anneal.cc 24.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
/*
 * EMULAB-COPYRIGHT
 * Copyright (c) 2003 University of Utah and the Flux Group.
 * All rights reserved.
 */

#include "anneal.h"

/*
 * Internal variables
 */
// These variables store the best solution.
node_map absassignment;		// assignment field of vnode
assigned_map absassigned;	// assigned field of vnode
type_map abstypes;		// type field of vnode

// Map of virtual node name to its vertex descriptor.
name_vvertex_map vname2vertex;

// This is a vector of all the nodes in the top file.  It's used
// to randomly choose nodes.
vvertex_vector virtual_nodes;

// Map of physical node name to its vertex descriptor.
name_pvertex_map pname2vertex;
  
// Map of virtual node name to the physical node name it's fixed too.
// The domain is the set of all fixed virtual nodes and the range is
// the set of all fixed physical nodes.
name_name_map fixed_nodes;

// Determines whether to accept a change of score difference 'change' at
// temperature 'temperature'.
inline int accept(double change, double temperature)
{
  double p;
  int r;

  if (change == 0) {
    p = 1000 * temperature / temp_prob;
  } else {
    p = expf(change/temperature) * 1000;
  }
  r = std::random() % 1000;
  if (r < p) {
    return 1;
  }
  return 0;
}

tb_pnode *find_pnode(tb_vnode *vn)
{
#ifdef PER_VNODE_TT
  tt_entry tt = vnode_type_table[vn->name];
#else
  tt_entry tt = type_table[vn->type];
#endif
  int num_types = tt.first;
  pclass_vector *acceptable_types = tt.second;
  
61
  tb_pnode *newpnode = NULL;
62 63 64 65 66 67 68 69 70 71 72 73 74

  /*
  int enabled_pclasses = 0;
  for (int i = 0; i < num_types; i++) {
    if ((*acceptable_types)[i]->disabled) {
	continue;
    }
    enabled_pclasses++;
  }
  cout << "Looking for a pnode for " << vn->name << " - there are " <<
      enabled_pclasses << " to choose from (" << num_types << " total)" << endl;
  assert(num_types == enabled_pclasses);
  */
75 76 77 78 79
  
  int i = std::random()%num_types;
  int first = i;
  for (;;) {
    i = (i+1)%num_types;
80 81 82 83 84 85 86

    // Skip pclasses that have been disabled
    if ((*acceptable_types)[i]->disabled) {
	i = std::rand()%num_types;
	continue;
    }

87 88 89 90 91 92 93
#ifdef PCLASS_SIZE_BALANCE
    int acceptchance = 1000 * (*acceptable_types)[i]->size * 1.0 /
	npnodes;
    if ((std::rand() % 1000) < acceptchance) {
	continue;
    }
#endif
94 95

    // For load balancing only
96 97
REDO_SEARCH:
    tb_pnode* firstmatch = NULL;
98 99 100 101 102

#ifndef FIND_PNODE_SEARCH
    // If not searching for the pnode, just grab the front one
    newpnode = (*acceptable_types)[i]->members[vn->type]->front();
#else
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
#ifdef PER_VNODE_TT
    // If using PER_VNODE_TT and vclasses, it's possible that there are
    // some pclasses in this node's type table that can't be used right now,
    // becuase they contain entires that don't contain the vnodes _current_
    // type
    if ((*acceptable_types)[i]->members.find(vn->type) ==
	    (*acceptable_types)[i]->members.end()) {
	continue;
    }
#endif
    list<tb_pnode*>::iterator it = (*acceptable_types)[i]->members[vn->type]->L.begin();
#ifdef LOAD_BALANCE
    int skip = std::rand() % (*acceptable_types)[i]->members[vn->type]->L.size();
    // Skip the begging of the list
    for (int j = 0; j < skip; j++) {
	it++;
    }
120
#endif // LOAD_BALANCE
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    while (it != (*acceptable_types)[i]->members[vn->type]->L.end()) {
#ifdef LOAD_BALANCE
	if ((*it)->typed) {
	    if ((*it)->current_type.compare(vn->type)) {
		it++;
	    } else {
		if (firstmatch == NULL) {
		    firstmatch = *it;
		}
		double acceptchance = 1 - (*it)->current_load * 1.0
		    / (*it)->max_load;

	        int p = 1000 * acceptchance;
		if ((std::random() % 1000) < (1000 * acceptchance)) {
		    break;
		} else {
		    it++;
		}
	    }
	} else {
	    break;
	}
143
#else // LOAD_BALANCE
Robert Ricci's avatar
Robert Ricci committed
144 145 146 147
	if ((*it)->typed && ((*it)->current_type.compare(vn->type) ||
		 (!allow_overload &&
		  ((*it)->current_type_record->current_load >=
		   (*it)->current_type_record->max_load)))) {
148
	    it++;
Robert Ricci's avatar
Robert Ricci committed
149 150
	} else {
	    break;
151
	}
152
#endif // LOAD_BALANCE
153 154 155 156 157 158 159 160 161
    }
    if (it == (*acceptable_types)[i]->members[vn->type]->L.end()) {
#ifdef LOAD_BALANCE
	if (firstmatch) {
	    //newpnode = firstmatch;
	    goto REDO_SEARCH;
	} else {
	    newpnode = NULL;
	}
162
#else // LOAD_BALANCE
163
	newpnode = NULL;
164
#endif // LOAD_BALANCE
165 166 167
    } else {
	newpnode = *it;
    }
168
#endif // FIND_PNODE_SEARCH
169 170 171 172 173 174 175 176 177
#ifdef PCLASS_DEBUG
    cerr << "Found pclass: " <<
      (*acceptable_types)[i]->name << " and node " <<
      (newpnode == NULL ? "NULL" : newpnode->name) << "\n";
#endif
    if (newpnode != NULL) {
      RDEBUG(cout << " to " << newpnode->name << endl;)
      return newpnode;
    }
178

179 180 181 182 183 184 185 186 187 188 189
#ifndef PCLASS_SIZE_BALANCE
    if (i == first) {
	// couldn't find one
	return NULL;
    }
#endif
  }
}


/* When this is finished the state will reflect the best solution found. */
190
void anneal(bool scoring_selftest, double scale_neighborhood)
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
{
  cout << "Annealing." << endl;

  double newscore = 0;
  double bestscore = 0;
 
  // The number of iterations that took place.
  iters = 0;
  iters_to_best = 0;
  int accepts = 0;
  
  double scorediff;

  int nnodes = num_vertices(VG);
  int npnodes = num_vertices(PG);
  int npclasses = pclasses.size();
  
  float cycles = CYCLES*(float)(nnodes + num_edges(VG) + PHYSICAL(npnodes));
  float optimal = OPTIMAL_SCORE(num_edges(VG),nnodes);
    
#ifdef STATS
  cout << "STATS_OPTIMAL = " << optimal << endl;
#endif

  int mintrans = (int)cycles;
  int trans;
  int naccepts = 20*(nnodes + PHYSICAL(npnodes));
  pvertex oldpos;
  bool oldassigned;
  int bestviolated;
  int num_fixed=0;
  double meltedtemp;
  double temp = init_temp;
  double deltatemp, deltaavg;

  // Priority queue of unassigned virtual nodes.  Basically a fancy way
  // of randomly choosing a unassigned virtual node.  When nodes become
  // unassigned they are placed in the queue with a random priority.
  vvertex_int_priority_queue unassigned_nodes;

#ifdef VERBOSE
  cout << "Initialized to cycles="<<cycles<<" optimal="<<optimal<<" mintrans="
       << mintrans<<" naccepts="<<naccepts<< endl;
#endif

  /* Set up the initial counts */
  init_score();

  /* Set up fixed nodes */
  for (name_name_map::iterator fixed_it=fixed_nodes.begin();
       fixed_it!=fixed_nodes.end();++fixed_it) {
    if (vname2vertex.find((*fixed_it).first) == vname2vertex.end()) {
      cerr << "Fixed node: " << (*fixed_it).first <<
	"does not exist." << endl;
      exit(2);
    }
    vvertex vv = vname2vertex[(*fixed_it).first];
    if (pname2vertex.find((*fixed_it).second) == pname2vertex.end()) {
      cerr << "Fixed node: " << (*fixed_it).second <<
	" not available." << endl;
      exit(2);
    }
    pvertex pv = pname2vertex[(*fixed_it).second];
    tb_vnode *vn = get(vvertex_pmap,vv);
    tb_pnode *pn = get(pvertex_pmap,pv);
    if (vn->vclass != NULL) {
      cerr << "Can not have fixed nodes be in a vclass!.\n";
      exit(2);
    }
    if (add_node(vv,pv,false) == 1) {
      cerr << "Fixed node: Could not map " << vn->name <<
	" to " << pn->name << endl;
      exit(2);
    }
    vn->fixed = true;
    num_fixed++;
  }

269 270 271
  // Subtract the number of fixed nodes from nnodes, since they don't really
  // count
  if (num_fixed) {
Robert Ricci's avatar
Robert Ricci committed
272
      nnodes -= num_fixed;
273
      cout << "Adjusting dificulty estimate for fixed nodes, " <<
Robert Ricci's avatar
Robert Ricci committed
274
	  nnodes << " remain.\n";
275 276
  }

277 278 279 280
  /* We'll check against this later to make sure that whe we've unmapped
   * everything, the score is the same */
  double initial_score = get_score();

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
  bestscore = get_score();
  bestviolated = violated;

#ifdef VERBOSE
  cout << "Problem started with score "<<bestscore<<" and "<< violated
       << " violations." << endl;
#endif

  absbest = bestscore;
  absbestviolated = bestviolated;

  vvertex_iterator vit,veit;
  tie(vit,veit) = vertices(VG);
  for (;vit!=veit;++vit) {
    tb_vnode *vn = get(vvertex_pmap,*vit);
    absassigned[*vit] = vn->assigned;
    if (vn->assigned) {
      assert(vn->fixed);
      absassignment[*vit] = vn->assignment;
      abstypes[*vit] = vn->type;
    } else {
      unassigned_nodes.push(vvertex_int_pair(*vit,std::random()));
    }
  }

  int neighborsize;
Robert Ricci's avatar
Robert Ricci committed
307
  neighborsize = nnodes * npclasses;
308 309 310
  if (neighborsize < min_neighborhood_size) {
    neighborsize = min_neighborhood_size;
  }
311 312 313 314 315

  // Allow scaling of the neighborhood size, so we can make assign try harder
  // (or less hard)
  neighborsize = (int)(neighborsize * scale_neighborhood);

316 317 318 319
#ifdef CHILL
  double scores[neighborsize];
#endif

Robert Ricci's avatar
Robert Ricci committed
320
  if (nnodes <= 0) {
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
    cout << "All nodes are fixed.  No annealing." << endl;
    goto DONE;
  }
  
  // Annealing loop!
  vvertex vv;
  tb_vnode *vn;

  // Crap added by ricci
  bool melting;
  int nincreases, ndecreases;
  double avgincrease;
  double avgscore;
  double initialavg;
  double stddev;
  bool finished;
  bool forcerevert;
  finished = forcerevert = false;
  int tsteps;
  int mintsteps;
  double meltstart;

#define MAX_AVG_HIST 16
  double avghist[MAX_AVG_HIST];
  int hstart, nhist;
  hstart = nhist = 0;
  double lasttemp;
  double smoothedavg, lastsmoothed;
  lastsmoothed = 500000.0f;
  lasttemp = 5000.0f;
  int melttrials;
  melttrials = 0;

  bool finishedonce;
  finishedonce = false;

  tsteps = 0;
  mintsteps = MAX_AVG_HIST;
  tsteps = 0;
  mintsteps = MAX_AVG_HIST;
  tsteps = 0;
  mintsteps = MAX_AVG_HIST;

  // Make sure the last two don't prevent us from running!
  avgscore = initialavg = 1.0;

  stddev = 0;

#ifdef MELT
  melting = true;
#ifdef TIME_TARGET
  meltstart = used_time();
#endif
#else
  melting = false;
#endif

  melt_trans = neighborsize;
#ifdef EPSILON_TERMINATE
  while(1) {
#else
  while (temp >= temp_stop) {
#endif
#ifdef VERBOSE
    cout << "Temperature:  " << temp << " AbsBest: " << absbest <<
      " (" << absbestviolated << ")" << endl;
#endif
    trans = 0;
    accepts = 0;
    nincreases = ndecreases = 0;
    avgincrease = 0.0;
    avgscore = bestscore;
#ifdef CHILL
    scores[0] = bestscore;
#endif

    if (melting) {
      cout << "Doing melting run" << endl;
    }

    while ((melting && (trans < melt_trans))
#ifdef NEIGHBOR_LENGTH
	    || (trans < neighborsize)) {
#else
	    || (!melting && (trans < mintrans && accepts < naccepts))) {
#endif

#ifdef STATS
      cout << "STATS temp:" << temp << " score:" << get_score() <<
	" violated:" << violated << " trans:" << trans <<
	" accepts:" << accepts << " current_time:" <<
	used_time() << endl;
#endif 
      pvertex newpos;
      trans++;
      iters++;

      bool freednode = false;
      if (! unassigned_nodes.empty()) {
	vv = unassigned_nodes.top().first;
	assert(!get(vvertex_pmap,vv)->assigned);
	unassigned_nodes.pop();
      } else {
	int start = std::random()%nnodes;
	int choice = start;
	while (get(vvertex_pmap,virtual_nodes[choice])->fixed) {
	  choice = (choice +1) % nnodes;
	  if (choice == start) {
	      choice = -1;
	      break;
	  }
	}
	if (choice >= 0) {
	    vv = virtual_nodes[choice];
	} else {
Robert Ricci's avatar
Robert Ricci committed
436
	    cout << "All nodes are fixed or LANs.  No annealing." << endl;
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	    goto DONE;
	}
      }
      
      vn = get(vvertex_pmap,vv);
      RDEBUG(cout << "Reassigning " << vn->name << endl;)
      oldassigned = vn->assigned;
      oldpos = vn->assignment;
      
#ifdef FREE_IMMEDIATELY
      if (oldassigned) {
	remove_node(vv);
	RDEBUG(cout << "Freeing up " << vn->name << endl;)
      }
#endif
      
      if (vn->vclass != NULL) {
	vn->type = vn->vclass->choose_type();
#ifdef SCORE_DEBUG
	cerr << "vclass " << vn->vclass->name  << ": choose type for " <<
	    vn->name << " = " << vn->type << " dominant = " <<
	    vn->vclass->dominant << endl;
#endif
      }
461
      tb_pnode *newpnode = find_pnode(vn);
462
#ifndef FREE_IMMEDIATELY
463 464
      if (oldassigned) {
	RDEBUG(cout << "removing: !lan, oldassigned" << endl;)
465
	  remove_node(vv);
466
      }
467
#endif
468 469
      if (newpnode == NULL) {
	// We're not going to be re-assigning this one
470
#ifndef SMART_UNMAP
471
	unassigned_nodes.push(vvertex_int_pair(vv,std::random()));
472
#endif
473
	// need to free up nodes
474
#ifdef SMART_UNMAP
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	// XXX: Should probably randomize this
	// XXX: Add support for not using PER_VNODE_TT
	// XXX: Not very robust

	freednode = true;

	tt_entry tt = vnode_type_table[vn->name];
	int size = tt.first;
	pclass_vector *acceptable_types = tt.second;
	// Find a node to kick out
	bool foundnode = false;
	int offi = std::rand();
	int index;
	for (int i = 0; i < size; i++) {
	  index = (i + offi) % size;
	  if ((*acceptable_types)[index]->used_members.find(vn->type) ==
	      (*acceptable_types)[index]->used_members.end()) {
	    continue;
	  }
	  if ((*acceptable_types)[index]->used_members[vn->type]->size() == 0) {
	    continue;
496
	  }
497 498 499
	  foundnode = true;
	  break;
	}
500

501 502 503 504 505 506 507 508 509 510 511 512 513
	if (foundnode) {
	  assert((*acceptable_types)[index]->used_members[vn->type]->size());
	  tb_pclass::tb_pnodeset::iterator it = (*acceptable_types)[index]->used_members[vn->type]->begin();
	  int j = std::rand() % (*acceptable_types)[index]->used_members[vn->type]->size();
	  while (j > 0) {
	    it++;
	    j--;
	  }
	  tb_vnode_set::iterator it2 = (*it)->assigned_nodes.begin();
	  int k = std::rand() % (*it)->assigned_nodes.size();
	  while (k > 0) {
	    it2++;
	    k--;
514
	  }
515 516 517 518 519 520 521 522 523 524
	  tb_vnode *kickout = *it2;
	  assert(kickout->assigned);
	  vvertex toremove = vname2vertex[kickout->name];
	  newpnode = *it;
	  remove_node(toremove);
	  unassigned_nodes.push(vvertex_int_pair(toremove,
		std::random()));
	} else {
	  cerr << "Failed to find a replacement!" << endl;
	}
525 526

#else
527 528
	int start = std::random()%nnodes;
	int toremove = start;
529 530 531
#ifdef SMART_UNMAP

#ifdef PER_VNODE_TT
532
	  tt_entry tt = vnode_type_table[vn->name];
533 534 535 536 537 538
#else
	  tt_entry tt = type_table[vn->type];
#endif
	  pclass_vector *acceptable_types = tt.second;

	  while (1) {
539 540 541 542 543 544 545 546 547 548 549
	    bool keepgoing = false;
	    if (get(vvertex_pmap,virtual_nodes[toremove])->fixed) {
	      keepgoing = true;
	    } else if (! get(vvertex_pmap,virtual_nodes[toremove])->assigned) {
	      keepgoing = true;
	    } else {
	      pvertex pv = get(vvertex_pmap,virtual_nodes[toremove])->assignment;
	      tb_pnode *pn = get(pvertex_pmap,pv);
	      int j;
	      for (j = 0; j < acceptable_types->size(); j++) {
		if ((*acceptable_types)[j] == pn->my_class) {
550
		  break;
551 552 553 554
		}
	      }
	      if (j == acceptable_types->size()) {
		keepgoing = true;
555
	      }
556 557 558 559 560 561
	    }

	    if (!keepgoing) {
	      break;
	    }

562
#else
563 564
	    while (get(vvertex_pmap,virtual_nodes[toremove])->fixed ||
		(! get(vvertex_pmap,virtual_nodes[toremove])->assigned)) {
565 566 567
#endif
	      toremove = (toremove +1) % nnodes;
	      if (toremove == start) {
568 569
		toremove = -1;
		break;
570
	      }
571 572
	    }
	    if (toremove >= 0) {
573
	      RDEBUG(cout << "removing: freeing up nodes" << endl;)
574
		remove_node(virtual_nodes[toremove]);
575
	      unassigned_nodes.push(vvertex_int_pair(virtual_nodes[toremove],
576 577 578
		    std::random()));
	    }
	    continue;
579 580
#endif /* SMART_UNMAP */
#ifndef SMART_UNMAP
581
	  } else {
582
#else
583
	  }
584 585
#endif
	  if (newpnode != NULL) {
586 587 588 589 590 591 592 593
	    newpos = pnode2vertex[newpnode];
	    if (scoring_selftest) {
	      // Run a little test here - see if the score we get by adding
	      // this node, then removing it, is the same one we would have
	      // gotten otherwise
	      double oldscore = get_score();
	      if (!add_node(vv,newpos,false)) {
		remove_node(vv);
594
	      }
595 596 597 598 599 600
	      assert(oldscore == get_score());
	    }
	    if (add_node(vv,newpos,false) != 0) {
	      unassigned_nodes.push(vvertex_int_pair(vv,std::random()));
	      continue;
	    }
601 602
	  } else {
#ifdef SMART_UNMAP
603
	    unassigned_nodes.push(vvertex_int_pair(vv,std::random()));
604
#endif
605 606 607
	    if (freednode) {
	      continue;
	    }
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	  }
#ifndef SMART_UNMAP
	}
#endif

      newscore = get_score();
      assert(newscore >= 0);

      // Negative means bad
      scorediff = bestscore - newscore;
      // This looks funny, because < 0 means worse, which means an increase in
      // score
      if (scorediff < 0) {
	nincreases++;
	avgincrease = avgincrease * (nincreases -1) / nincreases +
	  (-scorediff)  / nincreases;
      } else {
	ndecreases++;
      }
      
      bool accepttrans = false;
      if (newscore < optimal) {
	  accepttrans = true;
	  RDEBUG(cout << "accept: optimal (" << newscore << "," << optimal
		  << ")" << endl;)
      } else if (melting) {
	  accepttrans = true;
	  RDEBUG(cout << "accept: melting" << endl;)
      } else
#ifdef NO_VIOLATIONS
	  if (newscore < bestscore) {
	      accepttrans = true;
	      RDEBUG(cout << "accept: better (" << newscore << "," << bestscore
		      << ")" << endl;)
	  } else if (accept(scorediff,temp)) {
	      accepttrans = true;
	      RDEBUG(cout << "accept: metropolis (" << newscore << ","
		      << bestscore << "," << expf(scorediff/(temp*sensitivity))
		      << ")" << endl;)
	  }
#else
          if ((violated == bestviolated) && (newscore < bestscore)) {
	      accepttrans = true;
	      RDEBUG(cout << "accept: better (" << newscore << "," << bestscore
		      << ")" << endl;)
	  } else if (violated < bestviolated) {
	      accepttrans = true;
	      RDEBUG(cout << "accept: better (violations) (" << newscore << ","
		      << bestscore << "," << violated << "," << bestviolated
		      << ")" << endl;
	          cout << "Violations: (new) " << violated << endl;
		  cout << vinfo;)
	  } else if (accept(scorediff,temp)) {
	      accepttrans = true;
	      RDEBUG(cout << "accept: metropolis (" << newscore << ","
		      << bestscore << "," << expf(scorediff/(temp*sensitivity))
		      << ")" << endl;)
	  }
#endif

      if (accepttrans) {
	bestscore = newscore;
	bestviolated = violated;
#ifdef GNUPLOT_OUTPUT
	fprintf(tempout,"%f\n",temp);
	fprintf(scoresout,"%f\n",newscore);
	fprintf(deltaout,"%f\n",-scorediff);
#endif
	avgscore += newscore;

	accepts++;

#ifdef CHILL
	 if (!melting) {
	     scores[accepts] = newscore;
	 }
#endif

#ifdef NO_VIOLATIONS
	if (newscore < absbest) {
#else
	if ((violated < absbestviolated) ||
	    ((violated == absbestviolated) &&
	     (newscore < absbest))) {
#endif
#ifdef SCORE_DEBUG
	  cerr << "New best solution." << endl;
#endif
	  tie(vit,veit) = vertices(VG);
	  for (;vit!=veit;++vit) {
	    absassignment[*vit] = get(vvertex_pmap,*vit)->assignment;
	    absassigned[*vit] = get(vvertex_pmap,*vit)->assigned;
	    abstypes[*vit] = get(vvertex_pmap,*vit)->type;
	  }
	  absbest = newscore;
	  absbestviolated = violated;
	  iters_to_best = iters;
#ifdef SCORE_DEBUG
	  cerr << "New best recorded" << endl;
#endif
	}
	if (newscore < optimal) {
	  cout << "OPTIMAL ( " << optimal << ")" << endl;
	  goto DONE;
	}
	// Accept change
      } else {
	// Reject change
	RDEBUG(cout << "removing: rejected change" << endl;)
	remove_node(vv);
	if (oldassigned) {
	  add_node(vv,oldpos,false);
	}
      }

      if (melting) {
	temp = avgincrease /
	  log(nincreases/ (nincreases * X0 - ndecreases * (1 - X0)));
	if (!(temp > 0.0)) {
	    temp = 0.0;
	}
      }
#ifdef TIME_TERMINATE
      if (timelimit && ((used_time() - timestart) > timelimit)) {
	printf("Reached end of run time, finishing\n");
	forcerevert = true;
	finished = true;
	goto NOTQUITEDONE;
      }
#endif

    }

#ifdef RANDOM_ASSIGNMENT
      if (violated == 0) {
	  finished = true;
      }
#endif

#ifdef REALLY_RANDOM_ASSIGNMENT
      if (unassigned_nodes.size() == 0) {
	  finished = true;
      }
#endif

NOTQUITEDONE:
      RDEBUG(printf("avgscore: %f = %f / %i\n",avgscore / (accepts +1),avgscore,accepts+1);)
      avgscore = avgscore / (accepts +1);

    if (melting) {
      melting = false;
      initialavg = avgscore;
      meltedtemp = temp;
      RDEBUG(cout << "Melting finished with a temperature of " << temp
	<< " avg score was " << initialavg << endl;)
      if (!(meltedtemp > 0.0)) { // This backwards expression to catch NaNs
	cout << "Finished annealing while melting!" << endl;
	finished = true;
	forcerevert = true;
      }
#ifdef TIME_TARGET
      if (timetarget) {
	double melttime = used_time() - meltstart;
	double timeleft = timetarget - melttime;
	double stepsleft = timeleft / melttime;
	cout << "Melting took " << melttime << " seconds, will try for "
	  << stepsleft << " temperature steps" << endl;
	temp_rate = pow(temp_stop/temp,1/stepsleft);
	cout << "Timelimit: " << timelimit << " Timeleft: " << timeleft
	  << " temp_rate: " << temp_rate << endl;
      }
#endif
    } else {
#ifdef CHILL
      if (!melting) {
	  stddev = 0;
	  for (int i = 0; i <= accepts; i++) {
	    stddev += pow(scores[i] - avgscore,2);
	  }
	  stddev /= (accepts +1);
	  stddev = sqrt(stddev);
	  temp = temp / (1 + (temp * log(1 + delta))/(3  * stddev));
      }
#else
      temp *= temp_rate;
#endif
    }


#ifdef DEBUG_TSTEP
#ifdef EPSILON_TERMINATE
#ifdef CHILL
    RDEBUG(printf("temp_end: %f %f %f\n",temp,temp * avgscore / initialavg,stddev);)
#else
    RDEBUG(printf("temp_end: %f %f\n",temp,temp * avgscore / initialavg);)
#endif
#else
    printf("temp_end: %f ",temp);
    if (trans >= mintrans) {
	if (accepts >= naccepts) {
	    printf("both");
	} else {
	    printf("trans %f",accepts*1.0/naccepts);
	}
    } else {
	printf("accepts %f",trans*1.0/mintrans);
    }
    printf("\n");
#endif
#endif
    
    // Revert to best found so far - do link/lan migration as well
#ifdef SCORE_DEBUG
    cerr << "Reverting to best known solution." << endl;
#endif


    // Add this to the history, and computed a smoothed average
    smoothedavg = avgscore / (nhist + 1);
    for (int j = 0; j < nhist; j++) {
      smoothedavg += avghist[(hstart + j) % MAX_AVG_HIST] / (nhist + 1);
    }

    avghist[(hstart + nhist) % MAX_AVG_HIST] = avgscore;
    if (nhist < MAX_AVG_HIST) {
      nhist++;
    } else {
      hstart = (hstart +1) % MAX_AVG_HIST;
    }

#ifdef LOCAL_DERIVATIVE
    deltaavg = lastsmoothed - smoothedavg;
    deltatemp = lasttemp - temp;
#else
    deltaavg = initialavg - smoothedavg;
    deltatemp = meltedtemp - temp;
#endif

    lastsmoothed = smoothedavg;
    lasttemp = temp;

#ifdef EPSILON_TERMINATE
    RDEBUG(
       printf("avgs: real: %f, smoothed %f, initial: %f\n",avgscore,smoothedavg,initialavg);
       printf("epsilon: (%f) %f / %f * %f / %f < %f (%f)\n", fabs(deltaavg), temp, initialavg,
	   deltaavg, deltatemp, epsilon,(temp / initialavg) * (deltaavg/ deltatemp));
    )
    if ((tsteps >= mintsteps) &&
#ifdef ALLOW_NEGATIVE_DELTA
	((fabs(deltaavg) < 0.0000001)
	 || (fabs((temp / initialavg) * (deltaavg/ deltatemp)) < epsilon))) {
#else
	(deltaavg > 0) && ((temp / initialavg) * (deltaavg/ deltatemp) < epsilon)) {
#endif
#ifdef FINISH_HILLCLIMB
        if (!finishedonce && ((absbestviolated <= violated) && (absbest < bestscore))) {
	    // We don't actually stop, we just go do a hill-climb (basically) at the best
	    // one we previously found
	    finishedonce = true;
	    printf("Epsilon Terminated, but going back to a better solution\n");
	} else {
	    finished = true;
	}
#else
	finished = true;
#endif
	forcerevert = true;
    }
#endif

    bool revert = false;
    if (forcerevert) {
	cout << "Reverting: forced" << endl;
	revert = true;
    }

#ifndef NO_REVERT
    if (REVERT_VIOLATIONS && (absbestviolated < violated)) {
	cout << "Reverting: REVERT_VIOLATIONS" << endl;
	revert = true;
    }
    if (absbest < bestscore) {
	cout << "Reverting: best score" << endl;
	revert = true;
    }
#endif

    if (REVERT_LAST && (temp < temp_stop)) {
	cout << "Reverting: REVERT_LAST" << endl;
	revert = true;
    }

    // Only revert if the best configuration has better violations
    vvertex_list lan_nodes;
    vvertex_iterator vvertex_it,end_vvertex_it;
903
    if (revert) {
904 905 906 907 908 909 910 911 912 913 914 915 916
      cout << "Reverting to best solution\n";
      // Do a full revert
      tie(vvertex_it,end_vvertex_it) = vertices(VG);
      for (;vvertex_it!=end_vvertex_it;++vvertex_it) {
	tb_vnode *vnode = get(vvertex_pmap,*vvertex_it);
	if (vnode->fixed) continue;
	if (vnode->assigned) {
	  RDEBUG(cout << "removing: revert " << vnode->name << endl;)
	  remove_node(*vvertex_it);
	} else {
	  RDEBUG(cout << "not removing: revert " << vnode->name << endl;)
	}
      }
917 918 919 920 921 922 923 924

      // Check to make sure that our 'clean' solution scores the same as
      // the initial score - if not, that indicates a bug
      if (get_score() != initial_score) {
	  cerr << "*** WARNING: 'Clean' score does not match initial score" <<
	      endl << "     This indicates a bug - contact the operators" <<
	      endl << "     (initial score: " << initial_score <<
	      ", current score: " << get_score() << ")" << endl;
925 926 927 928 929 930 931 932 933
	  // One source of this can be pclasses that are still used - check for
	  // those
	  pclass_list::iterator pit = pclasses.begin();
	  for (;pit != pclasses.end();pit++) {
	      if ((*pit)->used_members != 0) {
		  cerr << (*pit)->name << " is " << (*pit)->used_members
		      << "% used" << endl;
	      }
	  }
934
      }
935 936 937 938 939
      tie(vvertex_it,end_vvertex_it) = vertices(VG);
      for (;vvertex_it!=end_vvertex_it;++vvertex_it) {
	tb_vnode *vnode = get(vvertex_pmap,*vvertex_it);
	if (vnode->fixed) continue;
	if (absassigned[*vvertex_it]) {
940 941
	  if (vnode->vclass != NULL) {
	    vnode->type = abstypes[*vvertex_it];
942
	  }
943
	  assert(!add_node(*vvertex_it,absassignment[*vvertex_it],true));
944 945 946 947 948 949 950 951 952 953 954 955 956
	}
      }
    }

    tsteps++;

    if (finished) {
      goto DONE;
    }
  }
 DONE:
  cout << "Done" << endl;
}