Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Marianna Rapoport
iriscoq
Commits
752d27aa
Commit
752d27aa
authored
Jan 16, 2016
by
Robbert Krebbers
Browse files
Hints for reflexivity also on goals that are not identical.
parent
13680b70
Changes
4
Hide whitespace changes
Inline
Sidebyside
modures/cmra.v
View file @
752d27aa
...
...
@@ 8,7 +8,7 @@ Definition includedN `{Dist A, Op A} (n : nat) (x y : A) := ∃ z, y ={n}= x ⋅
Notation
"x ≼{ n } y"
:
=
(
includedN
n
x
y
)
(
at
level
70
,
format
"x ≼{ n } y"
)
:
C_scope
.
Instance
:
Params
(@
includedN
)
4
.
Hint
Extern
0
(
?x
≼
{
_
}
?
x
)
=>
reflexivity
.
Hint
Extern
0
(
?x
≼
{
_
}
?
y
)
=>
reflexivity
.
Record
CMRAMixin
A
`
{
Dist
A
,
Equiv
A
,
Unit
A
,
Op
A
,
Valid
A
,
ValidN
A
,
Minus
A
}
:
=
{
...
...
modures/cofe.v
View file @
752d27aa
...
...
@@ 5,7 +5,7 @@ Class Dist A := dist : nat → relation A.
Instance
:
Params
(@
dist
)
3
.
Notation
"x ={ n }= y"
:
=
(
dist
n
x
y
)
(
at
level
70
,
n
at
next
level
,
format
"x ={ n }= y"
).
Hint
Extern
0
(
?x
={
_
}=
?
x
)
=>
reflexivity
.
Hint
Extern
0
(
?x
={
_
}=
?
y
)
=>
reflexivity
.
Hint
Extern
0
(
_
={
_
}=
_
)
=>
symmetry
;
assumption
.
Tactic
Notation
"cofe_subst"
ident
(
x
)
:
=
...
...
modures/ra.v
View file @
752d27aa
...
...
@@ 16,7 +16,7 @@ Notation "(⋅)" := op (only parsing) : C_scope.
Definition
included
`
{
Equiv
A
,
Op
A
}
(
x
y
:
A
)
:
=
∃
z
,
y
≡
x
⋅
z
.
Infix
"≼"
:
=
included
(
at
level
70
)
:
C_scope
.
Notation
"(≼)"
:
=
included
(
only
parsing
)
:
C_scope
.
Hint
Extern
0
(
?x
≼
?
x
)
=>
reflexivity
.
Hint
Extern
0
(
?x
≼
?
y
)
=>
reflexivity
.
Instance
:
Params
(@
included
)
3
.
Class
Minus
(
A
:
Type
)
:
=
minus
:
A
→
A
→
A
.
...
...
prelude/base.v
View file @
752d27aa
...
...
@@ 209,9 +209,9 @@ Instance: Params (@equiv) 2.
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Instance
equiv_default_relation
`
{
Equiv
A
}
:
DefaultRelation
(
≡
)

3
.
Hint
Extern
0
(
_
≡
_
)
=>
reflexivity
.
Hint
Extern
0
(
?x
≡
?y
)
=>
reflexivity
.
Hint
Extern
0
(
_
≡
_
)
=>
symmetry
;
assumption
.
Hint
Extern
0
(
_
≡
{
_
}
_
)
=>
reflexivity
.
Hint
Extern
0
(
?x
≡
{
_
}
?y
)
=>
reflexivity
.
Hint
Extern
0
(
_
≡
{
_
}
_
)
=>
symmetry
;
assumption
.
(** ** Operations on collections *)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment