assign.cc 18.1 KB
Newer Older
1 2
#include <LEDA/graph_alg.h>
#include <LEDA/graphwin.h>
3
#include <LEDA/ugraph.h>
4 5 6 7
#include <LEDA/dictionary.h>
#include <LEDA/map.h>
#include <LEDA/graph_iterator.h>
#include <LEDA/node_pq.h>
8
#include <LEDA/sortseq.h>
9 10 11 12 13 14 15 16 17 18 19
#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/time.h>
#include <string.h>
#include <assert.h>

#include "common.h"
#include "physical.h"
20
#include "vclass.h"
21 22
#include "virtual.h"
#include "score.h"
23
#include "pclass.h"
24

25 26 27 28
void parse_options(char **argv, struct config_param options[], int nopt);
int config_parse(char **args, struct config_param cparams[], int nparams);
void dump_options(const char *str, struct config_param cparams[], int nparams);

29
// Purely heuristic
30

31
#ifdef USE_OPTIMAL
32
#define OPTIMAL_SCORE(edges,nodes) (nodes*SCORE_PNODE + \
33
                                    nodes/opt_nodes_per_sw*SCORE_SWITCH + \
34 35
                                    edges*((SCORE_INTRASWITCH_LINK+ \
                                    SCORE_DIRECT_LINK*2)*4+\
36
                                    SCORE_INTERSWITCH_LINK)/opt_nodes_per_sw)
37
#else
38
#define OPTIMAL_SCORE(edges,nodes) 0
39
#endif
40

41 42 43 44
tb_sgraph SG;
edge_array<int> edge_costs;
typedef node_array<int> switch_distance_array;
typedef node_array<edge> switch_pred_array;
45

46 47 48 49
node_array<switch_distance_array> switch_distances;
node_array<switch_pred_array> switch_preds;
tb_pgraph PG;
tb_vgraph G;
50 51 52
dictionary<tb_pnode*,node> pnode2node;
dictionary<tb_pnode*,int> pnode2posistion;
pclass_list pclasses;
53
pclass_types type_table;
54

55 56 57 58
dictionary<string,node> pname2node;
dictionary<string,node> vname2node;
dictionary<string,string> fixed_nodes;

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/* How can we chop things up? */
#define PARTITION_BY_ANNEALING 0

#define MAX_DELAYS 64

int nparts = 0;     /* DEFAULTS */
int accepts = 0;
int nnodes = 0;
int partition_mechanism;
int on_line = 0;
int cycles_to_best = 0;
int batch_mode = 0;

float sensitivity = .1;

int refreshed = 0;

76 77
node_array<int> absnodes;
node_array<string> abstypes;
78 79 80 81 82 83 84
float bestscore, absbest;

extern node pnodes[MAX_PNODES];
extern node_array<int> switch_index;
node_pq<int> unassigned_nodes(G);

int parse_top(tb_vgraph &G, istream& i);
85
int parse_ptop(tb_pgraph &PG, tb_sgraph &SG, istream& i);
86

87 88 89 90 91 92 93 94 95 96 97
/* The following two sets hold all the virtual and physical types.  These
 * are compared to make sure that every member of vtypes is in ptypes.
 * Both are filled by the parse_* routines.  I'd love to use LEDA sets
 * to implement this but LEDA, an otherwise profession work, did a lousy
 * job when it came to sets.  They clash with graph iterators!  Since
 * we only use these once we'll use a much less efficient linked list
 * <shudder>
 */
list<string> vtypes;
list<string> ptypes;

98 99 100 101 102 103 104 105
// Makes LEDA happy

int compare(tb_pnode *const &a, tb_pnode *const &b)
{
  if (a==b) return 0;
  if (a < b) return -1;
  return 1;
}
106

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
/*
 * Basic simulated annealing parameters:
 *
 * Make changes proportional to T
 * Accept worse solution with p = e^(change/Temperature*sensitivity)
 *
 */

inline int accept(float change, float temperature)
{
  float p;
  int r;

  if (change == 0) {
    p = 1000 * temperature / temp_prob;
  } else {
    p = expf(change/(temperature*sensitivity)) * 1000;
  }
  r = random() % 1000;
  if (r < p) {
    accepts++;
    return 1;
  }
  return 0;
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
// This routine chooses randomly chooses a pclass based on the weights
// and *removes that pclass from the weights*.  Total is the total of
// all weights and is adjusted when a pclass is removed.
tb_pnode *choose_pnode(dictionary<tb_pclass*,double> &weights,double &total,
		       string vtype)
{
  tb_pnode *pnode;
  dic_item dit=nil;

  double r = random()/(double)RAND_MAX*total;
  forall_items(dit,weights) {
    r -= weights.inf(dit);
    if (r <= 0) break;
  }
  if (dit == nil) return NULL;

  tb_pclass *chosen_class = weights.key(dit);

  // Take the first node of the correct type from the class.
  pnode = chosen_class->members.access(vtype)->front();
  
  total -= weights.inf(dit);
  weights.del_item(dit);
  
#ifdef PCLASS_DEBUG_MORE
  cout << "choose_pnode = [" << chosen_class->name << "] = "
       << ((pnode == NULL) ? string("NULL"):pnode->name) << endl;
#endif
  
  return pnode;
}
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * The workhorse of our program.
 *
 * Assign performs an assignment of the virtual nodes (vnodes) to
 * nodes in the physical topology.
 *
 * The input virtual topology is the graph G (global)
 * the input physical topology is the topology topo (global).
 *
 * The simulated annealing logic is contained herein,
 * except for the "accept a bad change" computation,
 * which is performed in accept().
 */

int assign()
{
  float newscore, bestscore;
  node n;
  int iters = 0;

  float timestart = used_time();
  float timeend;
  float scorediff;

  nnodes = G.number_of_nodes();
 
190
  float cycles = CYCLES*(float)(nnodes + G.number_of_edges());
191 192 193 194 195 196 197 198

  float optimal = OPTIMAL_SCORE(G.number_of_edges(),nnodes);
#ifdef STATS
  cout << "STATS_OPTIMAL = " << optimal << endl;
#endif
  
  int mintrans = (int)cycles;
  int trans;
199
  int naccepts = 20*nnodes;
200 201 202 203 204 205
  int accepts = 0;
  int oldpos;

  int bestviolated;
  int absbestv;
  
206 207
  int num_fixed=0;

208
  float temp = init_temp;
209 210 211 212 213 214

#ifdef VERBOSE
  cout << "Initialized to cycles="<<cycles<<" optimal="<<optimal<<" mintrans="
       << mintrans<<" naccepts="<<naccepts<<" nnodes="<<nnodes<<"\n";
#endif
  
215 216 217 218
  
  /* Set up the initial counts */
  init_score();

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
  /* Set up fixed nodes */
  dic_item fixed_it;
  
  forall_items(fixed_it,fixed_nodes) {
    if (vname2node.lookup(fixed_nodes.key(fixed_it)) == nil) {
      cerr << "Fixed node: " << fixed_nodes.key(fixed_it)
	   << " does not exist.\n",
      exit(1);
    }
    node vn = vname2node.access(fixed_nodes.key(fixed_it));
    if (pname2node.lookup(fixed_nodes.inf(fixed_it)) == nil) {
      cerr << "Fixed node: " << fixed_nodes.inf(fixed_it)
	   << " does not exist.\n",
      exit(1);
    }
    node pn = pname2node.access(fixed_nodes.inf(fixed_it));
    int ppos = pnode2posistion.access(&PG[pn]);
236
    if (G[vn].vclass != NULL) {
237 238 239
      cerr << "Can not have fixed nodes be in a vclass!\n";
      exit(1);
    }
240 241 242 243 244 245 246
    if (add_node(vn,ppos) == 1) {
      cerr << "Fixed node: Could not map " << fixed_nodes.key(fixed_it)
	   << " to " << fixed_nodes.inf(fixed_it) << ".\n";
      exit(1);
    }
    unassigned_nodes.del(vn);
    G[vn].fixed=true;
247
    num_fixed++;
248 249
  }
  
250 251
  bestscore = get_score();
  bestviolated = violated;
252 253 254 255
#ifdef VERBOSE
  cout << "Problem started with score "<<bestscore<<" and "<< violated
       << " violations.\n";
#endif
256 257 258 259 260
  absbest = bestscore;
  absbestv = bestviolated;
  node n3;
  forall_nodes(n3, G) {
    absnodes[n3] = G[n3].posistion;
261 262 263 264 265 266 267
    abstypes[n3] = G[n3].type;
  }


  if (num_fixed == nnodes) {
    cout << "All nodes are fixed.  No annealing." << endl;
    goto DONE;
268 269
  }

270
  while (temp >= temp_stop) {
271
#ifdef VERBOSE
272
    cout << "Temperature:  " << temp << " AbsBest: " << absbest << " (" << absbestv << ")" << endl;
273 274 275 276 277 278 279 280 281 282
#endif
    trans = 0;
    accepts = 0;

    while (trans < mintrans && accepts < naccepts) {
#ifdef STATS
      cout << "STATS temp:" << temp << " score:" << get_score() <<
	" violated:" << violated << " trans:" << trans <<
	" accepts:" << accepts << endl;
#endif STATS
283
      int newpos=0;
284 285 286 287
      trans++;
      iters++;

      n = unassigned_nodes.find_min();
288
      while (n == nil) {
289
	n = G.choose_node();
290 291
	if (G[n].fixed) n=nil;
      }
292 293 294 295 296 297 298

      // Note: we have a lot of +1's here because of the first
      // node loc in pnodes is 1 not 0.
      oldpos = G[n].posistion;

      if (oldpos != 0) {
	remove_node(n);
299 300 301 302
	unassigned_nodes.insert(n,random());
      }

      tb_vnode &vn=G[n];
303 304 305 306 307 308 309 310 311

      if (vn.vclass != NULL) {
	vn.type = vn.vclass->choose_type();
#ifdef SCORE_DEBUG
	cerr << "vclass " << vn.vclass->name  << ": choose type = "
	     << vn.type << " dominant = " << vn.vclass->dominant << endl;
#endif
      }
      
312 313 314
      tt_entry tt = type_table.access(vn.type);
      int num_types = tt.first();
      pclass_array &acceptable_types = *(tt.second());
315

316 317
      // Loop will break eventually.
      tb_pnode *newpnode;
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
      int i = random()%num_types;
      int first = i;
      bool found_pclass = true;
      for (;;) {		// breaks loop in a number of places
	i = (i+1)%num_types;
	newpnode = acceptable_types[i]->members.access(vn.type)->front();
#ifdef PCLASS_DEBUG
	cerr << "Found pclass: " <<
	  acceptable_types[i]->name << " and node " <<
	  (newpnode == NULL ? string("NULL") : newpnode->name) << "\n";
#endif	
	if (newpnode != NULL) {
	  newpos = pnode2posistion.access(newpnode);
	  if (add_node(n,newpos) == 0) break; // main exit condition
	}
	
	if (i == first) {
335 336 337 338 339
	  // no available nodes
	  // need to free up a node and recalculate weights.
	  int pos = 0;
	  node ntor;
	  while (pos == 0) {
340 341 342 343 344
	    ntor=nil;
	    while (ntor == nil) {
	      ntor = G.choose_node();
	      if (G[ntor].fixed) ntor=nil;
	    }
345 346
	    pos = G[ntor].posistion;
	  }
347 348
	  remove_node(ntor);
	  unassigned_nodes.insert(ntor,random());
349
	  found_pclass = false;
350
	  break;
351
	}
352
      } 
353

354
      // This occurs when no pclass could be found.
355
      if (found_pclass == false) continue;
356

357 358 359 360 361
      unassigned_nodes.del(n);
      
      newscore = get_score();
      
      // Negative means bad
362
      scorediff = bestscore - newscore;
363
      
364 365 366 367 368 369 370
      // tinkering aournd witht his.
      if ((newscore < optimal) || (violated < bestviolated) ||
	  ((violated == bestviolated) && (newscore < bestscore)) ||
	  accept(scorediff*((bestviolated - violated)/2), temp)) {
	bestscore = newscore;
	bestviolated = violated;
	accepts++;
371
	if ((violated < absbestv) ||
372 373 374 375 376
	    ((violated == absbestv) &&
	     (newscore < absbest))) {
	  node n2;
	  forall_nodes(n2, G) {
	    absnodes[n2] = G[n2].posistion;
377
	    abstypes[n2] = G[n2].type;
378 379 380 381 382 383 384 385 386 387 388 389
	  }
	  absbest = newscore;
	  absbestv = violated;
	  cycles_to_best = iters;
	}
	if (newscore < optimal) {
	  timeend = used_time(timestart);
	  cout << "OPTIMAL ( " << optimal << ") in "
	       << iters << " iters, "
	       << timeend << " seconds" << endl;
	  goto DONE;
	}
390 391 392
	// Accept change
      } else {
	// Reject change
393 394
	remove_node(n);
	if (oldpos != 0) {
395
	  add_node(n,oldpos);
396 397 398
	}
      }
    }
399
    temp *= temp_rate;
400
  }
401 402
  cout << "Done.\n";
  
403 404 405 406 407 408 409 410 411 412
 DONE:
  bestscore = absbest;

  forall_nodes(n, G) {
    if (G[n].posistion != 0)
      remove_node(n);
  }
	
  forall_nodes(n, G) {
    if (absnodes[n] != 0) {
413 414 415 416
      if (G[n].vclass != NULL) {
	G[n].type = abstypes[n];
      }
      assert(G[n].type == abstypes[n]);
417 418 419 420 421 422 423 424 425
      if (add_node(n,absnodes[n]) != 0) {
	cerr << "Invalid assumption.  Tell calfeld that reseting to best configuration doesn't work" << endl;
      }
    } else {
      cout << "Unassigned node: " << G[n].name << endl;
    }
  }
  
  timeend = used_time(timestart);
426 427
  printf("   BEST SCORE:  %.2f",get_score());
  cout << " in " << iters << " iters and " << timeend << " seconds" << endl;
428 429 430 431 432 433 434 435 436
  cout << "With " << violated << " violations" << endl;
  cout << "With " << accepts << " accepts of increases\n";
  cout << "Iters to find best score:  " << cycles_to_best << endl;
  cout << "Violations: " << violated << endl;
  cout << "  unassigned: " << vinfo.unassigned << endl;
  cout << "  pnode_load: " << vinfo.pnode_load << endl;
  cout << "  no_connect: " << vinfo.no_connection << endl;
  cout << "  link_users: " << vinfo.link_users << endl;
  cout << "  bandwidth:  " << vinfo.bandwidth << endl;
437
  cout << "  desires:    " << vinfo.desires << endl;
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457

  return 0;
}

/*
 * A legacy function from a less general version of the program.
 *
 * Now simply resets the node assignment, performs a new assignment,
 * and prints out the results.
 *
 */
void loopassign()
{
  node_array<int> nodestorage;
  int optimal = 0;
  float timestart = used_time();
  float totaltime;

  nodestorage.init(G, 0);
  absnodes.init(G, 0);
458
  abstypes.init(G, "");
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
    
  nnodes = G.number_of_nodes();
  optimal = assign();
  totaltime = used_time(timestart);

  if (violated > 0) {
    cout << "violations: " << violated << endl;
  }
  cout << "Total time to find solution "
       << totaltime << " seconds" << endl;
}

/*
 * If we have more ways of partitioning the graph other than just
 * simulated annealing, throw them in here.
 */

void chopgraph() {
  switch(partition_mechanism) {
  case PARTITION_BY_ANNEALING:
    loopassign();
    break;
  default:
    cerr << "Unknown partition mechanism.  eeeek." << endl;
    exit(-1);
  }
}

void batch()
{
  absnodes.init(G, 0);
490
  abstypes.init(G, "");
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
  chopgraph();
}


void usage() {
  fprintf(stderr,
	  "usage:  assign [-h] [-bao] [-s <switches>] [-n nodes/switch] [-c cap] [file]\n"
	  "           -h ...... brief help listing\n"
	  //	  "           -s #  ... number of switches in cluster\n"
	  //	  "           -n #  ... number of nodes per switch\n"
	  "           -a ...... Use simulated annealing (default)\n"
	  "           -o ...... Update on-line (vs batch, default)\n"
	  "           -t <file> Input topology desc. from <file>\n"
	  "           -b ...... batch mode (no gui)\n"
	  );
}

508 509 510 511 512 513 514 515 516 517 518
int mst_comp(const edge &A,const edge &B)
{
  edge pA,pB;
  pA = SG[A].mate;
  pB = SG[B].mate;
  // Highbandwidth = low score
  if (PG[pA].bandwidth > PG[pB].bandwidth) return -1;
  if (PG[pA].bandwidth < PG[pB].bandwidth) return 1;
  return 0;
}

519 520 521 522 523 524 525 526 527 528 529
void print_solution()
{
  node n;
  cout << "Best solution: " << absbest << endl;
  cout << "Nodes:" << endl;
  forall_nodes(n,G) {
    if (!G[n].posistion) {
      cout << "unassigned: " << G[n].name << endl;
    } else {
      node pnode = pnodes[G[n].posistion];
      tb_pnode &pnoder = PG[pnode];
530 531 532 533 534 535 536
      cout << G[n].name << " ";
      if (pnoder.the_switch) {
	cout << PG[pnoder.the_switch].name;
      } else {
	cout << "NO_SWITCH";
      }
      cout << " " << pnoder.name << endl;
537 538 539 540 541 542 543 544 545
    }
  }
  cout << "End Nodes" << endl;
  cout << "Edges:" << endl;
  edge e;
  forall_edges(e,G) {
    tb_vlink &v = G[e];
    cout << G[e].name;
    if (v.type == tb_vlink::LINK_DIRECT) {
546 547 548
      tb_plink &p = PG[v.plink];
      cout << " direct " << p.name << " (" <<
	p.srcmac << "," << p.dstmac << ")" << endl;
549
    } else if (v.type == tb_vlink::LINK_INTRASWITCH) {
550 551 552 553 554
      tb_plink &p = PG[v.plink];
      tb_plink &p2 = PG[v.plink_two];
      cout << " intraswitch " << p.name << " (" <<
	p.srcmac << "," << p.dstmac << ") " <<
	p2.name << " (" << p2.srcmac << "," << p2.dstmac <<
555 556
	")" << endl;
    } else if (v.type == tb_vlink::LINK_INTERSWITCH) {
557 558 559 560 561 562 563 564
      cout << " interswitch ";
      edge e;
      tb_plink &lp = PG[v.plink_local_one];
      tb_plink &lp2 = PG[v.plink_local_two];
      cout << lp.name << " (" << lp.srcmac << "," << lp.dstmac << ")";
      forall(e,v.path) {
	tb_plink &p = PG[e];
	cout << " " << p.name << " (" << p.srcmac << "," << p.dstmac << ")";
565
      }
566 567
      cout << " " << lp2.name << " (" << lp2.srcmac << "," <<
	lp2.dstmac << ")" << endl;
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
    } else {
      cout << "Unknown link type" << endl;
    }
  }
  cout << "End Edges" << endl;
  cout << "End solution" << endl;
}

int main(int argc, char **argv)
{
  extern char *optarg;
  extern int optind;
  char *topofile = NULL;
    
  int ch;

  partition_mechanism = PARTITION_BY_ANNEALING;
585

586 587 588 589 590 591 592 593 594 595 596 597 598 599
  while ((ch = getopt(argc, argv, "boas:n:t:h")) != -1)
    switch(ch) {
    case 'h': usage(); exit(0);
      //		case 's': nparts = atoi(optarg); break;
    case 'a': partition_mechanism = PARTITION_BY_ANNEALING; break;
    case 'o': on_line = 1; break;
    case 't': topofile = optarg; break;
    case 'b': batch_mode = 1; break;
    default: usage(); exit(-1);
    }

  argc -= optind;
  argv += optind;

600 601 602 603 604 605 606
  /* newbold@cs
     These relate to the globals defined in common.h
     It reads in all the parameters for the program that were formerly
     all hardcoded constants.
  */
  parse_options(argv, options, noptions);
#ifdef SCORE_DEBUG
607
  dump_options("Configuration options:", options, noptions);
608 609
#endif

610
  int seed;
611 612
  if (getenv("ASSIGN_SEED") != NULL) {
    sscanf(getenv("ASSIGN_SEED"),"%d",&seed);
613 614
  } else {
    seed = time(NULL)+getpid();
615 616 617 618 619 620 621 622
  }
  printf("seed = %d\n",seed);
  srandom(seed);

  /*
   * Allow the user to specify a topology in ".top" format.
   */

623
  if (argc >= 1) {
624 625 626 627 628 629
    ifstream infile;
    infile.open(argv[0]);
    if (!infile || !infile.good()) {
      cerr << "Error opening file: " << argv[0] << endl;
      exit(-11);
    }
630
    cout << "Parsing top\n";
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
    parse_top(G, infile);
  }

  /*
   * Allow the user to specify a physical topology
   * in .phys format.  Fills in the "topo" global variable.
   * Make no mistake:  This is actually mandatory now.
   */
  if (topofile != NULL) {
    cout << "Parsing ptop\n";
    ifstream ptopfile;
    ptopfile.open(topofile);
    if (!ptopfile || !ptopfile.good()) {
      cerr << "Error opening file: " << topofile << endl;
      exit(-1);
    }
647
    nparts = parse_ptop(PG,SG,ptopfile);
648
    cout << "Nparts: " << nparts << endl;
649 650 651 652 653 654 655 656 657 658 659 660

    cout << "Type Precheck" << endl;
    string curtype;
    int ok=1;
    forall (curtype,vtypes) {
      if (ptypes.search(curtype) == nil) {
	cout << "  No physical nodes of type " << curtype << endl;
	ok=0;
      }
    }
    if (! ok) exit(-1);
    
661 662 663 664 665 666 667
    cout << "Initializing data structures." << endl;
    edge_costs.init(SG);
    switch_distances.init(SG);
    switch_preds.init(SG);
    cout << "Calculating shortest paths on switch fabric." << endl;
    edge ed;
    forall_edges(ed,SG) {
668
      edge_costs[ed] = 100000000-PG[SG[ed].mate].bandwidth;
669 670 671
#ifdef SCORE_DEBUG
      cerr << "  " << PG[SG[ed].mate].name << " " << edge_costs[ed] << endl;
#endif
672

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
    }
    node sw;
    forall_nodes(sw,SG) {
      switch_distances[sw].init(SG);
      switch_preds[sw].init(SG);
      DIJKSTRA_T(SG,sw,edge_costs,
		 switch_distances[sw],switch_preds[sw]);
#ifdef SCORE_DEBUG
      cerr << "Source " << PG[SG[sw].mate].name << endl;
      node dsw;
      forall_nodes(dsw,SG) {
	cerr << "  " << PG[SG[dsw].mate].name;
	int dist = switch_distances[sw][dsw];
	cerr << "  dist " << dist;
	edge de = switch_preds[sw][dsw];
	if (de == nil) {
	  cerr << "  pred nil" << endl;
	} else {
	  cerr << "  pred " << PG[SG[de].mate].name << endl;
	}
      }
#endif
    }
  }
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

  node pn;
  forall_nodes(pn,PG) {
    pnode2node.insert(&PG[pn],pn);
  }
  for (int i=0;i<MAX_PNODES;++i) {
    if (pnodes[i] != nil) {
      pnode2posistion.insert(&PG[pnodes[i]],i);
    }
  }

  cout << "Generating physical classes\n";
  generate_pclasses(PG);
  cout << "Nclasses: " << pclasses.length() << endl;

#ifdef PCLASS_DEBUG
  pclass_debug();
#endif
715 716
  
  cout << "Annealing!" << endl;
717
  batch();
718 719 720 721 722

  print_solution();
    
  return 0;
}