slab.c 114 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
29
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54
55
56
57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59
60
61
62
63
64
65
66
67
68
69
70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72
73
74
75
76
77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78
79
80
81
82
83
84
85
86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87
88
89
90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
92
93
94
95
96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
99
100
101
102
103
104
105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
Ingo Molnar's avatar
Ingo Molnar committed
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
Pekka Enberg's avatar
Pekka Enberg committed
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
Linus Torvalds's avatar
Linus Torvalds committed
119

120
121
#include	<net/sock.h>

Linus Torvalds's avatar
Linus Torvalds committed
122
123
124
125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126
127
#include <trace/events/kmem.h>

128
129
#include	"internal.h"

130
131
#include	"slab.h"

Linus Torvalds's avatar
Linus Torvalds committed
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
155
156
157
158
159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160
161
162
163
164
165
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

Linus Torvalds's avatar
Linus Torvalds committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

185
typedef unsigned int kmem_bufctl_t;
Linus Torvalds's avatar
Linus Torvalds committed
186
187
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
188
189
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
Linus Torvalds's avatar
Linus Torvalds committed
190

191
192
193
194
195
196
197
198
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
199
200
201
202
203
	struct {
		struct list_head list;
		void *s_mem;		/* including colour offset */
		unsigned int inuse;	/* num of objs active in slab */
		kmem_bufctl_t free;
204
205
206
	};
};

Linus Torvalds's avatar
Linus Torvalds committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
224
	spinlock_t lock;
225
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
226
227
228
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
229
230
231
232
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
Andrew Morton's avatar
Andrew Morton committed
233
			 */
Linus Torvalds's avatar
Linus Torvalds committed
234
235
};

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

Andrew Morton's avatar
Andrew Morton committed
253
254
255
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
Linus Torvalds's avatar
Linus Torvalds committed
256
257
258
259
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
260
	void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds's avatar
Linus Torvalds committed
261
262
};

263
264
265
/*
 * Need this for bootstrapping a per node allocator.
 */
266
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
267
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
268
#define	CACHE_CACHE 0
269
#define	SIZE_AC MAX_NUMNODES
270
#define	SIZE_NODE (2 * MAX_NUMNODES)
271

272
static int drain_freelist(struct kmem_cache *cache,
273
			struct kmem_cache_node *n, int tofree);
274
275
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
276
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
277
static void cache_reap(struct work_struct *unused);
278

279
280
static int slab_early_init = 1;

281
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
282
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
Linus Torvalds's avatar
Linus Torvalds committed
283

284
static void kmem_cache_node_init(struct kmem_cache_node *parent)
285
286
287
288
289
290
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
291
	parent->colour_next = 0;
292
293
294
295
296
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
297
298
299
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
300
		list_splice(&(cachep->node[nodeid]->slab), listp);	\
301
302
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
303
304
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
305
306
307
308
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
309
310
311
312
313

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
314
315
316
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
317
 *
Adrian Bunk's avatar
Adrian Bunk committed
318
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
319
320
321
322
323
324
325
326
327
328
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
329
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
330
331
332
333
334
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
335
336
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
337
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
338
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
339
340
341
342
343
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
344
345
346
347
348
349
350
351
352
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
353
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
354
355
356
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
357
#define	STATS_INC_NODEFREES(x)	do { } while (0)
358
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
359
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
360
361
362
363
364
365
366
367
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
368
369
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
370
 * 0		: objp
371
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
372
373
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
374
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
375
 * 		redzone word.
376
 * cachep->obj_offset: The real object.
377
378
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
Andrew Morton's avatar
Andrew Morton committed
379
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
380
 */
381
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
382
{
383
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
384
385
}

386
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
387
388
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
389
390
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
391
392
}

393
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
394
395
396
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
397
		return (unsigned long long *)(objp + cachep->size -
398
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
399
					      REDZONE_ALIGN);
400
	return (unsigned long long *) (objp + cachep->size -
401
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
402
403
}

404
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
405
406
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
407
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
408
409
410
411
}

#else

412
#define obj_offset(x)			0
413
414
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
415
416
417
418
419
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
420
421
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
Linus Torvalds's avatar
Linus Torvalds committed
422
 */
423
424
425
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
426
static bool slab_max_order_set __initdata;
Linus Torvalds's avatar
Linus Torvalds committed
427

428
429
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
430
	struct page *page = virt_to_head_page(obj);
431
	return page->slab_cache;
432
433
434
435
}

static inline struct slab *virt_to_slab(const void *obj)
{
436
	struct page *page = virt_to_head_page(obj);
437
438
439

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
440
441
}

442
443
444
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
445
	return slab->s_mem + cache->size * idx;
446
447
}

448
/*
449
450
451
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
452
453
454
455
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
456
{
457
458
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
459
460
}

Linus Torvalds's avatar
Linus Torvalds committed
461
static struct arraycache_init initarray_generic =
462
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
463
464

/* internal cache of cache description objs */
465
static struct kmem_cache kmem_cache_boot = {
466
467
468
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
469
	.size = sizeof(struct kmem_cache),
470
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
471
472
};

473
474
#define BAD_ALIEN_MAGIC 0x01020304ul

475
476
477
478
479
480
481
482
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
483
484
485
486
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
487
 */
488
489
490
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

491
492
493
494
495
496
497
498
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
499
	struct kmem_cache_node *n;
500
501
	int r;

502
503
	n = cachep->node[q];
	if (!n)
504
505
		return;

506
507
	lockdep_set_class(&n->list_lock, l3_key);
	alc = n->alien;
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

536
static void init_node_lock_keys(int q)
537
{
538
	int i;
539

540
	if (slab_state < UP)
541
542
		return;

Christoph Lameter's avatar
Christoph Lameter committed
543
	for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
544
		struct kmem_cache_node *n;
545
546
547
548
		struct kmem_cache *cache = kmalloc_caches[i];

		if (!cache)
			continue;
549

550
551
		n = cache->node[q];
		if (!n || OFF_SLAB(cache))
552
			continue;
553

554
		slab_set_lock_classes(cache, &on_slab_l3_key,
555
				&on_slab_alc_key, q);
556
557
	}
}
558

559
560
static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
{
561
	if (!cachep->node[q])
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
		return;

	slab_set_lock_classes(cachep, &on_slab_l3_key,
			&on_slab_alc_key, q);
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;

	VM_BUG_ON(OFF_SLAB(cachep));
	for_each_node(node)
		on_slab_lock_classes_node(cachep, node);
}

577
578
579
580
581
582
583
static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
584
#else
585
586
587
588
static void init_node_lock_keys(int q)
{
}

589
static inline void init_lock_keys(void)
590
591
{
}
592

593
594
595
596
597
598
599
600
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

601
602
603
604
605
606
607
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
608
609
#endif

610
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
611

612
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
613
614
615
616
{
	return cachep->array[smp_processor_id()];
}

617
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds's avatar
Linus Torvalds committed
618
{
619
620
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
Linus Torvalds's avatar
Linus Torvalds committed
621

Andrew Morton's avatar
Andrew Morton committed
622
623
624
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
625
626
627
628
629
630
631
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
632

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds's avatar
Linus Torvalds committed
681
682
}

683
#if DEBUG
684
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
685

Andrew Morton's avatar
Andrew Morton committed
686
687
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
688
689
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
690
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
691
	dump_stack();
692
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
Linus Torvalds's avatar
Linus Torvalds committed
693
}
694
#endif
Linus Torvalds's avatar
Linus Torvalds committed
695

696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

712
713
714
715
716
717
718
719
720
721
722
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

723
724
725
726
727
728
729
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
730
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
731
732
733
734
735

static void init_reap_node(int cpu)
{
	int node;

736
	node = next_node(cpu_to_mem(cpu), node_online_map);
737
	if (node == MAX_NUMNODES)
738
		node = first_node(node_online_map);
739

740
	per_cpu(slab_reap_node, cpu) = node;
741
742
743
744
}

static void next_reap_node(void)
{
745
	int node = __this_cpu_read(slab_reap_node);
746
747
748
749

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
750
	__this_cpu_write(slab_reap_node, node);
751
752
753
754
755
756
757
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
758
759
760
761
762
763
764
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
765
static void start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
766
{
767
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
768
769
770
771
772
773

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
774
	if (keventd_up() && reap_work->work.func == NULL) {
775
		init_reap_node(cpu);
776
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
777
778
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
779
780
781
	}
}

782
static struct array_cache *alloc_arraycache(int node, int entries,
783
					    int batchcount, gfp_t gfp)
Linus Torvalds's avatar
Linus Torvalds committed
784
{
785
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds's avatar
Linus Torvalds committed
786
787
	struct array_cache *nc = NULL;

788
	nc = kmalloc_node(memsize, gfp, node);
789
790
	/*
	 * The array_cache structures contain pointers to free object.
Lucas De Marchi's avatar
Lucas De Marchi committed
791
	 * However, when such objects are allocated or transferred to another
792
793
794
795
796
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
Linus Torvalds's avatar
Linus Torvalds committed
797
798
799
800
801
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
802
		spin_lock_init(&nc->lock);
Linus Torvalds's avatar
Linus Torvalds committed
803
804
805
806
	}
	return nc;
}

807
808
809
810
811
812
813
814
815
816
817
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
818
	struct kmem_cache_node *n = cachep->node[numa_mem_id()];
819
820
821
822
823
824
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

825
826
	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(slabp, &n->slabs_full, list)
827
828
829
		if (is_slab_pfmemalloc(slabp))
			goto out;

830
	list_for_each_entry(slabp, &n->slabs_partial, list)
831
832
833
		if (is_slab_pfmemalloc(slabp))
			goto out;

834
	list_for_each_entry(slabp, &n->slabs_free, list)
835
836
837
838
839
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
840
	spin_unlock_irqrestore(&n->list_lock, flags);
841
842
}

843
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
844
845
846
847
848
849
850
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
851
		struct kmem_cache_node *n;
852
853
854
855
856
857
858

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
859
		for (i = 0; i < ac->avail; i++) {
860
861
862
863
864
865
866
867
868
869
870
871
872
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
873
874
		n = cachep->node[numa_mem_id()];
		if (!list_empty(&n->slabs_free) && force_refill) {
875
			struct slab *slabp = virt_to_slab(objp);
876
			ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
877
878
879
880
881
882
883
884
885
886
887
888
889
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

890
891
892
893
894
895
896
897
898
899
900
901
902
903
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
904
905
906
907
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
Joonsoo Kim's avatar
Joonsoo Kim committed
908
909
		struct slab *slabp = virt_to_slab(objp);
		struct page *page = virt_to_head_page(slabp->s_mem);
910
911
912
913
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

914
915
916
917
918
919
920
921
922
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

923
924
925
	ac->entry[ac->avail++] = objp;
}

926
927
928
929
930
931
932
933
934
935
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
936
	int nr = min3(from->avail, max, to->limit - to->avail);
937
938
939
940
941
942
943
944
945
946
947
948

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

949
950
951
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
952
#define reap_alien(cachep, n) do { } while (0)
953

954
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

974
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
975
976
977
978
979
980
981
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

982
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
983
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
984

985
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
986
987
{
	struct array_cache **ac_ptr;
988
	int memsize = sizeof(void *) * nr_node_ids;
989
990
991
992
	int i;

	if (limit > 1)
		limit = 12;
993
	ac_ptr = kzalloc_node(memsize, gfp, node);
994
995
	if (ac_ptr) {
		for_each_node(i) {
996
			if (i == node || !node_online(i))
997
				continue;
998
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
999
			if (!ac_ptr[i]) {
1000
				for (i--; i >= 0; i--)
1001
1002
1003
1004
1005
1006
1007
1008
1009
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

Pekka Enberg's avatar
Pekka Enberg committed
1010
static void free_alien_cache(struct array_cache **ac_ptr)
1011
1012
1013
1014
1015
1016
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
1017
	    kfree(ac_ptr[i]);
1018
1019
1020
	kfree(ac_ptr);
}

1021
static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg's avatar
Pekka Enberg committed
1022
				struct array_cache *ac, int node)
1023
{
1024
	struct kmem_cache_node *n = cachep->node[node];
1025
1026

	if (ac->avail) {
1027
		spin_lock(&n->list_lock);
1028
1029
1030
1031
1032
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1033
1034
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
1035

1036
		free_block(cachep, ac->entry, ac->avail, node);
1037
		ac->avail = 0;
1038
		spin_unlock(&n->list_lock);
1039
1040
1041
	}
}

1042
1043
1044
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
1045
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1046
{
1047
	int node = __this_cpu_read(slab_reap_node);
1048

1049
1050
	if (n->alien) {
		struct array_cache *ac = n->alien[node];
1051
1052

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1053
1054
1055
1056
1057
1058
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
1059
1060
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1061
{
1062
	int i = 0;
1063
1064
1065
1066
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1067
		ac = alien[i];
1068
1069
1070
1071
1072
1073
1074
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1075

1076
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1077
{
1078
	int nodeid = page_to_nid(virt_to_page(objp));
1079
	struct kmem_cache_node *n;
1080
	struct array_cache *alien = NULL;
1081
1082
	int node;

1083
	node = numa_mem_id();
1084
1085
1086
1087
1088

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1089
	if (likely(nodeid == node))
1090
1091
		return 0;

1092
	n = cachep->node[node];
1093
	STATS_INC_NODEFREES(cachep);
1094
1095
	if (n->alien && n->alien[nodeid]) {
		alien = n->alien[nodeid];
1096
		spin_lock(&alien->lock);
1097
1098
1099
1100
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1101
		ac_put_obj(cachep, alien, objp);
1102
1103
		spin_unlock(&alien->lock);
	} else {
1104
		spin_lock(&(cachep->node[nodeid])->list_lock);
1105
		free_block(cachep, &objp, 1, nodeid);
1106
		spin_unlock(&(cachep->node[nodeid])->list_lock);
1107
1108
1109
	}
	return 1;
}
1110
1111
#endif

1112
/*
1113
 * Allocates and initializes node for a node on each slab cache, used for
1114
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1115
 * will be allocated off-node since memory is not yet online for the new node.
1116
 * When hotplugging memory or a cpu, existing node are not replaced if
1117
1118
 * already in use.
 *
1119
 * Must hold slab_mutex.
1120
 */
1121
static int init_cache_node_node(int node)
1122
1123
{
	struct kmem_cache *cachep;
1124
	struct kmem_cache_node *n;
1125
	const int memsize = sizeof(struct kmem_cache_node);
1126

1127
	list_for_each_entry(cachep, &slab_caches, list) {
1128
1129
1130
1131
1132
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1133
		if (!cachep->node[node]) {
1134
1135
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1136
				return -ENOMEM;
1137
1138
			kmem_cache_node_init(n);
			n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1139
1140
1141
1142
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1143
			 * go.  slab_mutex is sufficient
1144
1145
			 * protection here.
			 */
1146
			cachep->node[node] = n;
1147
1148
		}

1149
1150
		spin_lock_irq(&cachep->node[node]->list_lock);
		cachep->node[node]->free_limit =
1151
1152
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1153
		spin_unlock_irq(&cachep->node[node]->list_lock);
1154
1155
1156
1157
	}
	return 0;
}

1158
1159
1160
1161
1162
1163
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1164
static void cpuup_canceled(long cpu)
1165
1166
{
	struct kmem_cache *cachep;
1167
	struct kmem_cache_node *n = NULL;