slab.c 111 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
29
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54
55
56
57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59
60
61
62
63
64
65
66
67
68
69
70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72
73
74
75
76
77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78
79
80
81
82
83
84
85
86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87
88
89
90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
92
93
94
95
96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
99
100
101
102
103
104
105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
Ingo Molnar's avatar
Ingo Molnar committed
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
Pekka Enberg's avatar
Pekka Enberg committed
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
Linus Torvalds's avatar
Linus Torvalds committed
119

120
121
#include	<net/sock.h>

Linus Torvalds's avatar
Linus Torvalds committed
122
123
124
125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126
127
#include <trace/events/kmem.h>

128
129
#include	"internal.h"

130
131
#include	"slab.h"

Linus Torvalds's avatar
Linus Torvalds committed
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
155
156
157
158
159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160
161
162
163
164
165
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

166
167
168
169
170
171
172
173
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
174
175
176
177
	struct {
		struct list_head list;
		void *s_mem;		/* including colour offset */
		unsigned int inuse;	/* num of objs active in slab */
Joonsoo Kim's avatar
Joonsoo Kim committed
178
		unsigned int free;
179
180
181
	};
};

Linus Torvalds's avatar
Linus Torvalds committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
199
	spinlock_t lock;
200
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
201
202
203
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
204
205
206
207
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
Andrew Morton's avatar
Andrew Morton committed
208
			 */
Linus Torvalds's avatar
Linus Torvalds committed
209
210
};

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

Andrew Morton's avatar
Andrew Morton committed
228
229
230
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
Linus Torvalds's avatar
Linus Torvalds committed
231
232
233
234
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
235
	void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds's avatar
Linus Torvalds committed
236
237
};

238
239
240
/*
 * Need this for bootstrapping a per node allocator.
 */
241
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
242
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
243
#define	CACHE_CACHE 0
244
#define	SIZE_AC MAX_NUMNODES
245
#define	SIZE_NODE (2 * MAX_NUMNODES)
246

247
static int drain_freelist(struct kmem_cache *cache,
248
			struct kmem_cache_node *n, int tofree);
249
250
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
251
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
252
static void cache_reap(struct work_struct *unused);
253

254
255
static int slab_early_init = 1;

256
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
257
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
Linus Torvalds's avatar
Linus Torvalds committed
258

259
static void kmem_cache_node_init(struct kmem_cache_node *parent)
260
261
262
263
264
265
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
266
	parent->colour_next = 0;
267
268
269
270
271
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
272
273
274
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
275
		list_splice(&(cachep->node[nodeid]->slab), listp);	\
276
277
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
278
279
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
280
281
282
283
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
284
285
286
287
288

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
289
290
291
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
292
 *
Adrian Bunk's avatar
Adrian Bunk committed
293
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
294
295
296
297
298
299
300
301
302
303
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
304
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
305
306
307
308
309
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
310
311
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
312
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
313
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
314
315
316
317
318
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
319
320
321
322
323
324
325
326
327
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
328
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
329
330
331
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
332
#define	STATS_INC_NODEFREES(x)	do { } while (0)
333
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
334
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
335
336
337
338
339
340
341
342
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
343
344
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
345
 * 0		: objp
346
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
347
348
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
349
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
350
 * 		redzone word.
351
 * cachep->obj_offset: The real object.
352
353
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
Andrew Morton's avatar
Andrew Morton committed
354
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
355
 */
356
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
357
{
358
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
359
360
}

361
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
362
363
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
364
365
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
366
367
}

368
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
369
370
371
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
372
		return (unsigned long long *)(objp + cachep->size -
373
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
374
					      REDZONE_ALIGN);
375
	return (unsigned long long *) (objp + cachep->size -
376
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
377
378
}

379
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
380
381
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
382
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
383
384
385
386
}

#else

387
#define obj_offset(x)			0
388
389
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
390
391
392
393
394
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
395
396
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
Linus Torvalds's avatar
Linus Torvalds committed
397
 */
398
399
400
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
401
static bool slab_max_order_set __initdata;
Linus Torvalds's avatar
Linus Torvalds committed
402

403
404
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
405
	struct page *page = virt_to_head_page(obj);
406
	return page->slab_cache;
407
408
409
410
}

static inline struct slab *virt_to_slab(const void *obj)
{
411
	struct page *page = virt_to_head_page(obj);
412
413
414

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
415
416
}

417
418
419
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
420
	return slab->s_mem + cache->size * idx;
421
422
}

423
/*
424
425
426
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
427
428
429
430
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
431
{
432
433
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
434
435
}

Linus Torvalds's avatar
Linus Torvalds committed
436
static struct arraycache_init initarray_generic =
437
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
438
439

/* internal cache of cache description objs */
440
static struct kmem_cache kmem_cache_boot = {
441
442
443
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
444
	.size = sizeof(struct kmem_cache),
445
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
446
447
};

448
449
#define BAD_ALIEN_MAGIC 0x01020304ul

450
451
452
453
454
455
456
457
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
458
459
460
461
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
462
 */
463
464
465
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

466
467
468
469
470
471
472
473
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
474
	struct kmem_cache_node *n;
475
476
	int r;

477
478
	n = cachep->node[q];
	if (!n)
479
480
		return;

481
482
	lockdep_set_class(&n->list_lock, l3_key);
	alc = n->alien;
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

511
static void init_node_lock_keys(int q)
512
{
513
	int i;
514

515
	if (slab_state < UP)
516
517
		return;

Christoph Lameter's avatar
Christoph Lameter committed
518
	for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
519
		struct kmem_cache_node *n;
520
521
522
523
		struct kmem_cache *cache = kmalloc_caches[i];

		if (!cache)
			continue;
524

525
526
		n = cache->node[q];
		if (!n || OFF_SLAB(cache))
527
			continue;
528

529
		slab_set_lock_classes(cache, &on_slab_l3_key,
530
				&on_slab_alc_key, q);
531
532
	}
}
533

534
535
static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
{
536
	if (!cachep->node[q])
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
		return;

	slab_set_lock_classes(cachep, &on_slab_l3_key,
			&on_slab_alc_key, q);
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;

	VM_BUG_ON(OFF_SLAB(cachep));
	for_each_node(node)
		on_slab_lock_classes_node(cachep, node);
}

552
553
554
555
556
557
558
static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
559
#else
560
561
562
563
static void init_node_lock_keys(int q)
{
}

564
static inline void init_lock_keys(void)
565
566
{
}
567

568
569
570
571
572
573
574
575
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

576
577
578
579
580
581
582
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
583
584
#endif

585
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
586

587
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
588
589
590
591
{
	return cachep->array[smp_processor_id()];
}

592
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds's avatar
Linus Torvalds committed
593
{
Joonsoo Kim's avatar
Joonsoo Kim committed
594
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(unsigned int), align);
595
}
Linus Torvalds's avatar
Linus Torvalds committed
596

Andrew Morton's avatar
Andrew Morton committed
597
598
599
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
600
601
602
603
604
605
606
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
607

608
609
610
611
612
613
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
Joonsoo Kim's avatar
Joonsoo Kim committed
614
	 * - One unsigned int for each object
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
Joonsoo Kim's avatar
Joonsoo Kim committed
637
			  (buffer_size + sizeof(unsigned int));
638
639
640
641
642
643
644
645
646
647
648
649
650

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds's avatar
Linus Torvalds committed
651
652
}

653
#if DEBUG
654
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
655

Andrew Morton's avatar
Andrew Morton committed
656
657
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
658
659
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
660
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
661
	dump_stack();
662
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
Linus Torvalds's avatar
Linus Torvalds committed
663
}
664
#endif
Linus Torvalds's avatar
Linus Torvalds committed
665

666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

682
683
684
685
686
687
688
689
690
691
692
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

693
694
695
696
697
698
699
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
700
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
701
702
703
704
705

static void init_reap_node(int cpu)
{
	int node;

706
	node = next_node(cpu_to_mem(cpu), node_online_map);
707
	if (node == MAX_NUMNODES)
708
		node = first_node(node_online_map);
709

710
	per_cpu(slab_reap_node, cpu) = node;
711
712
713
714
}

static void next_reap_node(void)
{
715
	int node = __this_cpu_read(slab_reap_node);
716
717
718
719

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
720
	__this_cpu_write(slab_reap_node, node);
721
722
723
724
725
726
727
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
728
729
730
731
732
733
734
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
735
static void start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
736
{
737
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
738
739
740
741
742
743

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
744
	if (keventd_up() && reap_work->work.func == NULL) {
745
		init_reap_node(cpu);
746
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
747
748
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
749
750
751
	}
}

752
static struct array_cache *alloc_arraycache(int node, int entries,
753
					    int batchcount, gfp_t gfp)
Linus Torvalds's avatar
Linus Torvalds committed
754
{
755
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds's avatar
Linus Torvalds committed
756
757
	struct array_cache *nc = NULL;

758
	nc = kmalloc_node(memsize, gfp, node);
759
760
	/*
	 * The array_cache structures contain pointers to free object.
Lucas De Marchi's avatar
Lucas De Marchi committed
761
	 * However, when such objects are allocated or transferred to another
762
763
764
765
766
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
Linus Torvalds's avatar
Linus Torvalds committed
767
768
769
770
771
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
772
		spin_lock_init(&nc->lock);
Linus Torvalds's avatar
Linus Torvalds committed
773
774
775
776
	}
	return nc;
}

777
778
779
780
781
782
783
784
785
786
787
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
788
	struct kmem_cache_node *n = cachep->node[numa_mem_id()];
789
790
791
792
793
794
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

795
796
	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(slabp, &n->slabs_full, list)
797
798
799
		if (is_slab_pfmemalloc(slabp))
			goto out;

800
	list_for_each_entry(slabp, &n->slabs_partial, list)
801
802
803
		if (is_slab_pfmemalloc(slabp))
			goto out;

804
	list_for_each_entry(slabp, &n->slabs_free, list)
805
806
807
808
809
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
810
	spin_unlock_irqrestore(&n->list_lock, flags);
811
812
}

813
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
814
815
816
817
818
819
820
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
821
		struct kmem_cache_node *n;
822
823
824
825
826
827
828

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
829
		for (i = 0; i < ac->avail; i++) {
830
831
832
833
834
835
836
837
838
839
840
841
842
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
843
844
		n = cachep->node[numa_mem_id()];
		if (!list_empty(&n->slabs_free) && force_refill) {
845
			struct slab *slabp = virt_to_slab(objp);
846
			ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
847
848
849
850
851
852
853
854
855
856
857
858
859
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

860
861
862
863
864
865
866
867
868
869
870
871
872
873
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
874
875
876
877
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
Joonsoo Kim's avatar
Joonsoo Kim committed
878
879
		struct slab *slabp = virt_to_slab(objp);
		struct page *page = virt_to_head_page(slabp->s_mem);
880
881
882
883
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

884
885
886
887
888
889
890
891
892
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

893
894
895
	ac->entry[ac->avail++] = objp;
}

896
897
898
899
900
901
902
903
904
905
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
906
	int nr = min3(from->avail, max, to->limit - to->avail);
907
908
909
910
911
912
913
914
915
916
917
918

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

919
920
921
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
922
#define reap_alien(cachep, n) do { } while (0)
923

924
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

944
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
945
946
947
948
949
950
951
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

952
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
953
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
954

955
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
956
957
{
	struct array_cache **ac_ptr;
958
	int memsize = sizeof(void *) * nr_node_ids;
959
960
961
962
	int i;

	if (limit > 1)
		limit = 12;
963
	ac_ptr = kzalloc_node(memsize, gfp, node);
964
965
	if (ac_ptr) {
		for_each_node(i) {
966
			if (i == node || !node_online(i))
967
				continue;
968
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
969
			if (!ac_ptr[i]) {
970
				for (i--; i >= 0; i--)
971
972
973
974
975
976
977
978
979
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

Pekka Enberg's avatar
Pekka Enberg committed
980
static void free_alien_cache(struct array_cache **ac_ptr)
981
982
983
984
985
986
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
987
	    kfree(ac_ptr[i]);
988
989
990
	kfree(ac_ptr);
}

991
static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg's avatar
Pekka Enberg committed
992
				struct array_cache *ac, int node)
993
{
994
	struct kmem_cache_node *n = cachep->node[node];
995
996

	if (ac->avail) {
997
		spin_lock(&n->list_lock);
998
999
1000
1001
1002
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1003
1004
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
1005

1006
		free_block(cachep, ac->entry, ac->avail, node);
1007
		ac->avail = 0;
1008
		spin_unlock(&n->list_lock);
1009
1010
1011
	}
}

1012
1013
1014
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
1015
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1016
{
1017
	int node = __this_cpu_read(slab_reap_node);
1018

1019
1020
	if (n->alien) {
		struct array_cache *ac = n->alien[node];
1021
1022

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1023
1024
1025
1026
1027
1028
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
1029
1030
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1031
{
1032
	int i = 0;
1033
1034
1035
1036
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1037
		ac = alien[i];
1038
1039
1040
1041
1042
1043
1044
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1045

1046
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1047
{
1048
	int nodeid = page_to_nid(virt_to_page(objp));
1049
	struct kmem_cache_node *n;
1050
	struct array_cache *alien = NULL;
1051
1052
	int node;

1053
	node = numa_mem_id();
1054
1055
1056
1057
1058

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1059
	if (likely(nodeid == node))
1060
1061
		return 0;

1062
	n = cachep->node[node];
1063
	STATS_INC_NODEFREES(cachep);
1064
1065
	if (n->alien && n->alien[nodeid]) {
		alien = n->alien[nodeid];
1066
		spin_lock(&alien->lock);
1067
1068
1069
1070
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1071
		ac_put_obj(cachep, alien, objp);
1072
1073
		spin_unlock(&alien->lock);
	} else {
1074
		spin_lock(&(cachep->node[nodeid])->list_lock);
1075
		free_block(cachep, &objp, 1, nodeid);
1076
		spin_unlock(&(cachep->node[nodeid])->list_lock);
1077
1078
1079
	}
	return 1;
}
1080
1081
#endif

1082
/*
1083
 * Allocates and initializes node for a node on each slab cache, used for
1084
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1085
 * will be allocated off-node since memory is not yet online for the new node.
1086
 * When hotplugging memory or a cpu, existing node are not replaced if
1087
1088
 * already in use.
 *
1089
 * Must hold slab_mutex.
1090
 */
1091
static int init_cache_node_node(int node)
1092
1093
{
	struct kmem_cache *cachep;
1094
	struct kmem_cache_node *n;
1095
	const int memsize = sizeof(struct kmem_cache_node);
1096

1097
	list_for_each_entry(cachep, &slab_caches, list) {
1098
1099
1100
1101
1102
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1103
		if (!cachep->node[node]) {
1104
1105
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1106
				return -ENOMEM;
1107
1108
			kmem_cache_node_init(n);
			n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1109
1110
1111
1112
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1113
			 * go.  slab_mutex is sufficient
1114
1115
			 * protection here.
			 */
1116
			cachep->node[node] = n;
1117
1118
		}

1119
1120
		spin_lock_irq(&cachep->node[node]->list_lock);
		cachep->node[node]->free_limit =
1121
1122
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1123
		spin_unlock_irq(&cachep->node[node]->list_lock);
1124
1125
1126
1127
	}
	return 0;
}

1128
1129
1130
1131
1132
1133
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1134
static void cpuup_canceled(long cpu)
1135
1136
{
	struct kmem_cache *cachep;
1137
	struct kmem_cache_node *n = NULL;
1138
	int node = cpu_to_mem(cpu);
1139
	const struct cpumask *mask = cpumask_of_node(node);
1140

Christoph Lameter's avatar