neighborhood.cc 7.09 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * EMULAB-COPYRIGHT
 * Copyright (c) 2005-2006 University of Utah and the Flux Group.
 * All rights reserved.
 */

/*
 * A set of functions useful for exploring the neighborhood of a particular
 * solution.
 */

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
#include "neighborhood.h"

// From asssign.cc
extern bool allow_overload;
#ifdef PER_VNODE_TT
extern pclass_types vnode_type_table;
#endif

/*
 * This overly-verbose function returns true if it's okay to map vn to pn,
 * false otherwise
 */
inline bool pnode_is_match(tb_vnode *vn, tb_pnode *pn) {
  // Find the type record for this type
  tb_pnode::types_map::iterator mit = pn->types.find(vn->type);
  if (mit == pn->types.end()) {
    // The node doesn't even have this type, we can exit early
    return false;
  }

  bool matched = false;
  tb_pnode::type_record *tr = mit->second;
  if (tr->is_static) {
    if ((tr->current_load + vn->typecount) > tr->max_load) {
      // This would put us over its max load
      if (allow_overload && (tr->max_load > 1)) {
	// That's okay, we're allowing overload
	matched = true;
      } else {
	// Nope, it's full
	matched = false;
      }
    } else {
      // Plenty of room for us
      matched = true;
    }
  } else { // the type is not static
    if (pn->typed) {
      if (pn->current_type != vn->type) {
	// Failure - the pnode has a type, and it isn't ours
	matched = false;
      } else {
	if ((pn->current_type_record->current_load + vn->typecount) >
	    pn->current_type_record->max_load) {
	  // This would put us over its max load
	  //if (allow_overload && (tr->max_load > 1) &&
	  //    ((pn->current_type_record->current_load + vn->typecount) <
	  //    (pn->current_type_record->max_load + 2))) {
	  if (allow_overload && (tr->max_load > 1)) {
	    // That's okay, we're allowing overload
	    matched = true;
	  } else {
	    // Failure - the type is right, but the pnode is full
	    matched = false;
	  }
	} else {
	  // It's under its max load, we can fit in
	  matched = true;
	}
      }
    } else {
      // pnode doesn't have a type
      matched = true;
    }
  }

  // Commented out for now because it's too slow!
#if 0
  // Check for 'local' desires - the reason we take the time to do this here is
  // that they are actually, in many ways, like types with vn->typecount > 1.
  if (matched && !vn->desires.empty()) {
    tb_vnode::desires_map::iterator desire_it;
    for (desire_it = vn->desires.begin();
	desire_it != vn->desires.end();
	desire_it++) {
      if (desire_it->is_l_additive()) {
	  tb_pnode::features_map::iterator feature_it =
	      pn->features.find(desire_it->first);
	  if (feature_it == pn->features.end()) {
	      matched = false;
	      break;
	  }
	  // If we are allowing overloading, do so only to a limited degree
	  if (allow_overload) {
	      if ((feature_it->second < desire_it->second)
		  && (feature_it->second - desire_it->second)
		  < (desire_it->second * 2)) {
		      matched = false;
		      break;
		  }
	  } else {
	      // No overloading, and this would put us over the limit
	      if (feature_it->second < desire_it->second) {
		  matched = false;
		  break;
	      }
	  }
      }
  }
  }
#endif

  return matched;
}

/*
 * Finds a pnode which:
 * 1) One of the vnode's neighbors is mapped to
 * 2) Satisifies the usual pnode mapping constraints
 * 3) The vnode is not already mapped to
 */
tb_pnode *find_pnode_connected(vvertex vv, tb_vnode *vn) {

  //cerr << "find_pnode_connected(" << vn->name << ") called" << endl;

  // We make a list of all neighboring vnodes so that we can go through
  // them in random order
  vector<vedge> visit_order(out_degree(vv,VG));
  voedge_iterator vedge_it,end_vedge_it;
  tie(vedge_it,end_vedge_it) = out_edges(vv,VG);	    
  for (int i = 0; vedge_it != end_vedge_it; vedge_it++, i++) {
    visit_order[i] = *vedge_it;
  }
  for (int i = 0; i < visit_order.size(); i++) {
	int i1 = RANDOM() % visit_order.size();
	int i2 = RANDOM() % visit_order.size();
	vedge tmp = visit_order[i1];
	visit_order[i1] = visit_order[i2];
	visit_order[i2] = tmp;
  }
  for (int i = 0; i < visit_order.size(); i++) {
    vvertex neighbor_vv = target(visit_order[i],VG);
    tb_vnode *neighbor_vn = get(vvertex_pmap,neighbor_vv);
    //cerr << "    trying " << neighbor_vn->name << endl;
    // Skip any that aren't assigned
    if (!neighbor_vn->assigned) {
      //cerr << "        not assigned" << endl;
      continue;
    }

    // Skip any that are assigned to the same pnode we are
    if (neighbor_vn->assignment == vn->assignment) {
      //cerr << "        same assignment" << endl;
      continue;
    }

    // Check to make sure that our vn can map to the neibor's assigment
    tb_pnode *neighbor_pnode = get(pvertex_pmap,neighbor_vn->assignment);
    //cerr << "        neighbor on " << neighbor_pnode->name << endl;
    if (pnode_is_match(vn,neighbor_pnode)) {
      //cerr << "        good" << endl;
      //cerr << "    worked" << endl;
      return neighbor_pnode;
    }
    //cerr << "        doesn't match" << endl;
  }

  //cerr << "    failed" << endl;
  return NULL;
}

tb_pnode *find_pnode(tb_vnode *vn)
{
#ifdef PER_VNODE_TT
  tt_entry tt = vnode_type_table[vn->name];
#else
  tt_entry tt = type_table[vn->type];
#endif
  int num_types = tt.first;
  pclass_vector *acceptable_types = tt.second;
  
  tb_pnode *newpnode = NULL;
  
  //cerr << "Node is " << vn->name << " First = " << first << endl;

  // Randomize the order in which we go through the list of acceptable pclasses
  // We do this by making a randomly-ordered list of indicies into the
  // acceptable_types vector
  vector<int> traversal_order(num_types);
  for (int i = 0; i < num_types; i++) {
	traversal_order[i] = i;
  }
  for (int i = 0; i < num_types; i++) {
	int i1 = RANDOM() % num_types;
	int i2 = RANDOM() % num_types;
	int tmp = traversal_order[i1];
	traversal_order[i1] = traversal_order[i2];
	traversal_order[i2] = tmp;
  }

  for (int i = 0; i < num_types; i++) {

    int index = traversal_order[i];
    tb_pclass *pclass = (*acceptable_types)[index];

    // Skip pclasses that have been disabled
    if (pclass->disabled) {
	  continue;
    }

#ifndef FIND_PNODE_SEARCH
    // If not searching for the pnode, just grab the front one
    newpnode = pclass->members[vn->type]->front();
#else
#ifdef PER_VNODE_TT
    // If using PER_VNODE_TT and vclasses, it's possible that there are
    // some pclasses in this node's type table that can't be used right now,
    // becuase they contain entires that don't contain the vnodes _current_
    // type
    if (pclass->members.find(vn->type) == pclass->members.end()) {
	continue;
    }
#endif

    list<tb_pnode*>::iterator it = pclass->members[vn->type]->L.begin();
    while (it != pclass->members[vn->type]->L.end()) {
	if (pnode_is_match(vn,*it)) {
	    break; 
	} else {
	    it++;
	}
    }
    if (it == pclass->members[vn->type]->L.end()) {
	newpnode = NULL;
    } else {
	newpnode = *it;
    }
#endif // FIND_PNODE_SEARCH
#ifdef PCLASS_DEBUG
    cerr << "Found pclass: " <<
      pclass->name << " and node " <<
      (newpnode == NULL ? "NULL" : newpnode->name) << "\n";
#endif
    if (newpnode != NULL) {
      RDEBUG(cout << " to " << newpnode->name << endl;)
      return newpnode;
    }
  }

  // Nope, didn't find one
  return NULL;
}