rc80211_minstrel_ht.c 27.5 KB
Newer Older
1
/*
2
 * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/skbuff.h>
#include <linux/debugfs.h>
#include <linux/random.h>
#include <linux/ieee80211.h>
#include <net/mac80211.h>
#include "rate.h"
#include "rc80211_minstrel.h"
#include "rc80211_minstrel_ht.h"

#define AVG_PKT_SIZE	1200

/* Number of bits for an average sized packet */
#define MCS_NBITS (AVG_PKT_SIZE << 3)

/* Number of symbols for a packet with (bps) bits per symbol */
#define MCS_NSYMS(bps) ((MCS_NBITS + (bps) - 1) / (bps))

27
/* Transmission time (nanoseconds) for a packet containing (syms) symbols */
28 29
#define MCS_SYMBOL_TIME(sgi, syms)					\
	(sgi ?								\
30 31
	  ((syms) * 18000 + 4000) / 5 :	/* syms * 3.6 us */		\
	  ((syms) * 1000) << 2		/* syms * 4 us */		\
32 33 34 35 36
	)

/* Transmit duration for the raw data part of an average sized packet */
#define MCS_DURATION(streams, sgi, bps) MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps)))

37 38 39 40 41 42 43 44
/*
 * Define group sort order: HT40 -> SGI -> #streams
 */
#define GROUP_IDX(_streams, _sgi, _ht40)	\
	MINSTREL_MAX_STREAMS * 2 * _ht40 +	\
	MINSTREL_MAX_STREAMS * _sgi +		\
	_streams - 1

45
/* MCS rate information for an MCS group */
46 47
#define MCS_GROUP(_streams, _sgi, _ht40)				\
	[GROUP_IDX(_streams, _sgi, _ht40)] = {				\
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
	.streams = _streams,						\
	.flags =							\
		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
		(_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),		\
	.duration = {							\
		MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260)		\
	}								\
}

64
#define CCK_DURATION(_bitrate, _short, _len)		\
65
	(1000 * (10 /* SIFS */ +			\
66
	 (_short ? 72 + 24 : 144 + 48 ) +		\
67
	 (8 * (_len + 4) * 10) / (_bitrate)))
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

#define CCK_ACK_DURATION(_bitrate, _short)			\
	(CCK_DURATION((_bitrate > 10 ? 20 : 10), false, 60) +	\
	 CCK_DURATION(_bitrate, _short, AVG_PKT_SIZE))

#define CCK_DURATION_LIST(_short)			\
	CCK_ACK_DURATION(10, _short),			\
	CCK_ACK_DURATION(20, _short),			\
	CCK_ACK_DURATION(55, _short),			\
	CCK_ACK_DURATION(110, _short)

#define CCK_GROUP						\
	[MINSTREL_MAX_STREAMS * MINSTREL_STREAM_GROUPS] = {	\
		.streams = 0,					\
		.duration = {					\
			CCK_DURATION_LIST(false),		\
			CCK_DURATION_LIST(true)			\
		}						\
	}

88 89 90 91
/*
 * To enable sufficiently targeted rate sampling, MCS rates are divided into
 * groups, based on the number of streams and flags (HT40, SGI) that they
 * use.
92 93 94
 *
 * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
 * HT40 -> SGI -> #streams
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
 */
const struct mcs_group minstrel_mcs_groups[] = {
	MCS_GROUP(1, 0, 0),
	MCS_GROUP(2, 0, 0),
#if MINSTREL_MAX_STREAMS >= 3
	MCS_GROUP(3, 0, 0),
#endif

	MCS_GROUP(1, 1, 0),
	MCS_GROUP(2, 1, 0),
#if MINSTREL_MAX_STREAMS >= 3
	MCS_GROUP(3, 1, 0),
#endif

	MCS_GROUP(1, 0, 1),
	MCS_GROUP(2, 0, 1),
#if MINSTREL_MAX_STREAMS >= 3
	MCS_GROUP(3, 0, 1),
#endif

	MCS_GROUP(1, 1, 1),
	MCS_GROUP(2, 1, 1),
#if MINSTREL_MAX_STREAMS >= 3
	MCS_GROUP(3, 1, 1),
#endif
120 121 122

	/* must be last */
	CCK_GROUP
123 124
};

125 126
#define MINSTREL_CCK_GROUP	(ARRAY_SIZE(minstrel_mcs_groups) - 1)

127 128
static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES];

129 130 131
static void
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);

132 133 134 135 136 137
/*
 * Look up an MCS group index based on mac80211 rate information
 */
static int
minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
{
138 139 140
	return GROUP_IDX((rate->idx / MCS_GROUP_RATES) + 1,
			 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
			 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
141 142
}

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
static struct minstrel_rate_stats *
minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
		      struct ieee80211_tx_rate *rate)
{
	int group, idx;

	if (rate->flags & IEEE80211_TX_RC_MCS) {
		group = minstrel_ht_get_group_idx(rate);
		idx = rate->idx % MCS_GROUP_RATES;
	} else {
		group = MINSTREL_CCK_GROUP;

		for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++)
			if (rate->idx == mp->cck_rates[idx])
				break;

		/* short preamble */
		if (!(mi->groups[group].supported & BIT(idx)))
			idx += 4;
	}
	return &mi->groups[group].rates[idx];
}

166 167 168 169 170 171 172 173 174 175 176
static inline struct minstrel_rate_stats *
minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
{
	return &mi->groups[index / MCS_GROUP_RATES].rates[index % MCS_GROUP_RATES];
}


/*
 * Recalculate success probabilities and counters for a rate using EWMA
 */
static void
177
minstrel_calc_rate_ewma(struct minstrel_rate_stats *mr)
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
{
	if (unlikely(mr->attempts > 0)) {
		mr->sample_skipped = 0;
		mr->cur_prob = MINSTREL_FRAC(mr->success, mr->attempts);
		if (!mr->att_hist)
			mr->probability = mr->cur_prob;
		else
			mr->probability = minstrel_ewma(mr->probability,
				mr->cur_prob, EWMA_LEVEL);
		mr->att_hist += mr->attempts;
		mr->succ_hist += mr->success;
	} else {
		mr->sample_skipped++;
	}
	mr->last_success = mr->success;
	mr->last_attempts = mr->attempts;
	mr->success = 0;
	mr->attempts = 0;
}

/*
 * Calculate throughput based on the average A-MPDU length, taking into account
 * the expected number of retransmissions and their expected length
 */
static void
203
minstrel_ht_calc_tp(struct minstrel_ht_sta *mi, int group, int rate)
204 205
{
	struct minstrel_rate_stats *mr;
206 207
	unsigned int nsecs = 0;
	unsigned int tp;
208
	unsigned int prob;
209 210

	mr = &mi->groups[group].rates[rate];
211
	prob = mr->probability;
212

213
	if (prob < MINSTREL_FRAC(1, 10)) {
214 215 216 217
		mr->cur_tp = 0;
		return;
	}

218 219 220 221 222 223 224
	/*
	 * For the throughput calculation, limit the probability value to 90% to
	 * account for collision related packet error rate fluctuation
	 */
	if (prob > MINSTREL_FRAC(9, 10))
		prob = MINSTREL_FRAC(9, 10);

225
	if (group != MINSTREL_CCK_GROUP)
226
		nsecs = 1000 * mi->overhead / MINSTREL_TRUNC(mi->avg_ampdu_len);
227

228 229 230 231
	nsecs += minstrel_mcs_groups[group].duration[rate];
	tp = 1000000 * ((mr->probability * 1000) / nsecs);

	mr->cur_tp = MINSTREL_TRUNC(tp);
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
}

/*
 * Update rate statistics and select new primary rates
 *
 * Rules for rate selection:
 *  - max_prob_rate must use only one stream, as a tradeoff between delivery
 *    probability and throughput during strong fluctuations
 *  - as long as the max prob rate has a probability of more than 3/4, pick
 *    higher throughput rates, even if the probablity is a bit lower
 */
static void
minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;
	struct minstrel_rate_stats *mr;
	int cur_prob, cur_prob_tp, cur_tp, cur_tp2;
	int group, i, index;
250
	bool mi_rates_valid = false;
251 252 253 254 255 256 257 258 259 260 261 262

	if (mi->ampdu_packets > 0) {
		mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
			MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets), EWMA_LEVEL);
		mi->ampdu_len = 0;
		mi->ampdu_packets = 0;
	}

	mi->sample_slow = 0;
	mi->sample_count = 0;

	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
263 264
		bool mg_rates_valid = false;

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
		cur_prob = 0;
		cur_prob_tp = 0;
		cur_tp = 0;
		cur_tp2 = 0;

		mg = &mi->groups[group];
		if (!mg->supported)
			continue;

		mi->sample_count++;

		for (i = 0; i < MCS_GROUP_RATES; i++) {
			if (!(mg->supported & BIT(i)))
				continue;

280 281 282 283 284 285 286 287 288 289 290 291
			/* initialize rates selections starting indexes */
			if (!mg_rates_valid) {
				mg->max_tp_rate = mg->max_tp_rate2 =
					mg->max_prob_rate = i;
				if (!mi_rates_valid) {
					mi->max_tp_rate = mi->max_tp_rate2 =
						mi->max_prob_rate = i;
					mi_rates_valid = true;
				}
				mg_rates_valid = true;
			}

292 293 294
			mr = &mg->rates[i];
			mr->retry_updated = false;
			index = MCS_GROUP_RATES * group + i;
295 296
			minstrel_calc_rate_ewma(mr);
			minstrel_ht_calc_tp(mi, group, i);
297 298 299 300 301 302 303 304

			if (!mr->cur_tp)
				continue;

			if ((mr->cur_tp > cur_prob_tp && mr->probability >
			     MINSTREL_FRAC(3, 4)) || mr->probability > cur_prob) {
				mg->max_prob_rate = index;
				cur_prob = mr->probability;
305
				cur_prob_tp = mr->cur_tp;
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
			}

			if (mr->cur_tp > cur_tp) {
				swap(index, mg->max_tp_rate);
				cur_tp = mr->cur_tp;
				mr = minstrel_get_ratestats(mi, index);
			}

			if (index >= mg->max_tp_rate)
				continue;

			if (mr->cur_tp > cur_tp2) {
				mg->max_tp_rate2 = index;
				cur_tp2 = mr->cur_tp;
			}
		}
	}

324 325
	/* try to sample all available rates during each interval */
	mi->sample_count *= 8;
326 327 328 329 330 331 332 333 334 335 336 337

	cur_prob = 0;
	cur_prob_tp = 0;
	cur_tp = 0;
	cur_tp2 = 0;
	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
		mg = &mi->groups[group];
		if (!mg->supported)
			continue;

		mr = minstrel_get_ratestats(mi, mg->max_tp_rate);
		if (cur_tp < mr->cur_tp) {
338 339
			mi->max_tp_rate2 = mi->max_tp_rate;
			cur_tp2 = cur_tp;
340 341
			mi->max_tp_rate = mg->max_tp_rate;
			cur_tp = mr->cur_tp;
342
			mi->max_prob_streams = minstrel_mcs_groups[group].streams - 1;
343 344 345 346 347 348 349 350 351
		}

		mr = minstrel_get_ratestats(mi, mg->max_tp_rate2);
		if (cur_tp2 < mr->cur_tp) {
			mi->max_tp_rate2 = mg->max_tp_rate2;
			cur_tp2 = mr->cur_tp;
		}
	}

352 353
	if (mi->max_prob_streams < 1)
		mi->max_prob_streams = 1;
354 355 356 357 358 359 360

	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
		mg = &mi->groups[group];
		if (!mg->supported)
			continue;
		mr = minstrel_get_ratestats(mi, mg->max_prob_rate);
		if (cur_prob_tp < mr->cur_tp &&
361
		    minstrel_mcs_groups[group].streams <= mi->max_prob_streams) {
362 363 364 365 366 367 368
			mi->max_prob_rate = mg->max_prob_rate;
			cur_prob = mr->cur_prob;
			cur_prob_tp = mr->cur_tp;
		}
	}


369 370 371 372
	mi->stats_update = jiffies;
}

static bool
373
minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct ieee80211_tx_rate *rate)
374
{
375
	if (rate->idx < 0)
376 377
		return false;

378
	if (!rate->count)
379 380
		return false;

381 382 383 384 385 386 387
	if (rate->flags & IEEE80211_TX_RC_MCS)
		return true;

	return rate->idx == mp->cck_rates[0] ||
	       rate->idx == mp->cck_rates[1] ||
	       rate->idx == mp->cck_rates[2] ||
	       rate->idx == mp->cck_rates[3];
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
}

static void
minstrel_next_sample_idx(struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;

	for (;;) {
		mi->sample_group++;
		mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups);
		mg = &mi->groups[mi->sample_group];

		if (!mg->supported)
			continue;

		if (++mg->index >= MCS_GROUP_RATES) {
			mg->index = 0;
			if (++mg->column >= ARRAY_SIZE(sample_table))
				mg->column = 0;
		}
		break;
	}
}

static void
413 414
minstrel_downgrade_rate(struct minstrel_ht_sta *mi, unsigned int *idx,
			bool primary)
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
{
	int group, orig_group;

	orig_group = group = *idx / MCS_GROUP_RATES;
	while (group > 0) {
		group--;

		if (!mi->groups[group].supported)
			continue;

		if (minstrel_mcs_groups[group].streams >
		    minstrel_mcs_groups[orig_group].streams)
			continue;

		if (primary)
			*idx = mi->groups[group].max_tp_rate;
		else
			*idx = mi->groups[group].max_tp_rate2;
		break;
	}
}

static void
438
minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb)
439 440 441
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
442
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
443 444 445 446 447
	u16 tid;

	if (unlikely(!ieee80211_is_data_qos(hdr->frame_control)))
		return;

448
	if (unlikely(info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
449 450 451
		return;

	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
452
	if (likely(sta->ampdu_mlme.tid_tx[tid]))
453 454
		return;

455 456 457
	if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
		return;

458
	ieee80211_start_tx_ba_session(pubsta, tid, 5000);
459 460 461 462 463 464 465 466 467 468 469 470 471
}

static void
minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
                      struct ieee80211_sta *sta, void *priv_sta,
                      struct sk_buff *skb)
{
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
	struct ieee80211_tx_rate *ar = info->status.rates;
	struct minstrel_rate_stats *rate, *rate2;
	struct minstrel_priv *mp = priv;
472
	bool last, update = false;
473
	int i;
474 475 476 477 478 479 480 481 482

	if (!msp->is_ht)
		return mac80211_minstrel.tx_status(priv, sband, sta, &msp->legacy, skb);

	/* This packet was aggregated but doesn't carry status info */
	if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
	    !(info->flags & IEEE80211_TX_STAT_AMPDU))
		return;

483 484 485
	if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
		info->status.ampdu_ack_len =
			(info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
486 487 488 489 490 491 492
		info->status.ampdu_len = 1;
	}

	mi->ampdu_packets++;
	mi->ampdu_len += info->status.ampdu_len;

	if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) {
493
		mi->sample_wait = 16 + 2 * MINSTREL_TRUNC(mi->avg_ampdu_len);
494
		mi->sample_tries = 1;
495 496 497
		mi->sample_count--;
	}

498
	if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
499 500
		mi->sample_packets += info->status.ampdu_len;

501
	last = !minstrel_ht_txstat_valid(mp, &ar[0]);
502 503
	for (i = 0; !last; i++) {
		last = (i == IEEE80211_TX_MAX_RATES - 1) ||
504
		       !minstrel_ht_txstat_valid(mp, &ar[i + 1]);
505

506
		rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
507

508
		if (last)
509 510 511 512 513 514 515 516 517 518 519 520
			rate->success += info->status.ampdu_ack_len;

		rate->attempts += ar[i].count * info->status.ampdu_len;
	}

	/*
	 * check for sudden death of spatial multiplexing,
	 * downgrade to a lower number of streams if necessary.
	 */
	rate = minstrel_get_ratestats(mi, mi->max_tp_rate);
	if (rate->attempts > 30 &&
	    MINSTREL_FRAC(rate->success, rate->attempts) <
521
	    MINSTREL_FRAC(20, 100)) {
522
		minstrel_downgrade_rate(mi, &mi->max_tp_rate, true);
523 524
		update = true;
	}
525 526

	rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate2);
527 528
	if (rate2->attempts > 30 &&
	    MINSTREL_FRAC(rate2->success, rate2->attempts) <
529
	    MINSTREL_FRAC(20, 100)) {
530
		minstrel_downgrade_rate(mi, &mi->max_tp_rate2, false);
531 532
		update = true;
	}
533 534

	if (time_after(jiffies, mi->stats_update + (mp->update_interval / 2 * HZ) / 1000)) {
535
		update = true;
536
		minstrel_ht_update_stats(mp, mi);
537 538
		if (!(info->flags & IEEE80211_TX_CTL_AMPDU) &&
		    mi->max_prob_rate / MCS_GROUP_RATES != MINSTREL_CCK_GROUP)
539
			minstrel_aggr_check(sta, skb);
540
	}
541 542 543

	if (update)
		minstrel_ht_update_rates(mp, mi);
544 545 546 547 548 549 550 551 552 553
}

static void
minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
                         int index)
{
	struct minstrel_rate_stats *mr;
	const struct mcs_group *group;
	unsigned int tx_time, tx_time_rtscts, tx_time_data;
	unsigned int cw = mp->cw_min;
554
	unsigned int ctime = 0;
555 556
	unsigned int t_slot = 9; /* FIXME */
	unsigned int ampdu_len = MINSTREL_TRUNC(mi->avg_ampdu_len);
557
	unsigned int overhead = 0, overhead_rtscts = 0;
558 559 560 561 562 563 564 565 566 567 568 569 570

	mr = minstrel_get_ratestats(mi, index);
	if (mr->probability < MINSTREL_FRAC(1, 10)) {
		mr->retry_count = 1;
		mr->retry_count_rtscts = 1;
		return;
	}

	mr->retry_count = 2;
	mr->retry_count_rtscts = 2;
	mr->retry_updated = true;

	group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
571
	tx_time_data = group->duration[index % MCS_GROUP_RATES] * ampdu_len / 1000;
572 573 574 575 576 577 578

	/* Contention time for first 2 tries */
	ctime = (t_slot * cw) >> 1;
	cw = min((cw << 1) | 1, mp->cw_max);
	ctime += (t_slot * cw) >> 1;
	cw = min((cw << 1) | 1, mp->cw_max);

579 580 581 582 583
	if (index / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) {
		overhead = mi->overhead;
		overhead_rtscts = mi->overhead_rtscts;
	}

584
	/* Total TX time for data and Contention after first 2 tries */
585 586
	tx_time = ctime + 2 * (overhead + tx_time_data);
	tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
587 588

	/* See how many more tries we can fit inside segment size */
589
	do {
590 591 592 593 594
		/* Contention time for this try */
		ctime = (t_slot * cw) >> 1;
		cw = min((cw << 1) | 1, mp->cw_max);

		/* Total TX time after this try */
595 596
		tx_time += ctime + overhead + tx_time_data;
		tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
597

598 599 600 601 602 603 604 605 606
		if (tx_time_rtscts < mp->segment_size)
			mr->retry_count_rtscts++;
	} while ((tx_time < mp->segment_size) &&
	         (++mr->retry_count < mp->max_retry));
}


static void
minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
607
                     struct ieee80211_sta_rates *ratetbl, int offset, int index)
608 609 610
{
	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
	struct minstrel_rate_stats *mr;
611 612
	u8 idx;
	u16 flags;
613 614 615 616 617

	mr = minstrel_get_ratestats(mi, index);
	if (!mr->retry_updated)
		minstrel_calc_retransmit(mp, mi, index);

618 619 620 621 622 623 624 625 626
	if (mr->probability < MINSTREL_FRAC(20, 100) || !mr->retry_count) {
		ratetbl->rate[offset].count = 2;
		ratetbl->rate[offset].count_rts = 2;
		ratetbl->rate[offset].count_cts = 2;
	} else {
		ratetbl->rate[offset].count = mr->retry_count;
		ratetbl->rate[offset].count_cts = mr->retry_count;
		ratetbl->rate[offset].count_rts = mr->retry_count_rtscts;
	}
627 628

	if (index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) {
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
		idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
		flags = 0;
	} else {
		idx = index % MCS_GROUP_RATES +
		      (group->streams - 1) * MCS_GROUP_RATES;
		flags = IEEE80211_TX_RC_MCS | group->flags;
	}

	if (offset > 0) {
		ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
		flags |= IEEE80211_TX_RC_USE_RTS_CTS;
	}

	ratetbl->rate[offset].idx = idx;
	ratetbl->rate[offset].flags = flags;
}

static void
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct ieee80211_sta_rates *rates;
	int i = 0;

	rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
	if (!rates)
654
		return;
655 656 657 658 659 660 661 662 663 664 665 666 667

	/* Start with max_tp_rate */
	minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate);

	if (mp->hw->max_rates >= 3) {
		/* At least 3 tx rates supported, use max_tp_rate2 next */
		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate2);
	}

	if (mp->hw->max_rates >= 2) {
		/*
		 * At least 2 tx rates supported, use max_prob_rate next */
		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
668 669
	}

670 671
	rates->rate[i].idx = -1;
	rate_control_set_rates(mp->hw, mi->sta, rates);
672 673 674 675 676 677 678 679 680 681 682 683 684 685
}

static inline int
minstrel_get_duration(int index)
{
	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
	return group->duration[index % MCS_GROUP_RATES];
}

static int
minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct minstrel_rate_stats *mr;
	struct minstrel_mcs_group_data *mg;
686
	unsigned int sample_dur, sample_group;
687 688 689 690 691 692 693 694 695 696 697 698 699
	int sample_idx = 0;

	if (mi->sample_wait > 0) {
		mi->sample_wait--;
		return -1;
	}

	if (!mi->sample_tries)
		return -1;

	mg = &mi->groups[mi->sample_group];
	sample_idx = sample_table[mg->column][mg->index];
	mr = &mg->rates[sample_idx];
700 701
	sample_group = mi->sample_group;
	sample_idx += sample_group * MCS_GROUP_RATES;
702
	minstrel_next_sample_idx(mi);
703

704 705 706
	/*
	 * Sampling might add some overhead (RTS, no aggregation)
	 * to the frame. Hence, don't use sampling for the currently
707
	 * used rates.
708
	 */
709 710 711
	if (sample_idx == mi->max_tp_rate ||
	    sample_idx == mi->max_tp_rate2 ||
	    sample_idx == mi->max_prob_rate)
712
		return -1;
713

714
	/*
715 716
	 * Do not sample if the probability is already higher than 95%
	 * to avoid wasting airtime.
717
	 */
718
	if (mr->probability > MINSTREL_FRAC(95, 100))
719
		return -1;
720 721 722 723 724

	/*
	 * Make sure that lower rates get sampled only occasionally,
	 * if the link is working perfectly.
	 */
725 726 727 728 729
	sample_dur = minstrel_get_duration(sample_idx);
	if (sample_dur >= minstrel_get_duration(mi->max_tp_rate2) &&
	    (mi->max_prob_streams <
	     minstrel_mcs_groups[sample_group].streams ||
	     sample_dur >= minstrel_get_duration(mi->max_prob_rate))) {
730
		if (mr->sample_skipped < 20)
731
			return -1;
732 733

		if (mi->sample_slow++ > 2)
734
			return -1;
735
	}
736
	mi->sample_tries--;
737 738 739 740

	return sample_idx;
}

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
static void
minstrel_ht_check_cck_shortpreamble(struct minstrel_priv *mp,
				    struct minstrel_ht_sta *mi, bool val)
{
	u8 supported = mi->groups[MINSTREL_CCK_GROUP].supported;

	if (!supported || !mi->cck_supported_short)
		return;

	if (supported & (mi->cck_supported_short << (val * 4)))
		return;

	supported ^= mi->cck_supported_short | (mi->cck_supported_short << 4);
	mi->groups[MINSTREL_CCK_GROUP].supported = supported;
}

757 758 759 760
static void
minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
                     struct ieee80211_tx_rate_control *txrc)
{
761
	const struct mcs_group *sample_group;
762
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
763
	struct ieee80211_tx_rate *rate = &info->status.rates[0];
764 765 766 767 768 769 770 771 772 773 774 775
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct minstrel_priv *mp = priv;
	int sample_idx;

	if (rate_control_send_low(sta, priv_sta, txrc))
		return;

	if (!msp->is_ht)
		return mac80211_minstrel.get_rate(priv, sta, &msp->legacy, txrc);

	info->flags |= mi->tx_flags;
776
	minstrel_ht_check_cck_shortpreamble(mp, mi, txrc->short_preamble);
777 778 779

	/* Don't use EAPOL frames for sampling on non-mrr hw */
	if (mp->hw->max_rates == 1 &&
780
	    (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
781 782 783
		sample_idx = -1;
	else
		sample_idx = minstrel_get_sample_rate(mp, mi);
784 785 786

#ifdef CONFIG_MAC80211_DEBUGFS
	/* use fixed index if set */
787 788 789 790 791 792
	if (mp->fixed_rate_idx != -1) {
		mi->max_tp_rate = mp->fixed_rate_idx;
		mi->max_tp_rate2 = mp->fixed_rate_idx;
		mi->max_prob_rate = mp->fixed_rate_idx;
		sample_idx = -1;
	}
793 794
#endif

795 796 797 798 799 800 801
	mi->total_packets++;

	/* wraparound */
	if (mi->total_packets == ~0) {
		mi->total_packets = 0;
		mi->sample_packets = 0;
	}
802 803 804 805 806 807 808 809 810 811

	if (sample_idx < 0)
		return;

	sample_group = &minstrel_mcs_groups[sample_idx / MCS_GROUP_RATES];
	info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
	rate->idx = sample_idx % MCS_GROUP_RATES +
		    (sample_group->streams - 1) * MCS_GROUP_RATES;
	rate->flags = IEEE80211_TX_RC_MCS | sample_group->flags;
	rate->count = 1;
812 813
}

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
static void
minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
		       struct ieee80211_supported_band *sband,
		       struct ieee80211_sta *sta)
{
	int i;

	if (sband->band != IEEE80211_BAND_2GHZ)
		return;

	mi->cck_supported = 0;
	mi->cck_supported_short = 0;
	for (i = 0; i < 4; i++) {
		if (!rate_supported(sta, sband->band, mp->cck_rates[i]))
			continue;

		mi->cck_supported |= BIT(i);
		if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
			mi->cck_supported_short |= BIT(i);
	}

	mi->groups[MINSTREL_CCK_GROUP].supported = mi->cck_supported;
}

838 839
static void
minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
840
			struct cfg80211_chan_def *chandef,
841
                        struct ieee80211_sta *sta, void *priv_sta)
842 843 844 845 846 847
{
	struct minstrel_priv *mp = priv;
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
	u16 sta_cap = sta->ht_cap.cap;
848
	int n_supported = 0;
849 850 851 852 853
	int ack_dur;
	int stbc;
	int i;

	/* fall back to the old minstrel for legacy stations */
854 855
	if (!sta->ht_cap.ht_supported)
		goto use_legacy;
856 857

	BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) !=
858
		MINSTREL_MAX_STREAMS * MINSTREL_STREAM_GROUPS + 1);
859 860 861

	msp->is_ht = true;
	memset(mi, 0, sizeof(*mi));
862 863

	mi->sta = sta;
864 865
	mi->stats_update = jiffies;

866 867 868
	ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
	mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
	mi->overhead += ack_dur;
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
	mi->overhead_rtscts = mi->overhead + 2 * ack_dur;

	mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);

	/* When using MRR, sample more on the first attempt, without delay */
	if (mp->has_mrr) {
		mi->sample_count = 16;
		mi->sample_wait = 0;
	} else {
		mi->sample_count = 8;
		mi->sample_wait = 8;
	}
	mi->sample_tries = 4;

	stbc = (sta_cap & IEEE80211_HT_CAP_RX_STBC) >>
		IEEE80211_HT_CAP_RX_STBC_SHIFT;
	mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;

	if (sta_cap & IEEE80211_HT_CAP_LDPC_CODING)
		mi->tx_flags |= IEEE80211_TX_CTL_LDPC;

	for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
		mi->groups[i].supported = 0;
892 893 894 895 896
		if (i == MINSTREL_CCK_GROUP) {
			minstrel_ht_update_cck(mp, mi, sband, sta);
			continue;
		}

897
		if (minstrel_mcs_groups[i].flags & IEEE80211_TX_RC_SHORT_GI) {
898 899 900 901 902 903 904
			if (minstrel_mcs_groups[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
				if (!(sta_cap & IEEE80211_HT_CAP_SGI_40))
					continue;
			} else {
				if (!(sta_cap & IEEE80211_HT_CAP_SGI_20))
					continue;
			}
905 906
		}

907 908
		if (minstrel_mcs_groups[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
		    sta->bandwidth < IEEE80211_STA_RX_BW_40)
909 910
			continue;

911
		/* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
912
		if (sta->smps_mode == IEEE80211_SMPS_STATIC &&
913 914 915
		    minstrel_mcs_groups[i].streams > 1)
			continue;

916 917
		mi->groups[i].supported =
			mcs->rx_mask[minstrel_mcs_groups[i].streams - 1];
918 919 920

		if (mi->groups[i].supported)
			n_supported++;
921
	}
922 923 924 925

	if (!n_supported)
		goto use_legacy;

926
	/* create an initial rate table with the lowest supported rates */
927
	minstrel_ht_update_stats(mp, mi);
928
	minstrel_ht_update_rates(mp, mi);
929

930 931 932 933 934 935 936
	return;

use_legacy:
	msp->is_ht = false;
	memset(&msp->legacy, 0, sizeof(msp->legacy));
	msp->legacy.r = msp->ratelist;
	msp->legacy.sample_table = msp->sample_table;
937 938
	return mac80211_minstrel.rate_init(priv, sband, chandef, sta,
					   &msp->legacy);
939 940 941 942
}

static void
minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
943
		      struct cfg80211_chan_def *chandef,
944 945
                      struct ieee80211_sta *sta, void *priv_sta)
{
946
	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
947 948 949 950
}

static void
minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
951
			struct cfg80211_chan_def *chandef,
952
                        struct ieee80211_sta *sta, void *priv_sta,
953
                        u32 changed)
954
{
955
	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
}

static void *
minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
{
	struct ieee80211_supported_band *sband;
	struct minstrel_ht_sta_priv *msp;
	struct minstrel_priv *mp = priv;
	struct ieee80211_hw *hw = mp->hw;
	int max_rates = 0;
	int i;

	for (i = 0; i < IEEE80211_NUM_BANDS; i++) {
		sband = hw->wiphy->bands[i];
		if (sband && sband->n_bitrates > max_rates)
			max_rates = sband->n_bitrates;
	}

974
	msp = kzalloc(sizeof(*msp), gfp);
975 976 977 978 979 980 981 982 983 984 985 986 987 988
	if (!msp)
		return NULL;

	msp->ratelist = kzalloc(sizeof(struct minstrel_rate) * max_rates, gfp);
	if (!msp->ratelist)
		goto error;

	msp->sample_table = kmalloc(SAMPLE_COLUMNS * max_rates, gfp);
	if (!msp->sample_table)
		goto error1;

	return msp;

error1:
989
	kfree(msp->ratelist);
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
error:
	kfree(msp);
	return NULL;
}

static void
minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
{
	struct minstrel_ht_sta_priv *msp = priv_sta;

	kfree(msp->sample_table);
	kfree(msp->ratelist);
	kfree(msp);
}

static void *
minstrel_ht_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
{
	return mac80211_minstrel.alloc(hw, debugfsdir);
}

static void
minstrel_ht_free(void *priv)
{
	mac80211_minstrel.free(priv);
}

static struct rate_control_ops mac80211_minstrel_ht = {
	.name = "minstrel_ht",
	.tx_status = minstrel_ht_tx_status,
	.get_rate = minstrel_ht_get_rate,
	.rate_init = minstrel_ht_rate_init,
	.rate_update = minstrel_ht_rate_update,
	.alloc_sta = minstrel_ht_alloc_sta,
	.free_sta = minstrel_ht_free_sta,
	.alloc = minstrel_ht_alloc,
	.free = minstrel_ht_free,
#ifdef CONFIG_MAC80211_DEBUGFS
	.add_sta_debugfs = minstrel_ht_add_sta_debugfs,
	.remove_sta_debugfs = minstrel_ht_remove_sta_debugfs,
#endif
};


static void
init_sample_table(void)
{
	int col, i, new_idx;
	u8 rnd[MCS_GROUP_RATES];

	memset(sample_table, 0xff, sizeof(sample_table));
	for (col = 0; col < SAMPLE_COLUMNS; col++) {
		for (i = 0; i < MCS_GROUP_RATES; i++) {
			get_random_bytes(rnd, sizeof(rnd));
			new_idx = (i + rnd[i]) % MCS_GROUP_RATES;

			while (sample_table[col][new_idx] != 0xff)
				new_idx = (new_idx + 1) % MCS_GROUP_RATES;

			sample_table[col][new_idx] = i;
		}
	}
}

int __init
rc80211_minstrel_ht_init(void)
{
	init_sample_table();
	return ieee80211_rate_control_register(&mac80211_minstrel_ht);
}

void
rc80211_minstrel_ht_exit(void)
{
	ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
}