### Recent Comments

Giving a talk at Eli… on Academic Degrees and Sex Johan Aspegren on To Cheer You Up in Difficult T… To cheer you up in d… on Another sensation – Anni… Gil Kalai on To Cheer You Up in Difficult T… Gil Kalai on To Cheer You Up in Difficult T… Alexander Barvinok on To Cheer You Up in Difficult T… Kevin on To Cheer You Up in Difficult T… Gil Kalai on To Cheer You Up in Difficult T… Arseniy on To Cheer You Up in Difficult T… Alexander Barvinok on To Cheer You Up in Difficult T… uniform on To Cheer You Up in Difficult T… Arseniy on To Cheer You Up in Difficult T… -
### Recent Posts

- Giving a talk at Eli and Ricky’s geometry seminar. (October 19, 2021)
- To cheer you up in difficult times 32, Annika Heckel’s guest post: How does the Chromatic Number of a Random Graph Vary?
- To Cheer You Up in Difficult Times 31: Federico Ardila’s Four Axioms for Cultivating Diversity
- Dream a Little Dream: Quantum Computer Poetry for the Skeptics (Part I, mainly 2019)
- To Cheer you up in difficult times 30: Irit Dinur, Shai Evra, Ron Livne, Alex Lubotzky, and Shahar Mozes Constructed Locally Testable Codes with Constant Rate, Distance, and Locality
- To cheer you up in difficult times 29: Free will, predictability and quantum computers
- Alef’s corner: Mathematical research
- Let me tell you about three of my recent papers
- Mathematical news to cheer you up

### Top Posts & Pages

- Giving a talk at Eli and Ricky's geometry seminar. (October 19, 2021)
- Academic Degrees and Sex
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
- The Argument Against Quantum Computers - A Very Short Introduction
- To Cheer You Up in Difficult Times 31: Federico Ardila's Four Axioms for Cultivating Diversity
- Richard Stanley: How the Proof of the Upper Bound Theorem (for spheres) was Found
- To cheer you up in difficult times 32, Annika Heckel's guest post: How does the Chromatic Number of a Random Graph Vary?
- Amazing: Karim Adiprasito proved the g-conjecture for spheres!
- TYI 30: Expected number of Dice throws

### RSS

# Monthly Archives: October 2010

## The Simonovits-Sos Conjecture was Proved by Ellis, Filmus and Friedgut

Simonovits and Sos asked: Let be a family of graphs with N={1,2,…,n} as the set of vertices. Suppose that every two graphs in the family have a triangle in common. How large can be? (We talked about it in this post.) … Continue reading

Posted in Combinatorics, Open problems
Tagged David Ellis, Ehud Friedgut, Simonovits-Sos conjecture, Yuval Filmus
10 Comments

## Polymath3: Polynomial Hirsch Conjecture 4

So where are we? I guess we are trying all sorts of things, and perhaps we should try even more things. I find it very difficult to choose the more promising ideas, directions and comments as Tim Gowers and Terry Tao did so … Continue reading

Posted in Combinatorics, Convex polytopes, Open problems, Polymath3
Tagged Hirsch conjecture, Polymath3
74 Comments

## A New Appearance

I have changed the appearance of the blog. The main feature of the new appearance that I like is that the comments are with the same size fonts as the posts themselves. This is especially useful for the polymath3 posts. … Continue reading

Posted in Blogging
7 Comments

## Benoît’s Fractals

Mandelbrot set Benoît Mandelbrot passed away a few dayes ago on October 14, 2010. Since 1987, Mandelbrot was a member of the Yale’s mathematics department. This chapterette from my book “Gina says: Adventures in the Blogosphere String War” about fractals is brought here on this … Continue reading

Posted in Geometry, Obituary, Physics, Probability
6 Comments

## Budapest, Seattle, New Haven

Here we continue the previous post on Summer 2010 events in Reverse chronological order. Happy birthday Srac In the first week of August we celebrated Endre Szemeredi’s birthday. This was a very impressive conference. Panni, Endre’s wife, assisted by her … Continue reading

Posted in Blogging, Conferences
Tagged Branko Grunbaum, Conferences, Endre Szemeredi, Victor Klee
8 Comments

## Mabruk Elon, India, and More

I am starting this post in Jaipur. My three children are watching a movie in our Jaipur hotel room and I watch them while I begin to write this post. Hagai is in the middle of a long-planned three-month trip … Continue reading

## Test Your Intuition (13): How to Play a Biased “Matching Pennies” Game

Recall the game “matching pennies“. Player I has to chose between ‘0’ or ‘1’, player II has to chose between ‘0’ and ‘1’.No player knows what is the choice of the other player before making his choice. Player II pays … Continue reading

## Polymath3 : Polynomial Hirsch Conjecture 3

Here is the third research thread for the polynomial Hirsch conjecture. I hope that people will feel as comfortable as possible to offer ideas about the problem we discuss. Even more important, to think about the problem either in the directions suggested by … Continue reading

## Polymath 3: The Polynomial Hirsch Conjecture 2

Here we start the second research thread about the polynomial Hirsch conjecture. I hope that people will feel as comfortable as possible to offer ideas about the problem. The combinatorial problem looks simple and also everything that we know about it is rather simple: … Continue reading

Posted in Convex polytopes, Open problems, Polymath3
Tagged Hirsch conjecture, Polymath3
104 Comments