1. 07 Jan, 2002 1 commit
    • Leigh B. Stoller's avatar
      Checkpoint first working version of Frisbee Redux. This version · 86efdd9e
      Leigh B. Stoller authored
      requires the linux threads package to give us kernel level pthreads.
      
      From: Leigh Stoller <stoller@fast.cs.utah.edu>
      To: Testbed Operations <testbed-ops@fast.cs.utah.edu>
      Cc: Jay Lepreau <lepreau@cs.utah.edu>
      Subject: Frisbee Redux
      Date: Mon, 7 Jan 2002 12:03:56 -0800
      
      Server:
      The server is multithreaded. One thread takes in requests from the
      clients, and adds the request to a work queue. The other thread processes
      the work queue in fifo order, spitting out the desrired block ranges. A
      request is a chunk/block/blockcount tuple, and most of the time the clients
      are requesting complete 1MB chunks. The exception of course is when
      individual blocks are lost, in which case the clients request just those
      subranges.  The server it totally asynchronous; It maintains a list of who
      is "connected", but thats just to make sure we can time the server out
      after a suitable inactive time. The server really only cares about the work
      queue; As long as the queue si non empty, it spits out data.
      
      Client:
      The client is also multithreaded. One thread receives data packets and
      stuffs them in a chunkbuffer data structure. This thread also request more
      data, either to complete chunks with missing blocks, or to request new
      chunks. Each client can read ahead up 2 chunks, although with multiple
      clients it might actually be much further ahead as it also receives chunks
      that other clients requested. I set the number of chunk buffers to 16,
      although this is probably unnecessary as I will explain below. The other
      thread waits for chunkbuffers to be marked complete, and then invokes the
      imagunzip code on that chunk. Meanwhile, the other thread is busily getting
      more data and requesting/reading ahread, so that by the time the unzip is
      done, there is another chunk to unzip. In practice, the main thread never
      goes idle after the first chunk is received; there is always a ready chunk
      for it. Perfect overlap of I/O! In order to prevent the clients from
      getting overly synchronized (and causing all the clients to wait until the
      last client is done!), each client randomizes it block request order. This
      why we can retain the original frisbee name; clients end up catching random
      blocks flung out from the server until it has all the blocks.
      
      Performance:
      The single node speed is about 180 seconds for our current full image.
      Frisbee V1 compares at about 210 seconds. The two node speed was 181 and
      174 seconds. The amount of CPU used for the two node run ranged from 1% to
      4%, typically averaging about 2% while I watched it with "top."
      
      The main problem on the server side is how to keep boss (1GHZ with a Gbit
      ethernet) from spitting out packets so fast that 1/2 of them get dropped. I
      eventually settled on a static 1ms delay every 64K of packets sent. Nothing
      to be proud of, but it works.
      
      As mentioned above, the number of chunk buffers is 16, although only a few
      of them are used in practice. The reason is that the network transfer speed
      is perhaps 10 times faster than the decompression and raw device write
      speed. To know for sure, I would have to figure out the per byte transfer
      rate for 350 MBs via network, via the time to decompress and write the
      1.2GB of data to the raw disk. With such a big difference, its only
      necessary to ensure that you stay 1 or 2 chunks ahead, since you can
      request 10 chunks in the time it takes to write one of them.
      86efdd9e