struct iwl_trans *trans)
389
{
390
391
	might_sleep();

392
	trans->ops->stop_device(trans);
393
394

	trans->state = IWL_TRANS_NO_FW;
395
396
}

397
static inline void iwl_trans_wake_any_queue(struct iwl_trans *trans,
398
399
					    enum iwl_rxon_context_id ctx,
					    const char *msg)
400
{
401
402
403
	if (trans->state != IWL_TRANS_FW_ALIVE)
		IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);

404
	trans->ops->wake_any_queue(trans, ctx, msg);
405
406
407
}


408
static inline int iwl_trans_send_cmd(struct iwl_trans *trans,
409
410
				struct iwl_host_cmd *cmd)
{
411
412
413
	if (trans->state != IWL_TRANS_FW_ALIVE)
		IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);

414
	return trans->ops->send_cmd(trans, cmd);
415
416
}

417
418
int iwl_trans_send_cmd_pdu(struct iwl_trans *trans, u8 id,
			   u32 flags, u16 len, const void *data);
419

420
static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
421
		struct iwl_device_cmd *dev_cmd, enum iwl_rxon_context_id ctx,
422
		u8 sta_id, u8 tid)
423
{
424
425
426
	if (trans->state != IWL_TRANS_FW_ALIVE)
		IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);

427
	return trans->ops->tx(trans, skb, dev_cmd, ctx, sta_id, tid);
428
429
}

430
static inline int iwl_trans_reclaim(struct iwl_trans *trans, int sta_id,
431
				 int tid, int txq_id, int ssn, u32 status,
432
433
				 struct sk_buff_head *skbs)
{
434
435
436
	if (trans->state != IWL_TRANS_FW_ALIVE)
		IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);

437
438
	return trans->ops->reclaim(trans, sta_id, tid, txq_id, ssn,
				   status, skbs);
439
440
}

441
442
static inline int iwl_trans_tx_agg_disable(struct iwl_trans *trans,
					    int sta_id, int tid)
443
{
444
445
	might_sleep();

446
447
448
	if (trans->state != IWL_TRANS_FW_ALIVE)
		IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);

449
	return trans->ops->tx_agg_disable(trans, sta_id, tid);
450
451
}

452
static inline int iwl_trans_tx_agg_alloc(struct iwl_trans *trans,
453
					 int sta_id, int tid)
454
{
455
456
	might_sleep();

457
458
459
	if (trans->state != IWL_TRANS_FW_ALIVE)
		IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);

460
	return trans->ops->tx_agg_alloc(trans, sta_id, tid);
461
462
463
}


464
static inline void iwl_trans_tx_agg_setup(struct iwl_trans *trans,
465
466
					   enum iwl_rxon_context_id ctx,
					   int sta_id, int tid,
467
					   int frame_limit, u16 ssn)
468
{
469
470
	might_sleep();

471
472
473
	if (trans->state != IWL_TRANS_FW_ALIVE)
		IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);

474
	trans->ops->tx_agg_setup(trans, ctx, sta_id, tid, frame_limit, ssn);
475
476
}

477
static inline void iwl_trans_free(struct iwl_trans *trans)
478
{
479
	trans->ops->free(trans);
480
481
}

482
483
static inline void iwl_trans_stop_queue(struct iwl_trans *trans, int q,
					const char *msg)
484
{
485
486
487
	if (trans->state != IWL_TRANS_FW_ALIVE)
		IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);

488
	trans->ops->stop_queue(trans, q, msg);
489
490
}

491
492
static inline int iwl_trans_wait_tx_queue_empty(struct iwl_trans *trans)
{
493
494
495
	if (trans->state != IWL_TRANS_FW_ALIVE)
		IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);

496
497
498
	return trans->ops->wait_tx_queue_empty(trans);
}

499
500
static inline int iwl_trans_check_stuck_queue(struct iwl_trans *trans, int q)
{
501
502
503
	if (trans->state != IWL_TRANS_FW_ALIVE)
		IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);

504
505
	return trans->ops->check_stuck_queue(trans, q);
}
506
507
508
509
510
511
static inline int iwl_trans_dbgfs_register(struct iwl_trans *trans,
					    struct dentry *dir)
{
	return trans->ops->dbgfs_register(trans, dir);
}

Johannes Berg's avatar
Johannes Berg committed
512
#ifdef CONFIG_PM_SLEEP
513
514
515
516
517
518
519
520
521
static inline int iwl_trans_suspend(struct iwl_trans *trans)
{
	return trans->ops->suspend(trans);
}

static inline int iwl_trans_resume(struct iwl_trans *trans)
{
	return trans->ops->resume(trans);
}
Johannes Berg's avatar
Johannes Berg committed
522
#endif
523

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
{
	trans->ops->write8(trans, ofs, val);
}

static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
{
	trans->ops->write32(trans, ofs, val);
}

static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
{
	return trans->ops->read32(trans, ofs);
}

539
/*****************************************************
540
* Utils functions
541
******************************************************/
542
543
544
545
546
int iwl_send_calib_results(struct iwl_trans *trans);
int iwl_calib_set(struct iwl_trans *trans,
		  const struct iwl_calib_hdr *cmd, int len);
void iwl_calib_free_results(struct iwl_trans *trans);

547
548
549
550
551
552
553
554
555
556
557
558
559
560
/*****************************************************
* Transport layers implementations + their allocation function
******************************************************/
struct pci_dev;
struct pci_device_id;
extern const struct iwl_trans_ops trans_ops_pcie;
struct iwl_trans *iwl_trans_pcie_alloc(struct iwl_shared *shrd,
				       struct pci_dev *pdev,
				       const struct pci_device_id *ent);

extern const struct iwl_trans_ops trans_ops_idi;
struct iwl_trans *iwl_trans_idi_alloc(struct iwl_shared *shrd,
				      void *pdev_void,
				      const void *ent_void);
561
#endif /* __iwl_trans_h__ */