Page 1 of 13

Emulab Tutorial

Contents

Getting Started

o Logging into the Web Interface
Designing a Network Topology
Beginning the Experiment
Using your Nodes
I need root access!
My node is wedged!
I've scrogged my disk!

I've finished my experiment

o Getting Help!
Advanced Topics

o A more advanced example
Installing RPMS automatically
Starting your application automatically
How do I know when all my nodes are ready?
Customizing an OS (How to create a delta)
o Setting up IP routing between nodes
Batch Mode Experiments
Creating your own disk image

O O O 0O O O O

O O O O

Getting Started

This section of the tutorial describes how to run your first Testbed experiment. We cover basic NS
syntax and various operational issues that you will need to know in order conduct experiments to
completion. Later sections of the tutorial will cover more advanced topics such as loading your own
RPMs automatically, running programs automatically, running batch jobs, creating your own disk
images and loading those images on your nodes.

Logging into the Web Interface

Designing a Network Topology

Beginning the Experiment
Using your Nodes

I need root access!

My node is wedged!

I've scrogged my disk!

I've finished my experiment

Getting Help!

Logging Into the Web Interface

If you already have an account on the Testbed, all you need to do is go to Emulab Home Page,
enter your login name and your password, and then click on the "Login" button. If you don't have
an account, click on the "Join Project" or "Start Project" links. For an overview of how you go

http://www.emulab.net/tutorial/docwrapper.php3?docname=tutorial.html&printable=1 8/5/2002




Page 2 of 13

about getting an Emulab account, go to the "How To Get Started" page.

e Designing a Network Topology

Part of the Testbed's power lies in its ability to assume many different topologies; the description
of a such a topology is a necessary part of an experiment.

Emulab uses the "NS" ("Network Simulator") format to describe network topologies. This is
substantially the same Tcl-based format used by ns-2. Since the Testbed offers emulation, rather
than simulation, these files are interpreted in a somewhat different manner than ns-2. Therefore,
some ns-2 functionality may work differently than you expect, or may not be implemented at all.
Please look for warnings of the form:

*** WARNING: Unsupported NS Statement!
Link type BAZ, using DropTail!

If you feel there is useful functionality missing, please let us know. Also, some testbed-specific
syntax has been added, which with the inclusion of compatibility module (tb_compat.tcl), will be
ignored by the NS simulator. This allows the same NS file to work on both the Testbed and ns-2,
most of the time.

For those unfamiliar with the NS format, here is a small example (We urge all new Emulab users
to begin with a small 3-5 node experiment such as this, so that you will become familiar with NS
syntax and the practical aspects of Emulab operation). Let's say we are trying to create a test
network which looks like the following:

(A is connected to B, B to C, and B to D.)

An NS file which would describe such a topology is as follows. First off, all NS files start with a
simple prolog, declaring a simulator and including a file that allow you to use the special tb-
commands:

# This is a simple ns script. Comments start with #.
set ns [new Simulator]
source tb compat.tcl

Then define the 4 nodes in the topology.

set NodeA [$ns node]
set NodeB [$ns node]

http://www.emulab.net/tutorial/docwrapper.php3?docname=tutorial.html&printable=1 8/5/2002




Page 3 of 13

set NodeC [$ns node]
set NodeD [$ns node]

Next define the 3 links between the nodes. NS syntax permits you to specify the bandwidth,
latency, and queue type. For our example, we will define full speed links between B and C,D and
a delayed link from node A to B.

$ns duplex-link $NodeA $NodeB 100Mb 50ms DropTail
$ns duplex-link $NodeB $NodeC 100Mb Oms DropTail
Sns duplex-link $NodeB $NodeD 100Mb Oms DropTail

In addition to the standard NS syntax above, a number of extensions have been added that allow
you to better control your experiment. For example, you may specify what Operating System is
booted on your nodes. We currently support FreeBSD 4.3 and Linux RedHat 7.1, as well as OSKit
kernels on the testbed PCs. By default, Linux RedHat 7.1 is selected.

tb-set-node-os $NodeA FBSD-STD
tb-set-node-os $NodeC RHL-STD

You may also control what IP addresses are assigned to the experimental interfaces on your nodes.
The experiment configuration software will select IP addresses for you, but if your experiment
depends on particular IP addresses, you may specify them at each link. The following example
sets the IP address of node B on the port going to node C:

tb-set-ip-interface $NodeB $NodeC 192.168.42.42

Lastly, all NS files end with an epilogue that instructs the simulator to start.

# Go!
Sns run

If you would like to try the above example, the completed NS file can be run as an experiment in
your project. Another example ns script that shows off using the power of Tcl to generate
topologies is here.

o Beginning the Experiment

After logging on to the Testbed Web Interface, choose the "Begin Experiment" option from the
menu. First select which project you want the experiment to be configured in. Most people will be
a member of just one project, and will not have a choice. If you are a member of multiple projects,
be sure to select the correct project from the menu.

Next fill in the "Name' and "Description fields. The Name should be a single word (no spaces)
identifier, while the Description is a multi word description of your experiment. In the "Your NS
file" field, place the local path of a NS file which you have created to describe your network
topology. This file will be uploaded through your browser when you choose "Submit."

After submission, the Testbed interface will begin processing your request. This will likely take
several minutes, depending on how large your topology is, and what other features (such as delay
nodes and bandwidth limits) you are using. Assuming all goes well, you will receive an email
message indicating success or failure, and if successful, a listing of the nodes and IP address that

http://www.emulab.net/tutorial/docwrapper.php3?docname=tutorial.html&printable=1 8/5/2002




Page 4 of 13

were allocated to your experiment.

For the NS file described above, you would receive a listing that looks similar to this:

Node Info:

iD Type 0SID
NodeA pc FBSD-STD
NodeB pc

NodeC pc RHL-STD
NodeD pc

Node Mapping:

Virtual Physical Qualified Name

NodeA pcls NodeA.myexp.myproj .emulab.net
NodeB pc29 NodeB.myexp.myproj .emulab.net
NodeC pc28 NodeC.myexp.myproj.emulab.net
NodeD pc35 NodeD.myexp.myproj.emulab.net
tbsdelay0 pcls tbsdelay0.myexp.myproj.emulab.net

Lan/Link Info:

ID Member IP Delay BW (Kbs)
16 NodeB:ethO 192.168.42.42 0.00 100000
15 NodeB:eth2 192.168.1.3 25.00 100000
15 NodeA:ethO 192.168.1.2 25.00 100000
16 NodeC:ethoO 192.168.42.2 0.00 100000
17 NodeB:ethl 192.168.2.2 0.00 100000
17 NodeD:ethO 192.168.2.3 0.00 100000

Delay Node Info:
LinkID Virtual Physical Pipe Numbers

15 tbsdelay0 pcls 100,110

A few points should be noted:

o A single delay node was allocated and inserted into the link between NodeA and NodeB.
This link is invisible from your perspective, except for the fact that it adds latency, error, or
reduced bandwidth. However, the information for the delay links are included so that you
can modify the delay parameters after the experiment has been created.

o Delays of less than 2ms (per trip) are too small to be accurately modeled at this time, and
will be silently ignored. A delay of Oms can be used to indicate that you do not want added
delay; the two interfaces will be "directly" connected to each other. Also, please see the
Link Loss Commands section in the Extensions reference.

o The names in the "Qualified Name" column refer to the control network interfaces for each
of your allocated nodes. These names are added to the Emulab nameserver map on the fly,
and are immediately available for you to use so that you do not have to worry about the
actual physical node names that were chosen. In the names listed above, ‘'myproj' is the
name of the project that you chose to work in, and ‘myexp' is the name of the experiment
that you provided in the "Begin Experiment" page.

o Since the IP address for the link from NodeB to NodeC was set in the NS file, the system

http://www.emulab.net/tutorial/docwrapper.php3?docname=tutorial.html&printable=1 8/5/2002




Page 5 of 13

selected an appropriate [P address for the other end of the link. All of the other links were
configured by the system to use 192.168. XXX.XXX subnets.

o Using your Nodes

By the time you receive the email message listing your nodes, the Testbed configuration system
will have ensured that your nodes are fully configured and ready to use. If you have selected one
of the Testbed supported operating system images (FreeBSD, Linux, NetBSD), this configuration
process includes:

o loading fresh disk images so that each node is in a known clean state;

o rebooting each node so that it is running the OS specified in the NS script;

o configuring each of the network interfaces so that each one is "up" and talking to its virtual
LAN (VLAN);

o creating user accounts for each of the project members;

o mounting the projects NFS directory in /proj so that project files are easily shared amongst
all the nodes in the experiment;

o creating a /etc/hosts file on each node so that you may refer to the experimental interfaces of
other nodes by name instead of [P number;

o configuring all of the delay parameters;

o configuring the tip lines so that project members may access the console ports from
users.emulab.net.

As this point you may log into any of the nodes in your experiment. You will need to use Secure
Shell (ssh), and you should use the "qualified name' from the nodes mapping table so that you do
not form dependencies on any particular physical node. Your login name and password will be the
same as your Web Interface login and password.

The /etc/hosts file on each node will provide a local name mapping for the other nodes in your
experiments. You should take care to use these names (or IP numbers) and not the .emulab.net
names listed in the node mapping, since the emulab names refer to the control network LAN that
is shared amongst all nodes in all experiments. It is only the experimental interfaces that are
entirely private to your experiment.

NOTE: The configuration process just described occurs only on Emulab constructed operating
system images. If you are using an OSKit kernel, or your own disk image with your own
operating system, you will be responsible for all of the configuration. At some point we hope to
provide tools to assist in the configuration, but for now you are on your own.

e I need root access!

If you need to customize the configuration, or perhaps reboot nodes, you can use the "sudo"
command, located in /usr/local/bin on FreeBSD and Linux, and /usr/pkg/bin on NetBSD.
Our policy is very liberal; you can customize the configuration in any way you like, provided it
does not violate Emulab's administrative policies. As as example, to reboot a node that is running
FreeBSD:

/usr/local/bin/sudo reboot

o My node is wedged!

http://www.emulab.net/tutorial/docwrapper.php3?docname=tutorial.html&printable=1 8/5/2002




Page 6 of 13

This is bound to happen when running experimental software and/or experimental operating
systems. Fortunately we have an easy way for you to power cycle nodes without requiring
Testbed Operations to get involved. If you must power cycle a node, log on to users.emulab.net
and use the "node reboot" command:

node_reboot <node> [node ... ]

where ‘node' is the physical name, as listed in the node mapping table. You may provide more
than one node on the command line. Be aware that you may power cycle only nodes in projects
that you are member of. Also, node_reboot does its very best to perform a clean reboot before
resorting to cycling the power to the node. This is to prevent the damage that can occur from
constant power cycling over a long period of time. For this reason, node_reboot may delay a
minute or two if it detects that the machine is still responsive to network transmission. In any
event, please try to reboot your nodes first (see above).

You may also reboot all the nodes in an experiment by using the -e option to specify the project
and experiment names. For example:

node_reboot -e testbed,multicast

will reboot all of the nodes reserved in the "multicast" experiment in the "testbed" project. This
option is provided as a shorthand method for rebooting large groups of nodes.

o I've scrogged my disk!

Scrogging your disk is certainly not as common, but it does happen. You can either terminate your
experiment, and recreate it (which will allocate another group of nodes), or if you prefer you can
reload the disk image yourself. You will of course lose anything you have stored on that disk; it is
a good idea to store only data that can be easily recreated, or else store it in your project directory
in /proj. Reloading your disk with a fresh copy of the default image is easy, and requires no
intervention by Emulab staff:

os_load <node> [node ... ]

os_load will wait (not exit) until the nodes have been reloaded, so that you do not need to check
the console lines of each node to determine when the load is done.

o I've finished my experiment

When your experiment is completed, and you no longer need the resources that have been
allocated to it, you will need to terminate the experiment via the Emulab Web Interface. Click on
the "End An Experiment" link. You will be presented with a list of all of the experiments in all of
the projects for which you have the authorization to terminate experiments. Select the experiment
you want to terminate by clicking on the button in the "Terminate" column on the right hand side.
You will be asked to confirm your choice. The Testbed configuration system will then tear down
your experiment, and send you an email message when the process is complete. At this point you
are allowed to reuse the experiment name (say, if you wanted to create a similar experiment with
different parameters).

o Getting Help!

http://www.emulab.net/tutorial/docwrapper.php3?docname=tutorial.html&printable=1 8/5/2002




Page 7 of 13

If you have any questions or problems, or just want to comment on Emulab's operation (maybe
you want to suggest an improvement to one of the Web pages), feel free to contact us by sending
email to Testbed Operations. Also note that much of the software is in development, and
occasionally things might break or not work as you expect. Again, please feel free to contact us.

Advanced Topics

A more advanced example

Installing RPMS automatically

Starting your application automatically

How do I know when all my nodes are ready?
Customizing an OS (How to create a delta)
Setting up IP routing between nodes

e A more advanced example

We have a more advanced example demonstrating the use of RED queues, traffic generators, and
the event system.

o Installing RPMS automatically

The Testbed NS extension tb-set-node-rpms allows you to specify a (space separated) list of
RPMs to install on each of your nodes when it boots:

tb-set-node-rpms S$nodeA /proj/pid/rpms/silly-freebsd.rpm
tb-set-node-rpms S$nodeB /proj/pid/rpms/silly-linux.rpm

The above NS code says to install the silly-freebsd.rpm file on nodea, and the silly-
linux.rpm on nodeB. RPMs are installed as root when the node first boots, and must reside on the
node's local filesystem, or in a directory that can be reached via NFS. This is either the

project's /proj directory, or a project member's home directory in /users.

e Starting your application automatically

You can start your application automatically when your nodes boot by using the tb-set-node-
startup NS extension. The argument is the pathname of a script or program that is run as the UID
of the experiment creator, after the node has reached multiuser mode. You can specify the same
program for each node, or a different program. For example:

tb-set-node-startup $nodeA /proj/pid/runme.nodelA
tb-set-node-startup $nodeB /proj/pid/runme.nodeB

will run /proj/pid/runme.nodeA on nodeA and /proj/pid/runme.nodea on nodeB. The
programs must reside on the node's local filesystem, or in a directory that can be reached via NFS.

This is either the project's /proj directory, or a project member's home directory in /users.

The exit value of the startup command is reported back to the Web Interface, and is made
available to you via the "Experiment Information" link. There is a listing for all of the nodes in the

http://www.emulab.net/tutorial/docwrapper.php3?docname=tutorial.html&printable=1 8/5/2002




Page 8 of 13

experiment, and the exit value is recorded in this listing. The special symbol none indicates that
the node is still running the startup command. A log file containing the output of the startup
command is created in the project's 1ogs directory (/proj/pid/logs).

The startup command is especially useful when combined with batch mode experiments.

o How do I know when all my nodes are ready?

It is often necessary for your startup program to determine when all of the other nodes in the
experiment have started, and are ready to proceed. Sometimes called a barrier, this allows
programs to wait at a specific point, and then all proceed at once. Emulab provides a primitive
form of this mechanism using experiment ready bits, which are set and read using the
TMCD/TMCC. When an experiment is first configured, the ready bit for each node is cleared. As
each node starts its application and reaches the point where it must be sure that all other nodes
have started up, it issues a TMCC ready command:

tmcc ready

which tells Emulab's configuration system that the node is ready to proceed. The node can then
poll for the ready count to determine how many nodes are ready (have issued a tmcc ready
command):

tmcc readycount

which will return the ready count as a string:

READY=N TOTAL=M

where N is the number of nodes that are ready, and M is the total number of nodes in the
experiment. An application can poll the ready count with a simple script, or it can encode the
ready bits check directly into its program. For example, here is a simple Perl fragment that issues
the ready command, and then polls for the ready count, being sure to delay a small amount
between each poll.

system("tmcc ready") ;
while (1) {

my Sbits = “tmcc readycount”;
if ($bits =~ /READY=(\d*) TOTAL=(\d*)/) {
if (31 == $2) {
last;

Note that the ready count is essentially a use-once feature; The ready count cannot be
reinitialized to zero since there is no actual synchronization happening. If in the future it appears
that a generalized barrier synchronization would be more useful, we will investigate the
implementation of such a feature.

http://www.emulab.net/tutorial/docwrapper.php3?docname=tutorial.html&printable=1 8/5/2002




Page 9 of 13

o Customizing an OS (How to create a delta)

If your set of operating system customizations cannot be easily contained within an RPM (or
multiple RPMs), or if you are just not familiar with the RPM mechanism, then you can create your
own operating system delta. A delta is like an RPM or Tar file in that it contains a bunch of files
to be unpacked onto the node. The difference is that with a delta you do not have to figure what
files you changed, and how to automate the installation process. Instead, you just allocate a node,
change it anyway you like, and then issue the create-delta command. The resulting delta file
can then be specified in your NS file using the Testbed NS extension tb-set-node-deltas. You
can create one delta to install on all of your nodes, or several different deltas for various nodes in
your experiment. When the nodes in your new experiment boot for the first time, the delta will be
installed (all of the files unpacked) very early in the boot phase, and the node rebooted again (in
case you have installed daemons that need to be started during initialization). Your experiment
can then proceed.

The key point is that the Testbed configuration software deals with figuring out what files you
changed, installing the delta on your nodes, rebooting the nodes that have new software installed,
and ensuring that any particular delta is installed only once on each node.

Lets step through an example. The first thing you need to do is create an experiment with a single
node in it. The following NS file can be submitted to the "Begin Experiment" page.

set ns [new Simulator]

source tb_compat.tcl

set nodeA [$ns node]
tb-set-node-os $nodeA FBSD-STD
$ns run

When you have received email notification that the experiment has configured, log into the node
with ssh. Install whatever software you like, making sure to update the necessary files if you have
installed daemons that need to be started automatically at boot time. After all of your software is
installed, create the delta file with:

sudo /usr/local/bin/create-delta /proj/testbed/foo.delta

The argument to the create-delta command is a complete pathname, which must reside
someplace in your /proj directory (a subdirectory is fine). You cannot write the delta file to any
other filesystem. This restriction is enforced so that diskspace (and resources in general) can be
accounted for on a per-project basis. It should be noted that a delta created on one OS cannot be
installed on another. In other words, a delta created on a FreeBSD machine can only be installed
on a FreeBSD machine. If you need the same software installed on a Linux machine as well, you
will need to repeat this process with a node running Linux. See the section on tb-set-node-os in
the Extensions reference.

After you have created your delta, you can then use it in subsequent experiments by using the
Testbed NS extension tb-set-node-deltas. For example, here is an NS file that creates a two
node experiment, installs a different delta on each node, and then runs a program automatically on
each node. Presumably, the startup program is installed by the delta, and encapsulates the
experiment being performed.

set ns [new Simulator]

http://www.emulab.net/tutorial/docwrapper.php3?docname=tutorial.html&printable=1 8/5/2002




Page 10 of 13

source tb_compat.tcl

set nodeA [$ns node]

set nodeB [$ns node]

tb-set-node-os $nodeA FBSD-STD

tb-set-node-os $nodeB RHL-STD

tb-set-node-deltas $nodelA /proj/testbed/deltas/silly-freebsd.delta
tb-set-node-deltas $nodeB /proj/testbed/deltas/silly-linux.delta
tb-set-node-startup $nodeA /usr/site/bin/run-my-experiment
tb-set-node-startup $nodeB /usr/site/bin/run-my-experiment

Sns run

Implementation Notes:
o Deltas are created and installed with the unix filesystem backup utilities dump and restore.
o Beware of changing too many critical systems and/or too many changes to the /etc/rc
scripts.
o Ifyou find that your customizations are too much for the Delta mechanism, feel free to
contact us so that we can arrange to create a complete snapshot of your system.

o Setting up IP routing between nodes

As Emulab strives to make all aspects of the network controllable by the user, we do not attempt
to impose any IP routing architecture or protocol by default. However, many users are more
interested in end-to-end aspects and don't want to be bothered with setting up routes. For those
users we provide an option to automatically set up routes on nodes which run one of our provided
FreeBSD or Linux disk images.

You can use the NS rtproto syntax in your NS file to enable routing:

$ns rtproto protocol

where the protocol option is limited to one of Session, Static, or Manual. Session routing
provides fully automated routing support, and is implemented by enabling gated running the
OSPF protocol on all nodes in the experiment. Static routing also provides automatic routing
support, but rather than computing the routes dynamically, the routes are precomputed when the
experiment is created, and then loaded on each node when it boots.

Manual routing allows you to explicitly specify per-node routing information in the NS file. To do
this, use the Manual routing option to rtproto, followed by a list of routes using the

add-route command:
Snode add-route $dst sSnexthop

where the dst can be either a node, a link, or a LAN. For example:

Sclient add-route S$server Srouter
Sclient add-route [Sns link S$server S$Srouter] Srouter
Sclient add-route $serverlan Srouter

Note that you would need a separate add-route command to establish a route for
the reverse direction; thus allowing you to specify differing forward and
reverse routes if so desired. These statements are converted into appropriate
route (8) commands on your experimental nodes when they boot.

In the above examples, the first form says to set up a manual route between

http://www.emulab.net/tutorial/docwrapper.php3?docname=tutorial.html&printable=1 8/5/2002




Page 11 of 13

$client and $server, using S$router as the nexthop; $client and S$router should
be directly connected, and the interface on $server should be unambiguous;
either directly connected to the router, or an edge node that has just a
single interface.

If the destination has multiple interfaces configured,
and it is not connected directly to the nexthop, the
interface that you are intending to route to is
ambiguous. In the topology shown to the right, $nodeD
has two interfaces configured. If you attempted to set
up a route like this:

SnodeA add-route $nodeD $nodeB

you would receive an error since it cannot be
determined (easily, with little programmer effort, by
Emulab staff!) which of the two links on $nodeD you are
referring to. Fortunately, there is an easy solution,
courtesy of an Emulab extension. Instead of a node,
specify the link directly:

SnodeA add-route [$ns link S$nodeD $nodeC] s$nodeB

This tells us exactly which link you mean, enabling us
to convert that information into a proper route command
on $nodeA.

The last form of add-route command is used when adding a route to an entire
LAN. It would be tedious and error prone to specify a route to each node in a
LAN by hand. Instead, just route to the entire network:

set clientlan [Sns make-lan "$nodeE $nodeF SnodeG" 100Mb Oms]
SnodeA add-route $clientlan S$nodeB

While all this manual routing infrastructure sounds really nifty, its probably
a good idea to use Session routing for all but small, simple topologies.
Explicitly setting up all the routes in even a moderately-sized experiment is
extremely error prone. Consider this: a recently created experiment with 17
nodes and 10 subnets required 140 hand-created routes in the NS file. Yow!

Two final, cautionary notes on routing:

O You might be tempted to set the default route on your nodes to reduce the
number of explicit routes used. Don't do it. That would prevent nodes
from contacting the outside world, i.e., you. The default route must be
set to use the control network interface.

o If you use your own routing daemon, you must avoid using the control
network interface in the configuration. Since every node in the testbed
is directly connected to the control network LAN, a naive routing daemon
configuration will discover that any node is just one hop away, via the
control network, from any other node and all inter-node traffic will be
routed via that interface.

Batch Mode

http://www.emulab.net/tutorial/docwrapper.php3?docname=tutorial.html&printable=1 8/5/2002




Page 12 of 13

e Batch Mode Introduction
e A Batch Mode Example

e Batch Mode Introduction

Batch Mode experiments can be created on the Testbed via the "Create an
Experiment" link in the operations menu to your left. There is a checkbox near
the bottom of the form that indicates you want to use the batch system. There
are several important differences between a regular experiment and a batch
mode experiment:

0 The experiment is run when enough resources (ie: nodes) are available.
This might be immediately, or it might be sometime in the future.

O Once your NS file is handed off to the system, the batch system is
responsible for setting up the experiment and tearing it down once the
experiment has completed. You will receive email notifying you when the
experiment has been scheduled and when it has been terminated.

O Your NS file must define a startup command to run on each node using the
tb-set-node-startup NS extension. It is the exit value(s) of the startup
command (s) that indicates that the experiment is completed; when all of
the nodes have run their respective startup commands and exited, the
batch system will then tear down the experiment. The output of the
startup command is stored in a file in your home directory so you can
follow what has happened.

e A Batch Mode Example

Consider example NS file batch.ns. First off, we have to arrange for the
experimental software to be automatically installed when the nodes boot. This
is done with the tb-set-node-rpms NS extension:

tb-set-node-rpms $nodeA /proj/testbed/rpms/silly-1.0-1.1386-freebsd.rpm
tb-set-node-rpms $nodeB /proj/testbed/rpms/silly-1.0-1.1386-freebsd.rpm

The next two lines of the NS file specify what program should be run on each
of the nodes. Using the tb-set-node-startup NS extension, we say that the
program run-silly (installed by the silly-1.0 RPM) is to be run on both nodes:

tb-set-node-startup $nodeA /usr/site/bin/run-silly
tb-set-node-startup $nodeB /usr/site/bin/run-silly

After you have been notified via email that the batch experiment is running,
you can track the progress of your experiment by looking in the "Experiment
Information" page. As each node completes the startup command, the listing for
that node will be updated to reflect the exit status of the command (you may
need to hit the Reload button to see the changes). Once all of the nodes hare
reported in an exit status, the batch system will tear down the experiment and
send you email. If your experiment is such that one node is the controller,
and runs commands on all the other nodes, then simply run a dummy startup
command on the other nodes so that the batch system will receive an exit value
for that node. Since the batch is not terminated until all nodes have reported
in, be sure that the controlling node does not exit from its startup command
until all of the nodes have finished. A dummy startup command can be setup

http://www.emulab.net/tutorial/docwrapper.php3?docname=tutorial.html&printable=1 8/5/2002




Page 13 of 13

like this:
tb-set-node-startup $nodeC /bin/echo

The status of your batch experiment can be viewed via the "Experiment
Information" link in the Web Interface Options menu. You may also cancel a
batch after you have submitted it using the "Terminate" option in the
information display. As noted in the section on the Startupcmd, the output of
the startup command on each node is written to separate files in your project
log directory. You can use these log files to debug your batch experiment.

The batch system is still under development. It appears to be functional, but
there are bound to be kinks in the system. Please help us debug and improve it
by letting us know what you think and if you have problems with it. Currently,
the batch system tries every 10 minutes to run your batch. It will send you
email every 5 or so attempts to let you know that it is trying, but that
resources are not available. It is a good idea to glance at the message to
make sure that the problem is lack of resources and not an error in your NS
file.

Custom OS Images

Sorry, this section of the documentation is still under construction. In the
meantime, please check the documentation for creating your own custom disk images
at https://www.emulab.net/newimageid explain.php3.

http://www.emulab.net/tutorial/docwrapper.php3?docname=tutorial.html&printable=1 8/5/2002




Page 1 of 6

Emulab Tutorial - A More Advanced Example

Here is a slightly more complex example demonstrating the use of RED queues, traffic generation, and
the event system. Where possible, we adhere to the syntax and operational model of ns-2, as described in
the NS manual.

e RED/GRED Queues: In addition to normal DropTail links, Emulab supports the specification of
the RED and GRED (Gentle RED) links in your NS file. RED/GRED queuing is handled via the
insertion of a traffic shaping delay node, in much the same way that bandwidth, delay, and packet
loss is handled. For a better understanding of how we support traffic shaping, see the ipfw and
dummynet man pages on users.emulab.net. It is important to note that Emulab supports a
smaller set of tunable parameters then NS does; please read the aforementioned manual pages!

e Traffic Generation: Emulab supports Constant Bit Rate (CBR) traffic generation, in conjunction
with either Agent/UDP or Agent/TCP agents. We currently use the TG Tool Set to generate traffic
(usermode programs running on FreeBSD 4.3 endpoints).

e Traffic Generation using NS Emulation (NSE): Emulab supports TCP traffic generation using
NS's Agent/TCP/FullTcp which is a BSD Reno derivative and its subclasses namely Newreno,
Tahoe and Sack. Currently two application classes are supported: Application/FTP and
Application/Telnet. The former drives the FullTcp agent to send bulk-data according to
connection dynamics. The latter uses the NS's tcplib telnet distribution for telnet-like data. For
configuration parameters and commands allowed on the objects, refer to NS documentation here.

e Event System: Emulab supports limited use of the NS af syntax, allowing you to define a static
set of events in your NS file, to be delivered to agents running on your nodes. There is also
"dynamic events" support that can be used to inject events into the system on the fly, say from a
script running on users.emulab.net,

e Program Objects: Emulab has added extensions that allow you to run arbitrary programs on your
nodes, starting and stopping them at any point during your experiment run.

What follows is a sample NS file that demonstrates the above features, with annotations where
appropriate. First we define the 2 nodes in the topology:

set nodeA [$ns node]
set nodeB [$ns node]

Next define a duplex link between nodes nodeA and nodeB. Instead of a standard DropTail link, it is
declared to be a Random Early Detection (RED) link. While this is obviously contrived, it allows us to
ignore routing issues within this example.

set 1link0 [S$ns duplex-link $nodeA $nodeB 100Mb Oms RED]

Each link 1s has an NS "Queue" object associated with it, which you can modify to suit your needs.
(currently, there is a single queue object per duplex link; you can cannot set the parameters
asymmetrically). The following parameters can be changed, and are defined in the NS manual (see
Section 7.3):

set queuel [[$ns link $nodeA snodeB] queue]
Squeuel set gentle O

Squeue(0 set queue-in-bytes 0

Squeuel0 set limit 75

Squeuel set maxthresh 20

$queuel set thresh 7

http://www.emulab.net/tutorial/docwrapper.php3?docname=advanced.html&printable=1 8/5/2002




Page 2 of 6

$queuel set linterm_ 11
Squeuel0 set g weight 0.004

A UDP agent is created and attached to nodeA, then a CBR traffic generator application is created, and
attached to the UDP agent:

set udp0 [new Agent/UDP]
Sns attach-agent $nodeA sudpO

set cbr0 [new Application/Traffic/CBR]
Scbr0 set packetSize 500
$cbr0 set interval 0.005
Scbr0 attach-agent $udpO

A TCP agent is created and also attached to nodeA, then a second CBR traffic generator application is
created, and attached to the TCP agent:

set tcp0 [new Agent/TCP]
Sns attach-agent $nodeA $tcpO

set cbrl [new Application/Traffic/CBR]
Scbrl set packetSize 500
Scbrl set interval 0.005
Scbrl attach-agent $tcpO

You must define traffic sinks for each of the traffic generators created above. The sinks are attached to
nodeB:

set null0 [new Agent/Null]
Sns attach-agent $nodeB $null0

set nulll [new Agent/TCPSINK]
$ns attach-agent $nodeB $nulll

Then you must connect the traffic generators on nodeA to the traffic sinks on nodeB:

Sns connect $udpO $nullo0
Sns connect $tcpl0 $nulll

Here is a good example for NSE FullTcp traffic generation. The following code snippet attaches an FTP
agent that drives a Reno FullTcp on NodeA:

set tcpfull0 [new Agent/TCP/FullTcp]
Sns attach-agent $nodeA s$tcpfull0

set ftp0 [new Application/FTP]
$ftp0 attach-agent Stcpfullo

You must then define the sink FullTcp endpoint and call the method "listen" making this agent wait for
an incoming connection:

set tcpfulll [new Agent/TCP/FullTcp/Sack]
Stcpfulll listen
Sns attach-agent $nodeB $tcpfulll

http://www.emulab.net/tutorial/docwrapper.php3?docname=advanced.html&printable=1 8/5/2002




Page 3 of 6

Like all other source-sink traffic generators, you need to connect them:

Sns connect $tcpfulll0 stepfulll

Lastly, a set of events to control your applications and link characteristics:

Sns
Sns
Sns
Sns
Sns
Sns
Sns

Sns
Sns
sSns
Sns

Sns
Sns
Sns
Sns
Sns

at
at
at
at
at
at
at

at
at
at
at

at
at
at
at
at

60.
70.
80.
90.

O O O o

100.
110.
115.

120.
140.
145.
150.

120.
130.
130.
140.
150.

o O

o O O o

O O O oo

start"

bandwidth 10Mb duplex"
delay 10ms"

plr 0.05"

down"

up n

stop"

"Scbro

"$1inkO
"$1inko0
"$1inko0
"$1inkO0
"$1inkO
"Scbro

"sftp0 start"
"stecpfullO set
"Stepfulll set

segsize 256;
nodelay true"

Stcpfull0 set segsperack 2"

"sftp0 stop"

"Scbrl start"

"Scbrl set packetSize 512"
"Scbrl set interval 0.01"
"$1ink0 down"

"Scbrl stop"

When you receive email containing the experiment setup information (as described in Beginning an
Experiment), you will notice an additional section that lists all of the events that will be delivered during
your experiment:

Event List:

Time

70.0
80.0
90.0
100.
110.
115.
120.

120.
130.
130.
140.
140.
140.
145.
150.
150.
160.

00
00
00
000
000
000
000

000
000
000
000
000
000
000
000
000
000

Node Agent Type Event Arguments

nodeA cbro TRAFGEN START PACKETSIZE=500
RATE=100000
INTERVAL=0.005

tbsdelay0 linkoO LINK MODIFY BANDWIDTH=10000

tbsdelay0 1inkoO LINK MODIFY DELAY=10ms

tbsdelay0 1inko0 LINK MODIFY PLR=0.05

tbsdelay0 1linkoO LINK DOWN

tbsdelay0 1inkO LINK UP

nodeA cbro TRAFGEN STOP

nodeA cbrl TRAFGEN START PACKETSIZE=500
RATE=100000
INTERVAL=0.005

nodeA ftpo TRAFGEN MODIFY Sftp0 start

nodeA cbrl TRAFGEN MODIFY PACKETSIZE=512

nodeA cbrl TRAFGEN MODIFY INTERVAL=0.01

tbsdelay0 1linko0 LINK DOWN

nodeA tcpfullo TRAFGEN MODIFY Stcpfull0 set segsize

nodeA tcpfullo TRAFGEN MODIFY Stcpfull0 set segspere

nodeB tcpfulll TRAFGEN MODIFY Stcpfulll set nodelay._

tbsdelay0 1linkoO LINK UpP

nodeA ftpo TRAFGEN MODIFY Sftp0 stop

nodeA cbrl TRAFGEN STOP

The above list represents the set of events for your experiments, and are stored in the Emulab Database.

http://www.emulab.net/tutorial/docwrapper.php3?docname=advanced.html&printable=1

8/5/2002




Page 4 of 6

When your experiment is swapped in, an event scheduler is started that will process the list, and send
them at the time offset specified. In order to make sure that all of the nodes are actually rebooted and
ready, time does not start ticking until all of the nodes have reported to the event system that they are
ready. At present, events are restricted to system level agents (Emulab traffic generators and delay
nodes), but in the future we expect to provide an API that will allow experimentors to write their own
event agents.

Dynamic Scheduling of Events

NS scripts give you the ability to schedule events dynamically; an NS script is just a TCL program and
the argument to the "at" command is any valid TCL expression. This gives you great flexibility in a
simulated world, but alas, this cannot be supported in a practical manner in the real world. Instead, we
provide a way for you to inject events into the system dynamically, but leave it up to you to script those
events in whatever manner you are most comfortable with, be it a PERL script, or a shell script, or even
another TCL script! Dynamic event injection is accomplished via the Testbed Event Client (tevc), which
is installed on your experimental nodes and on users.emulab.net. The command line syntax for tevc
is:

teve -e pid/eid time objname event [args ...]
where the time parameter is one of:

e NOW
e -+seconds (floating point or integer)
e [[[[yy]mm]dd]HH]MMss

For example, you could issue this sequence of events.

tevc -e testbed/myexp now cbr0 set interval =0.2
teve -e testbed/myexp +10 cbr0 start

tevc -e testbed/myexp +15 1ink0 down

teve -e testbed/myexp +17 1linkO up

teve -e testbed/myexp +20 cbr0 stop

Some points worth mentioning:

e There is no "global" clock; Emulab nodes are kept in sync with NTP, which does a very good job
of keeping all of the clocks within 1ms of each other.

e The times "now" and "+seconds" are relative to the time at which each event is submitted, not to
each other or the start of the experiment.

e The set of events you can send is currently limited to control of traffic generators and delay nodes.
We expect to add more agents in the future.

e Sending dynamic events that intermix with statically scheduled events can result in unpredictable
behavior if you are not careful.

e Currently, the event list is replayed each time the experiment is swapped in. This is almost
certainly not the behaviour people expect; we plan to change that very soon.

e tevc does not provide any feedback; if you specify an object (say, cbr78 or 1ink45) that is not a
valid object in your experiment, the event is silently thrown away. Further, if you specify an
operation or parameter that is not approprate (say, "link0 start" instead of "link0 up"), the event is
silently dropped. We expect to add error feedback in the future.

http://www.emulab.net/tutorial/docwrapper.php3?docname=advanced.html&printable=1 8/5/2002




Supported Events

Page 5 of 6

This is a (mostly) comprehensive list of events that you can specify, either in your NS file or as a
dynamic event on the command line. In the listings below, the use of "link0", "cbr0", etc. are included to
clarify the syntax; the actual object names will depend on your NS file. Also note that when sending
events from the command line with tevc, you should not include the dollar ($) sign. For example:

NS File: $ns at 3.0 "$1ink0O down"

teve: teve -e pid/eid +3.0 linkO0 down

e Links:

In "ns" script:

$1ink0 bandwidth 10Mb duplex
$1ink0 delay 10ms
$1ink0 plr 0.05

With "teve":
1ink0 modify bandwidth=20000 # In kbits/second; 20000 = :Z
1ink0 modify delay=10ms # In msecs (the "ms" is ignc
1ink0 modify plr=0.1

tevce
tevce
tevce

Both:

$1ink0 up

$1ink0 down

e Queues: Queues are special. In your NS file you modify the actual queue, while on the command
line you use the link to which the queue belongs.

Squeue0
Squeue0
Squeuel
Squeue0
Squeue0
Squeue0

e CBR

set
set
set
set
set
set

Scbr0 start
Scbr0 set packetSize 512
$cbr0 set interval 0.01
Scbr0 set rate 10Mbs

Scbr0 stop

queue-in-bytes 0
limit 75
maxthresh 20
thresh 7
linterm 11

g weight 0.004

e FullTcp, FTP and Telnet: Refer to the NS documentation here.

Program Objects

We have added some extensions that allow you to use NS's at syntax to invoke arbitrary commands on
your experimental nodes. Once you define a program object and initialize its command line and the node

http://www.emulab.net/tutorial/docwrapper.php3?docname=advanced.html&printable=1 8/5/2002




Page 6 of 6

on which the command should be run, you can schedule the command to be started and stopped with NS
at statements. To define a program object:

set prog0 [new Program $ns]
Sprog0 set node s$nodelA
$Sprog0 set command "/bin/ls -1t >& /users/joe/logs/prog0"

set progl [new Program $ns]
Sprogl set node $nodeB
$progl set command "/bin/sleep 60 >& /tmp/sleep.debug"

Then in your NS file a set of static events to run these commands:

$Sns at 10 "S$prog0 start"
$ns at 20 "$progl start"
Sns at 30 "Sprogl stop"

If you want to schedule starts and stops using dynamic events:

teve -e testbed/myexp now prog0 start "command=/bin/ls /tmp"
teve -e testbed/myexp now progl start "command=sleep 60"
tevc -e testbed/myexp +20 progl stop

Some points worth mentioning:

e A program must be "stopped" before it is started; if the program is currently running on the node,
the start event will be silently ignored.

e The command line is passed to /bin/csh; any valid csh expression is allowed, although no syntax
checking is done prior to invoking it. If the syntax is bad, the command will fail. It is a good idea
to redirect output to a log file so you can track failures.

e The "stop" command is implemented by sending a SIGTERM to the process group leader (the csh
process). If the SIGTERM fails, a SIGKILL is sent.

e When issuing dynamic events using tevc, you must specify the command line to invoke. This is
intended to make program objects more flexible.

http://www.emulab.net/tutorial/docwrapper.php3?docname=advanced.html&printable=1 8/5/2002




Page 1 of 12

Frequently Asked Questions

Contents

o Getting Started
o Who is Eligible to use Emulab.Net?
How do I start a project?
How do I join a project?
I have an Emulab account. Now what?
Do I need to change my PATH variable?
Can I be in more than one project?
Can I change my Emulab password?
I'm a project leader. Can I designate TAs?
o Where do I get help?
e Using the Testbed
o Is there a tutorial?
Do you have a GUI to help me create experiments?
How many nodes can I ask for?
How long can I keep using my nodes?
What if I need more nodes than are free?
Do I get root access on my nodes?
Do my nodes have consoles I can look at?
How do I connect directly to node consoles, without going through users?
Can I reboot (power cycle) my nodes?
I've scrogged my disk! Now what?
Where do [ store files needed by my experiment?
Are my files on users.emulab.net backed up (filesaved)?
Are the nodes in my experiment backed up (filesaved)?
What is Swapping?
o How can I get switch statistics (such as packet counts) for my experiment?
e Hardware setup
o How many nodes are there?
How many nodes are currently available?
How many ethernet cards are on each node?
How many nodes are currently available (free)?
Can I do traffic shaping on my links?
Can I modify the traffic shaping parameters on my links?
Are there other traffic shaping parameters besides latency, bandwidth, and PLR?
I asked for traffic shaping, but everything seems to be going at full LAN speeds. What's

wrong?

e Software setup
What OS do the nodes run?

How do I select which OS to run on each node?

Can I load my own software (RPMs) on my nodes?

Can I schedule programs to run automatically when a node boots?

How can I turn on routing or set up routes automatically in my nodes?

How does my software determine when other nodes in my experiment are ready?
Can I run my own Operating System?

What if I need more disk space on my nodes?

Are there testbed-specific daemons that could interfere with my experiment?

O O 0O 0O O O O

O 0O 0O 0O O O O O O O O O O

O O 0O 0O 0O O O

O O O O O O O O O

http://www.emulab.net/docwrapper.php3?docname=faq.html&printable=1 8/5/2002




Page 2 of 12

e Security Issues
o Is Emulab Firewalled?
e Troubleshooting
o My experiment is setup, but I cannot send packets between some of the nodes, why?

Getting Started

e Who is Eligible to use Emulab.Net?

Emulab.Net is an NSF/DARPA sponsored project, with additional support from these sponsors.
As such, eligibility to use Emulab is primarily granted to other NSF/DARPA sponsored projects,
as well as current university research projects. There are exceptions of course. If you are unsure
about your eligibility to use Emulab, please feel free to send us an email inquiry.

« How do I start a project?

If you are new to the Testbed, simply click on the "Start Project" link on the Emulab Home Page.
You will need to fill in the forms with your personal information and information about the
project. Then click on the "Submit" button. Within a few days you will be contacted via email
with an approval message. More information about starting projects can be found in Authorization

Page.
If you already have an Emulab account, and wish to start a second project, first log into the Web

Interface. Then select the "Start Project" link; all of the personal information will already be filled
in. You will need to complete just the project information section.

« How do I join a project?
If you are new to the Testbed, simply click on the "Join Project" link on the Emulab Home Page.
You will need to fill in the form with your personal information, and provide the name of the
project you are trying to join (typically, the Project Leader will have told you the name of the

project). Then click on the "Submit" button, and wait for the project leader to approve you. When
approved you will receive an email message saying so, and you can then log into the Testbed.

e I have an Emulab account. Now what?
Once you have been approved to start (or join) your first project, you will be able to log into

Emulab's user machine, users.emulab.net. We require that all Emulab users use ssh. For example,
if your Emulab account name is "joe", then you would do:

ssh users.emulab.net -1 joe

Your password starts out the same as the password you initially supplied to the Start (or Join) web
page.

e Do I need any special directories in my PATH variable?

http://www.emulab.net/docwrapper.php3?docname=faq.html&printable=1 8/5/2002




Page 3 of 12

There are several useful (although not required) programs installed on users.emulab.net
in /usr/testbed/bin. You should edit your dot files to include that directory in your search path.

e Can I be in more than one project?

Yes. You may join (and/or start) as many projects as you like, subject to Emulab administrative
policies.

e Can I change my Emulab password?

Yes. You can change your Emulab Web password and your Emulab login password (the password
you use to log into users.emulab.net, as well as nodes in your experiments). To change your Web
password, simply click on the "Update User Information" in the menu to your left, and then enter
your new password in the location provided. To change your login password, use the unix passwd
utility when logged into users.emulab.net.

e I'm a project leader. Can I designate TAs?

Yes. To designate a TA, you must first create a project group. A project group is a lot like a unix
group, and in fact unix groups is the mechanism used to protect members of one group from
members of another group. When you create a group, you designate a group leader who is
responsible for approving users who apply to join the group. Group leaders may also terminate
experiments that have been created by members of the group. As Project Leader, you may also
shift members of your project in and out of your project's groups as you like, and you are
automatically a member of all groups within your project. As a convenience, all new projects are
created with one new group, termed the default group. As its name implies, whenever the group is
left unspecified in a form, it defaults to the project group (this allows you to create a project
without any sub groups at all; new members join the default group, new experiments are created
in the default group, etc.).

Project groups are created via the Project Information link at your left. Simply go to the project
page in which you want to create a group, and look for the "Create New Group" link. More
information on project groups is available via the Emulab Documentation page in the Groups
Tutorial.

e Where do I get help?

If you cannot find an answer to your question in the Emulab Documentation, then you can send us
an email message. We will try to answer your question as quickly as we can.

Using the Testbed

e Is there a tutorial?

Yes, we have an extensive tutorial on using the Testbed.

e Do you have a GUI to help me create experiments?

http://www.emulab.net/docwrapper.php3?docname=faq.html&printable=1 8/5/2002




Page 4 of 12

Yes, we provide a GUI that gives you an easy to use drawing palette on which you can place
nodes, lans, and links. Testbed specific attributes such as operating system, hardware type, and
link/lan characteristics, may be attached to each object. With a single click, you can instantiate
your new topology on the Testbed as an experiment in one of your projects. Alternatively, you can
save the auto-generated NS file on your machine, edit as required, and then submit it later when
creating an experiment.

To access the GUI, please log in and go to the Begin Experiment page. Note: you need a Java
compliant browser.

« How many nodes can I ask for?

You can ask for as many nodes as are currently available! You can click on the "Node Reservation
Status" link at your left to see how many nodes are currently free. If you ask for more than are
currently available, your experiment will be rejected (you will receive email notification shortly
after you submit your NS file to the web interface).

We urge all new Emulab users to begin with a small 3-4 node experiment so that you will become
Sfamiliar with NS syntax and the practical aspects of Emulab operation.

« How long can I keep using my nodes?

You can keep them as long as you need them, subject to our Node Usage Policies. In general, you
should do your work, and then terminate your experiment as soon as you're done with it. If you're
not done with it, but are through for a while, you should probably "swap out" your experiment
(See the question What is Swapping in this FAQ). It is especially important to swap out your
experiment if you're through with it for the weekend. Emulab usually gets heavy use on the
weekends by users who need to make very large experiments, so it is important to leave as many
nodes available as possible.

e What if I need more nodes than are free?

For example, say you need 50 nodes but there are only 40 free. In general, getting this many nodes
is going to require intervention from Testbed Operations, if only so we can ask other
experimenters to free up nodes, if possible. Please send us email if you are not able to able to get
the number of nodes you need for your experiment.

Another alternative is to use the Batch System. If your experiment is amenable to being batched
(does not require human intervention to start and stop), then you can submit a batch request,
which will be serviced when enough nodes become available. Typically, you would start out with
a few nodes, getting used to the batch system and creating whatever scripts are needed to make the
experiment batchable. Then scale up to larger numbers of nodes. Thats the easiest way of getting a
lot of nodes!

e Do I get root access on my nodes?

Yes. Project leaders get root access to all of the nodes in all of the experiments that are running in
their project. Project members get root if their project leader grants them root access, when the
leader approves the group membership request. Root privileges are granted via the sudo

http://www.emulab.net/docwrapper.php3?docname=faq.html&printable=1 8/5/2002




Page 5 of 12

command. The tutorial describes this in more detail.

e Do my nodes have consoles I can look at?

Yes. Each of the PCs has its own serial console line that you can interact with using the unix tip
utility. To "tip" to "pcl" in your experiment, ssh into users.emulab.net, and then type tip pcl at
the unix prompt. You may then interact with the serial console. The console output is also saved
for each node so that you may look at it it later. For each node, the console log is stored

as /var/log/tiplogs/pcXXX.run. This run file is created when nodes are first allocated to an
experiment, and the unix permissions of the run files permit just members of the project to view
them. When the nodes are deallocated, the run files are cleared, so if you want to save them, you
must do so before terminating the experiment.

The Sharks also have serial console lines, but because of the limited number of serial ports
available on users.emulab.net, only one Shark, the last or "eighth", on each shelf has a console
line attached. To tip to that shark, you would type tip shxx at the unix prompt, where "XX" is
the shark shelf number. The shark shelf number is the first digit in the name. Using shark sh16-8
as an example, the shelf number is sixteen, and the number of the node on the shelf is eight.

o How do I connect directly to node consoles, without going through users?

Clicking "Connect to Serial Line" in the Node Options page will send your browser a "text/x-
testbed-acl" file. If you have downloaded tiptunnel and set it as the handler for that MIME type,
tiptunnel will launch a new telnet running in a new xterm (this may take a few seconds.) That
telnet will be connected to a local port, which is tunneled through SSL to your node's console.
Closing the xterm, exiting telnet, or killing tiptunnel itself will end the connection.

You can download the tiptunnel statically-linked x86 binary for FreeBSD here. You can
download the tiptunnel statically-linked x86 binary for Linux here. Use gunzip, then tar xvf
on the downloaded file. Move the resulting tiptunnel binary into /usr/local/bin or another
directory of your choice.

Then, when you click on the "Connect to Serial Line" link, tell your browser to always use that
binary to open files of type "text/x-testbed-acl".

The source tarball, as well as a binary for Windows, will be available soon.

e Can I reboot (power cycle) my nodes?

Yes. Each of the PCs is independently power controlled. If your node becomes wedged, or
otherwise unresponsive, you can use the node_reboot command, as discussed in the Emulab
Tutorial.

The Sharks are also power controlled, but because of the limited number of power ports available,
the entire shelf of 8 sharks is on a single controller. The node_reboot does its best to cleanly

reboot individual sharks, but if a single shark is unresponsive, the entire shelf will be power
cycled.

o I've scrogged my disk! Now what?

http://www.emulab.net/docwrapper.php3?docname=faq.html&printable=1 8/5/2002




Page 6 of 12

If you manage to corrupt a disk (or slice), no worries. You can easily repair the damage yourself
by reloading a fresh copy of the default disk image. You will of course lose anything you have
stored on that disk; it is a good idea to store only data that can be easily recreated, or else store it
in your project directory in /proj. Disk reloading is covered in more detail in the Emulab
Tutorial.

e Where do I store files needed by my experiment?

Each project has its own directory, rooted at /proj, which is available via NFS to all of the nodes
in experiments running in that project. For example, when the "RON" project was created, a
directory called /proj/RON was also created. This directory is owned by the project creator, and is
in the unix group "RON." Its permission (mode) is 770; read/write/execute permitted by the
project creator and by all of the members of the project RON, but protected against all access by
people outside the RON project.

Project members are encouraged to store any files needed by their experiments in the
corresponding /proj project directory.

o Are my files on users.emulab.net backed up (filesaved)?

Yes. All of the files in your home directory on /users, and all of the files in your project directory
in /proj are filesaved. While we can restore lost files in an emergency, we encourage you to back
up critical data on your own to avoid (possibly long) delays in conducting your experiments.

e Are the nodes in my experiment backed up (filesaved)?

No! The nodes in your experiment are not filesaved. Any changes you make to the local
filesystems will be lost if the event of a disk failure. We plan to provide a mechanism for
experimenters to create snapshots of their node state, but that is not done yet. In the meantime, any
files that must not be lost should be stored in the project directory (/proj/), which is available via
NFS to all of the nodes in your experiment. You may also store files in your home directory
(/users/), also available via NFS to all of your nodes, but that is not the preferred location since
quotas on /users are relatively small.

e What is Swapping?

Swapping is when you (or we) temporarily swap your experiment out, releasing all of the nodes in
the experiment. Your experiment is still resident in the Emulab database, and you can see its
status in the web interface, but no nodes are allocated. Once an experiment is swapped out, you
can swap it back in via the web interface by going to the Experiment Information page for your
experiment, and clicking on the swapin option.

The swappable checkbox in the Begin Experiment web page is used to determine what
experiments can be automatically swapped by the testbed scheduling system. Note that all
experiments are capable of being swapped; even if you do not check the swappable box, you are
free to swap your own experiments as you like. The only difference is that the testbed scheduling
system will not consider your experiment when looking for experiments to swap out. You will
sometimes notice that the Experiment Information page does not contain the swap link. That is
because experiments cannot be swapped when they are in transition. For example, when the

http://www.emulab.net/docwrapper.php3?docname=faq.html&printable=1 8/5/2002




Page 7 of 12

experiment is being swapped in (say, after first being created) the link will disappear until the
experiment is fully swapped in, and it is capable of being swapped out. You will need to
occasionally reload the page so that the updated state is recognized and the swap link appears.

Be aware that we do not currently save any files that you may have placed on your nodes. When
your experiment is swapped back in, you will likely get different nodes, and with fresh copies of
the disk images. For that reason, you should not swap your experiment out unless you make
arrangements to save and restore any state you need.

Make sure to take a look at our Node Usage Policies as well.

o How can I get switch statistics (such as packet counts) for my experiment?

We have a command called portstats that allows you access to some of the port counters on our
switches. To use it, you'll need to ssh to users.emulab.net. 'vortstats <pid> <eid>'will get
you stats for all experimental interfaces in your experiment. Run 'portstats -h'to get a list of
other options, such as different sets of stats.

Note that the numbers returned by portstats do not get reset between experiments.

Hardware Setup

« What kind of computers are used for my nodes?
« How many nodes are there?
« How many ethernet cards are on each node?

Please see the Hardware Overview page for a description and count of the computers that
comprise the Testbed.

« How many nodes are currently available (free)?
If you click on the "Node Reservation Status" link in the menu to your left, you will see a

summary of the number of nodes (by type) that are currently available, followed by a listing of the
reservation status of each individual node.

e Can I do traffic shaping on my links?
Yes! You can specify the delay, bandwidth, and packet loss rate between any two nodes in your
topology. Bandwidth and delay are specified in the NS duplex-1link statement, while packet loss
rate is specified with the Emulab tb-set-1ink-1loss extension to NS. You may also specify
delay, bandwidth, and packet loss rate between nodes in a regular LAN.

Please see the Extensions page for a summary of all Emulab NS extensions, and the Emulab
Tutorial for an example.

o Can I modify the traffic shapping parameters on my links?

http://www.emulab.net/docwrapper.php3?docname=faq.html&printable=1 8/5/2002




Page 8 of 12

Yes! If your NS file specified traffic shaping on a link, then you can subsequently modify those
parameters after the experiment has been swapped in. Note that you cannot convert a non shaped
link into a shaped link; you can only modify the traffic shaping parameters of a link that is already
being shaped. To modify the parameters, log into users.emulab.net and use the delay_config
program. This program requires that you know the symbolic names of the individual links. This
information is available via the web interface on the Experiment Information page. The command
line syntax for delay_config will be displayed when the -h option is given.

o Are there other traffic shapping parameters besides latency, bandwidth, and
packet loss rate?

Yes! However, access to those other parameters is slightly more difficult since you cannot specify
them in your NS file. First off, you should log into users.emulab.net and read the man page for
ipfw. Refer to the section on dummynet; ipfw is the user interface for the Dummynet traffic shaper.
As noted in previous section above, you can alter the traffic shapping parameters of any delayed
link (one in which you have specified a bandwidth, delay, or PLR that causes a delay node to be
inserted). However, you will need to log into the delay node for the link you wish to modify and
interact with ipfw directly. The easiest approach would be to make a copy of /etc/testbed/rc.delay
and edit the pipe commands as desired (or replace the pipe commands with "queue" commands).
The pipe commands are indexed by number; the mapping from pipe number to virtual link is
available via the web interface on the Experiment Information page for your experiment. Be sure
to leave the rest of the contents of the file as is. Once you have your changes made, simply
execute the file using the sudo command.

I asked for traffic shaping, but everything seems to be going at full LAN
speeds. What's wrong?

The most likely problem is that it is using the unshaped control network for the traffic you're
looking at. This occurs when it tries to contact a node using a "pcXXX" address, like pc76 or
pc76.emulab.net, or when it tries to ping a fully-qualified name, like
NodeA.myexpt.myproj.emulab.net , which also resolves to a control network address. On one of
your nodes, take a look at the file /etc/hosts . It shows the IP addresses and aliases that refer to the
different experimental interfaces. These are the names/IPs you can use to see the delays.

For instance, let's say I have an experiment that had NodeA and NodeB connected with a shaped
link. The file /etc/hosts on NodeA would have a line for NodeB, with an address like 192.168.1.3,
and on NodeB there would be an entry for NodeA with the address 192.168.1.2. These addresses
correspond to the delayed link between them. Any address outside the 192.168.*.* range that you
didn't configure manually corresponds to an unshaped link.

Software Setup

e What OS do the nodes run?

Please see the Software Overview page for a description of the Operating Systems that can be run
on each of the Testbed nodes.

http://www.emulab.net/docwrapper.php3?docname=faq.html&printable=1 8/5/2002




Page 9 of 12

e How do I select which OS to run on each node?

When a choice of OS is available, you may specify which one you prefer for each node in the NS
file using the Emulab tb-set-node-os extension to NS. When your experiment is configured, the
appropriate disk image will be loaded on your nodes, and the selected operating system will boot
up on each.

Please see the Extensions page for a summary of all Emulab NS extensions, and the Emulab
Tutorial for an example.

e Can I load my own software (RPMs) on my nodes?

Yes! If have an RPM (or more than one) that is appropriate for loading on the OS you have
selected, you can arrange to have them loaded automatically when your experiment is configured.
The Emulab NS extension tb-set-node-rpms is used in the NS file to specify a list of RPMS to
install. You may specify a different list for each node in the experiment. When the node first boots
after the experiment is configured, each of the RPMs will be installed (but only RPMs that have
not already been installed).

Please see the Extensions page for a summary of all Emulab NS extensions, and the Emulab
Tutorial for an example.

e Can I schedule programs to run automatically when a node boots?

Yes! You can arrange to run a single program or script when your node boots. The script is run as
the UID of the experiment creator, and is run after all other node configuration (including RPM
installation) has completed. The exit status of the script (or program) is reported back and is made
available for you to view in Experiment Information link in the menu at your left. The Emulab NS
extension tb-set-node-startup is used in the NS file to specify the path of the script (or
program) to run. You may specify a different program for each node in the experiment.

Please see the Extensions page for a summary of all Emulab NS extensions, and the Emulab
Tutorial for an example.

e How can I turn on routing or set up routes automatically in my nodes?

By default, we do not setup any static routes or run any routing daemon on nodes in an
experiment. However, we do provide several options for experimenters, which are described in the
"Setting up IP routing between nodes" section of the Emulab Tutorial.

« How does my software determine when other nodes in my experiment are
ready?

If your application requires synchronization to determine when all of the nodes in your experiment
have started up and are ready to proceed, then you can use the Testbed's ready bits mechanism.
The ready bits are really just a way of determining how many nodes have issued the ready
command, and is returned to the application as a simple N of M string, where N is the number that
have reported in, and M is the total number of nodes in the experiment. Applications can use this
as a very simplistic form of barrier synchronization, albeit one that can be used just once and one

http://www.emulab.net/docwrapper.php3?docname=faq.html&printable=1 8/5/2002




Page 10 of 12

that does not actually block!

Use of the ready bits is described in more detail in the Emulab Tutorial and in the Testbed Master
Control Daemon documentation.

e Can I run my own Operating System?

Yes! You can run your own OS (or a customized version of an Emulab supported OS) on any of
the PCs. You can also run OSKit kernels on the PCs. Each of the PCs is partitioned with two DOS
partitions large enough to hold the typical OS installation. The 1st and 2nd partitions are each
3GB. The 3rd partition is S00MB, and is labeled as Linux Swap. The 4th partition is the
remainder of the disk, and varies in size depending on the pc type. We recommend that you use
the Ist or 2nd partition; using the 4th partition will restrict the number of machines that you can
run your OS on since it varies in size. Note that you must leave the MBR (Master Boot Record) in
sector 0 alone, and that your custom partition must contain a proper DOS boot record in the first
sector.

Please note that while users are free to customize their disks and install their own operating
systems, Emulab staff will not be able to offer more than encouragement and advice! We cannot
install the OS for you, and we cannot load CDROMS, floppy disks, or tape drives! We do provide
an easy way for you to boot FreeBSD from a memory based filesystem (MFS) so that you can
more easily work with the disk (in case it is not possible to install your OS on a live disk). Beyond
that, you are pretty much on your own!

Many users had great success with customizing an Emulab supported OS (FreeBSD or Linux),
and then creating a disk image that is autoloaded when the experiment is swapped in. We strongly
encourage people to use this approach whenever possible! There is more information available in
the Custom OS section of the Emulab Tutorial.

o What if I need more disk space on my nodes?

Each node has a partition at the end of the disk that you can use if you wish. In Linux, the
partition is /dev/hda4 ; in FreeBSD, it's /dev/ad0s4 . There is no filesystem on this partition, so
you'll need to create it yourself. For example, in Linux:

mkfs /dev/hda4;
mount /dev/hda4 /mnt;

This partition is only 6 Gigs, the size of the leftover space on our smallest drives. If you need

more space than this, it would be possible to enlarge this partition on some machines (for
example, our pc850s have 40 GB disks,) but that is outside the scope of this FAQ.

o Are there testbed-specific daemons that could interfere with my experiment?
By default, the testbed startup scripts currently start two daemons in addition to the OS's standard
set. Other daemons may be started depending on the network services you ask for in your ns file

(see below).

Unconditionally started daemons:

http://www.emulab.net/docwrapper.php3?docname=faq.html&printable=1 8/5/2002




Page 11 of 12

e healthd - A low overhead hardware health monitor.

This deamon periodically polls the machine's health monitoring hardware and sends this
information back to our boss node for analysis. The hardware is polled once per second, and a
status datagram is sent out once every five minutes. Healthd's overhead is quite low, but it can be
safely killed and disabled from startup if you're worried about possible side effects. It is started
by /etc/testbed/rc.healthd.

e slothd - A low overhead usage analysis tool.

Slothd is important to efficient testbed utilization and should run on every node whenever
possible. Its overhead is almost negligible (essentially less than running '1s -1 /dev' once per
hour), and should not interfere with your work. However if your experiment is exceptionally
sensitive, then you may arrange with us to disable slothd. Please note that we will restart this
daemon if it is not running unless prior arrangements have been made.

Conditionally started daemons:
e gated - A network routing daemon.

If you have requested automatic routing on your nodes with the tb-set-ip-routing command in
your NS file, this will start gated on all of your nodes.

We have left all daemons started by the operating systems' default configurations (such as cron)
enabled, so you should also look at them if you are concered about running processes affecting
your experiment.

Security Issues

e Is Emulab Firewalled?

Yes. Emulab blocks all of the low numbered ports (ports below 1024), with the exception of ports
20 and 21 (FTP), 22 (Secure Shell), and 80 (HTTP). This is for the protection of experimenters, as
well as to ensure that an errant application cannot become the source of a Denial of Service attack
to sites outside of Emulab. If your application requires external access to other low numbered
ports, please contact us to make special arrangements.

Troubleshooting

o My experiment is setup, but I cannot send packets between some of the nodes,
why?

The most common reason is that your topology includes nodes which are not directly connected,
and you have not setup any routing. Refer to "How can I turn on routing or set up routes
automatically in my nodes?" for details. If you cannot send packets between two machines which

http://www.emulab.net/docwrapper.php3?docname=faq.html&printable=1 8/5/2002




Page 12 of 12

are directly connected (via a link or a lan), then there are two possibilities: either the nodes did not
properly negotiate their speed and duplex with the Cisco switch, or the physical wire is loose or
bad. In these cases, you should contact us for help.

http://www.emulab.net/docwrapper.php3?docname=faq.html&printable=1 8/5/2002




Page 1 of 11

Emulab - Testbed NS Command Extensions

Contents

Introduction

TCL, NS, and node names
Ordering issues

Hardware Commands

IP Address Commands

OS Commands

Link Characteristic Commands
Virtual Type Commands

Misc. Commands

Introduction

In order to use the testbed specific commands you must include the following line near the top of your
NS file (before any testbed commands are used):

source tb compat.tcl

If you wish to use your file under NS you can use download this tb_compat.tcl. Place it in the same
directory as your NS file. When run in this way under NS the testbed commands will have no effect, but
NS will be able to parse your file.

TCL, NS, and node names

In your file you will be creating nodes with something like:

set nodel [$ns node]

What is really going on is that the simulator, represented by $ns is creating a new node, involving a
bunch of internal data changes, and returning a reference to it which is stored in the variable node1. In
almost all cases, when you need to refer to a node you will do it as $node1, the $ indicating that you

want the value the variable node1, i.e. the reference to the node. Thus you will be issuing commands
like:

$ns duplex-link $nodel $node2 100Mb 150ms DropTail
tb-set-ip $nodel 192.0.0.2

(Note the s's)

You will notice that when your experiment is setup the node names and such will be node1. This
happens because the parser detects what variable you are using to store the node reference and uses that
as the node name. In the case that you do something like:

http://www.emulab.net/tutorial/docwrapper.php3?docname=nscommands.html&printable=1  8/5/2002




Page 2 of 11

set nodel [$ns node2]
set A Snodel

The node will still be called node1 as that was the first variable to contain the reference.

If you are dealing with many nodes you may store them in array, perhaps like this:

for {set i 0} {$i < 4} {incr i} {
set nodes ($i) [Sns node]
}

In this case the names of the node will be nodes-0, nodes-1, nodes-2, nodes-3. (In other words, the
( character is replaced with -, and ) is removed.) This slightly different syntax comes is to avoid any

problems that () may cause later in the process. For example, the () characters cannot appear in DNS
entries.

As a final note, everything said above for nodes applies equally to lans. Le.:

set lan0 [$ns make-lan "S$SnodeO $nodel" 100Mb Oms]
tb-set-lan-loss $lan0 .02

(Again, note the $'s)

Links can also be named just like nodes and lans. The names can then be used to set loss rates or IP
addresses. This technique is the only way to set such attributes when there are multiple links between
two nodes.

set 1linkl [$ns duplex-link S$SnodeO $nodel 100Mb Oms DropTail]
tb-set-link-loss $1inkl 0.05
tb-set-ip-1link $node0 $1linkl 192.0.0.128

Ordering Issues

tb- commands have the same status as all other Tcl and NS commands. Thus the order matters not only
relative to each other but also relative to other commands. One common example of this is that IP
commands must be issued after the links or lans are created.

Hardware Commands

tb-set-hardware

tb-set-hardware node type [args].

tb-set-hardware $node3 pc
tb-set-hardware S$node4 shark

node - The name of the node.
type - The type of the node.

http://www.emulab.net/tutorial/docwrapper.php3?docname=nscommands.html&printable=1  8/5/2002




Page 3 of 11

Notes:

e Currently only pc, pc600, pc850, and shark are supported types. pc is the default type.
e No current types have any additional arguments.

IP Address Commands

Each node will be assigned an IP address for each interface that is in use. The following commands will
allow you to explicitly set those IP addresses. [P addresses will be automatically generated for all nodes
that you do not explicitly set IP addresses.

In the common case the IP addresses on either side of a link must be in the same subnet. Likewise, all IP
addresses on a LAN should be in the same subnet. Generally the same subnet should not be used for
more than one link or LAN in a given experiment, nor should one node have multiple interfaces in the
same subnet. Automatically generated IP addresses will conform to these requirements. If part of a link
or lan is explicitly specified with the commands below then the remainder will be automatically
generated under the same subnet.

IP address assignment is deterministic and tries to fill lower IP's first, starting at 2. Except in the partial
specification case (see above), all automatic IP addresses are in the network 192.168.

tb-set-ip
tb-set-ip node ip

tb-set-ip $nodel 142.3.4.5

node - The node to assign the IP address to.
ip - The IP address.

Notes:

e This command should only be used for nodes that have a single link. For nodes with multiple
links the next commands should be used. Mixing tb-set-ip and any other I[P command on the
same node will result in an error.

tb-set-ip-link
tb-set-ip-link node link ip

tb-set-ip-1link $node0 $1ink0 142.3.4.6

node - The node to set the IP for.
link - The link to set the IP for.
ip - The IP address.

Notes:

e One way to think of the arguments is a link with the node specifying which side of the link to set

http://www.emulab.net/tutorial/docwrapper.php3?docname=nscommands.html&printable=1  8/5/2002




Page 4 of 11

the IP for.
e This command can not be mixed with tb-set-ip on the same node.

tb-set-ip-lan
tb-set-ip-lan node lan ip

tb-set-ip-lan $nodel $lan0 142.3.4.6

node - The node to set the IP for.
lan - The lan the IP is on.
ip - The IP address.

Notes:

e One way to think of the arguments is a node with the LAN specifying which port to set the IP
address for.
e This command can not be mixed with tb-set-ip on the same node.

tb-set-ip-interface
tb-set-ip-interface node dst ip

tb-set-ip-interface $node2 $nodel 142.3.4.6

node - The node to set the IP for.
dst - The destination of the link to set the IP for.
IP - The IP address.

Notes:

e This command can not be mixed on the same node with tb-set-ip. (See above)

e In the case of multiple links between the same pair of nodes there is no way to distinguish which
link to the set the IP for. This should be fixed soon.

e This command is converted internally to either tb-set-ip-link or tb-set-ip-lan. It is possible that
error messages will report either of those commands instead of tb-set-ip-interface.

OS Commands

tb-set-node-os

tb-set-node-os node os

tb-set-node-os $nodel FBSD-STD
tb-set-node-os $nodel MY OS

node - The node to set the OS for.
os - The id of the OS for that node.

http://www.emulab.net/tutorial/docwrapper.php3?docname=nscommands.html&printable=1  8/5/2002




Page 5 of 11

Notes:

e The OSID can either by one of the standard OS's we provide or a custom OSID, created via the
web interface.

e Ifno OS is specified for a node a default OS is chosen based on the nodes type. This is currently
RHL-STD for PCs.

e The currently available standard OS types are: FBSD-STD, RHL-STD, NBSD14-STD (should not
be used on PC nodes), and NETBOOT-STD (oskit netboot kernel for loading other operating
systems over the network).

tb-set-node-rpms
tb-set-node-rpms node rpms...
tb-set-node-rpms $node0 rpml rpm2 rpm3

Notes:

e This command sets which rpms are to be installed on the node.

e This command sets which rpms are to be installed on the node when it first boots after being
assigned to an experiment.

e See the tutorial for more information.

tb-set-node-startup

tb-set-node-startup node startupcmd

tb-set-node-startup $node0 {mystart.sh -a}
Notes:

e Specify a script or program to be run when the node is booted.
e See the tutorial for more information.

tb-set-node-cmdline

tb-set-node-cmdline node cmdline

tb-set-node-cmdline $node0 {222}
Notes:

e Set the command line, to be passed to the kernel when it is booted.
e Currently, this is supported on OSKit kernels only.

tb-set-node-tarfiles

tb-set-node-tarfiles node dir tarfile

tb-set-node-tarfiles sSnodel0 /bin mybinmods.tar /sbin mysbinmods.tar

Notes:

http://www.emulab.net/tutorial/docwrapper.php3?docname=nscommands.html&printable=1  8/5/2002




Page 6 of 11

e This installs tarfiles in specified directories when the node first boots after being assigned to an
experiment.

e Each tar file is installed just one. Tarfiles that have been loaded, are not reloaded after subsequent
reboots.

Link Loss Commands

This is the NS syntax for creating a link:

Sns duplex-link $nodel $node2 100Mb 150ms DropTail

Note that it does not allow for specifying link loss rates. Emulab does, however, support link loss. The
following commands can be used to specify link loss rates.

tb-set-link-loss

tb-set-1link-loss src dst loss
tb-set-1link-loss link loss

tb-set-1link-loss S$Snodel S$node2 0.05
tb-set-1link-loss $1inkl 0.02

src, dst - Two nodes to describe the link.
link - The link to set the rate for.
loss - The loss rate (between 0 and 1).

Notes:
e There are two syntax's available. The first specifies a link by a source/destination pair. The second
explicitly specifies the link.
e The source/destination pair is incapable of describing an individual link in the case of multiple

links between two nodes. Use the second syntax for this case.

tb-set-lan-loss

tb-set-lan-loss lan loss

tb-set-lan-loss $lanl 0.3

lan - The lan to set the loss rate for.
loss - The loss rate (between 0 and 1).

Notes:
e This command sets the loss rate for the entire LAN.

tb-set-node-lan-delay

tb-set-node-lan-delay node lan delay

http://www.emulab.net/tutorial/docwrapper.php3?docname=nscommands.html&printable=1  8/5/2002




Page 7 of 11

tb-set-node-lan-delay $lan0 $node(O 40ms

node - The node we are modifying the delay for.
lan - Which LAN the node is in that we are affecting.
delay - The new node to switch delay (see below).

Notes:

e This command changes the delay between the node and the switch of the LAN. This is only half
of the trip a packet must take. The packet will also traverse the switch to the destination node,
possibly incurring additional latency from any delay parameters there.

e If this command is not used to overwrite the delay, then the delay for a given node to switch link
is taken as one half of the delay passed to make-1lan. Thus in a LAN where no tb-set-node-
delay calls are made the node to node latency will be the latency passed to make-1lan.

e The behavior of this command is not defined when used with nodes that are in the same LAN
multiple times.

e Delays of less than 2ms (per trip) are too small to be accurately modeled at this time, and will be
silently ignored. As a convenience, a delay of Oms can be used to indicate that you do not want
added delay; the two interfaces will be "directly" connected to each other.

tb-set-node-lan-bandwidth

tb-set-node-lan-bandwidth node lan bandwidth

tb-set-node-lan-bandwidth $1lan0 Snode0O 20Mb

node - The node we are modifying the bandwidth for.
lan - Which LAN the node is in that we are affecting.
bandwidth - The new node to switch bandwidth (see below).

Notes:

e This command changes the bandwidth between the node and the switch of the LAN. This is only
half of the trip a packet must take. The packet will also traverse the switch to the destination node
which may have a lower bandwidth.

e [f this command is not used to overwrite the bandwidth, then the bandwidth for a given node to
switch link is taken directly from the bandwidth passed to make-1an.

e The behavior of this command is not defined when used with nodes that are in the same LAN
multiple times.

tb-set-node-lan-loss
tb-set-node-lan-loss node lan loss

tb-set-node-lan-loss $lan0 $nodeO 0.05

node - The node we are modifying the loss for.
lan - Which LAN the node is in that we are affecting.
loss - The new node to switch loss (see below).

http://www.emulab.net/tutorial/docwrapper.php3?docname=nscommands.html&printable=1  8/5/2002




Page 8 of 11

Notes:

e This command changes the loss probability between the node and the switch of the LAN. This is
only half of the trip a packet must take. The packet will also traverse the switch to the destination
node which may also have a loss chance. Thus for packet going to switch with loss chance 4 and
then going on the destination with loss chance B the node to node loss chance is (1-(1-2) (1-B)).

e [f this command is not used to overwrite the loss, then the loss for a given node to switch link is
taken from the loss rate passed to the make-1an command. If a loss rate of L is passed to make-
lan then the node to switch loss rate for each node is set to (1-sqgrt (1-L)). Thus as each packet
will have two such chances to be lost the node to loss rate comes out as the desired L.

e The behavior of this command is not defined when used with nodes that are in the same LAN
multiple times.

tb-set-node-lan-params

tb-set-node-lan-params node lan delay bandwidth loss

tb-set-node-lan-params $node0 $lan0 40ms 20Mb 0.05

node - The node we are modifying the loss for.

lan - Which LAN the node is in that we are affecting.
delay - The new node to switch delay.

bandwidth - The new node to switch bandwidth.

loss - The new node to switch loss.

Notes:

e This command is exactly equivalent to calling each of the above three commands appropriately.
See above for more information.

tb-set-link-simplex-params
tb-set-link-simplex-params link src delay bw loss

tb-set-link-simplex-params $1linkl $srcnode 100ms 50Mb 0.2

link - The link we are modifying.

src - The source, defining which direction we are modifying.
delay - The source to destination delay.

bw - The source to destination bandwidth.

loss - The source to destination loss.

Notes:
e This commands modifies the delay characteristics of a link in a single direction. The other
direction is unchanged.

e This command only applies to links. Use tb-set-lan-simplex-params below for LANs.

tb-set-lan-simplex-params

tb-set-lan-simplex-params lan node todelay tobw toloss fromdelay frombw fromloss

http://www.emulab.net/tutorial/docwrapper.php3?docname=nscommands.html&printable=1  8/5/2002




Page 9 of 11

tb-set-lan-simplex-params $lanl $nodel 100ms 10Mb 0.1 5ms 100Mb O

lan - The lan we are modifying.

node - The member of the lan we are modifying.
todelay - Node to lan delay.

tobw - Node to lan bandwidth.

toloss - Node to lan loss.

fromdelay - Lan to node delay.

frombw - Lan to node bandwidth.

fromloss - Lan to node loss.

Notes:

e This command is exactly like tb-set-node-lan-params except that it allows the characteristics
in each direction to be chosen separately. See all the notes for tb-set-node-lan-params.

Virtual Type Commands

Virtual Types are a method of defining fuzzy types. l.e. types that can be fulfilled by multiple different
physical types. The advantage of virtual types (vtypes) is that all nodes of the same vtype will usually be
the same physical type of node. In this way, vtypes allows logical grouping of nodes.

As an example, imagine we have network with internal routers connecting leaf nodes. We want the
routers to all have the same hardware, and the leaf nods to all have the same hardware, but the specifics
of this hardware do not matter. We have the following fragment in our NS file:

tb-make-soft-vtype router {pc600 pc850}
tb-make-soft-vtype leaf {pc600 pc850}

tb-set-hardware S$routerl router
tb-set-hardware Srouter2 router
tb-set-hardware $leafl leaf
tb-set-hardware $leaf2 leaf

Here we have set up two soft (see below) vtypes, router and leaf. Our router nodes are then specified to
be of type router, and the leaf nods of type leaf. When the experiment is swapped in the testbed will
attempt to make routerl and router2 be of the same type, and similarly, leafl and leaf2 of the same type.
However, the routers/leafs may be pc600s or they may be pc850s, whichever is easier to fit in to the
available resources.

As a basic use, vtypes can be used to request nodes that are all the same type, but can be of any available
type:

tb-make-soft-vtype N {pc600 pc850}

tb-set-hardware $nodel N
tb-set-hardware $node2 N

http://www.emulab.net/tutorial/docwrapper.php3?docname=nscommands.html&printable=1  8/5/2002




Page 10 of 11

Vtypes come in two varieties, hard and soft. With soft vtypes, the testbed will try to make all nodes of
that vtype the same physical type, but may do otherwise if resources are tight. Hard vtypes behave just
like soft vtypes except that the testbed will give higher priority to vtype consistency and swapping in
will fail if the vtypes can not be satisfied. So, if you use soft vtypes you are more likely to swap in but
there is a chance your node of a specific vtype will not all be the same. If you use hard vtypes all nods of
a given vtype will be the same, but swapping in may fail.

Finally, you can have weighted soft vtypes. Here you assign a weight from 0 to 1 exclusive to your
vtype. The testbed will give higher priority to consistency in the higher weighted vtypes. The primary
use of this in to rank multiple vtypes by importance of consistency. Soft vtypes have a weight of 0.5 by
default.

As a final note, when specifying the types of a vtype, use the most specific type possible. For example:
tb-make-soft-vtype router {pc pc600}, is not very useful, as pc600 is a sub type of pc. You may very
well end up with two routers as type pc with different hardware, as pc covers multiple types of
hardware.

tb-make-soft-vtype

tb-make-soft-vtype vtype {types}
tb-make-hard-vtype vtype {types}
tb-make-weighted-vtype vtype weight {types}

tb-make-soft-vtype router {pc600 pc850}
tb-make-hard-vtype leaf {pc600 pc850}
tb-make-weighted-vtype A 0.1 {pc600 pc850}

vtype - The name of the vtype to create.
types - One or more physical types.
weight - The weight of the vtype, 0 < weight < 1.

Notes:

These commands create vtypes. See notes above for description of vtypes and the difference
between soft and hard.

tb-make-soft-vtype creates vtypes with weight 0.5.

vtype commands must appear before tb-set-hardware commands that use them.

Do not used tb-fix-node with nodes that have a vtype.

Misc. Commands

tb-fix-node
tb-fix-node vnode pnode

tb-fix-node $node0 pc4?2

vnode - The node we are fixing.
pnode - The physical node we want used.

http://www.emulab.net/tutorial/docwrapper.php3?docname=nscommands.html&printable=1  8/5/2002




Page 11 of 11

Notes:

e This command forces the virtual node to be mapped to the specified physical node. Swap in will
fail if this can not be done.
e Do not use this command on nodes that are a virtual type.

tb-set-uselatestwadata

tb-set-uselatestwadata 0
tb-set-uselatestwadata 1

Notes:

e This command indicates which widearea data to use when mapping widearea nodes to links. The
default is 0, which says to use the aged data. Setting it to 1 says to use the most recent data.

tb-set-wasolver-weights
tb-set-wasolver-weights delay bw plr

tb-set-wasolver-weights 1 10 500

delay - The weight to give delay when solving.
bw - The weight to give bandwidth when solving.
plr - The weight to give lossrate when solving.

Notes:

e This command sets the relative weights to us when assigning widearea nodes to links. Specifying
a zero says to ignore that particular metric when doing the assignment. Setting all three to zero
results in an essentially random selection.

http://www.emulab.net/tutorial/docwrapper.php3?docname=nscommands.html&printable=1  8/5/2002




Page 1 of 2

Introduction to Netbuild

Basic usage:

e To create a Node, click and drag the "new node" icon in the palette (the left panel) to the work area
(the middle panel.)

e To link two nodes together, click one node, then hold "ctrl" and click the node you want to link it to.
e To create a LAN, click and drag the "new LAN" icon in the palette to the work area.

e To link a node to a LAN, click the node, then hold "ctrl" and click on the LAN you want to link it to
(or vice versa.)

e Note that you may not link a LAN directly to a LAN.
e Nodes and LANs may be moved around the work area by clicking and dragging them.
e Nodes, links, and LANs may be eliminated by dragging them into the trash.

o Little circles between links and nodes represent the network interface on that node, and may not be
moved or eliminated (though eliminating the attached link will get rid of them.)

e When your experiment topology has been built, clicking "create experiment" will take you into the

testbed experiment creation page; from there, you may view the generated NS file as well as create an
actual experiment.

Selection:
e Clicking a single item in the work area will select it.

e Clicking a single item while holding down shift will add it to the pool of selected items (unless it was
already selected, then it will become deselected.)

e Clicking an empty part of the canvas will deselect everything.

e Clicking an empty part of the canvas and dragging will create a selection rectangle. When the mouse
button is released, all items in the rectangle will be selected.

e When multiple items are selected, clicking one selected item and dragging it will drag all selected
items.

e When multiple items are selected, clicking one selected item and dragging it into the trash will
eliminate all selected items.

Properties:

e When one item is selected, a properties view will open in the rightmost panel. This is where

http://www.emulab.net/doc/docwrapper.php3?docname=netbuilddoc.html&printable=1 8/5/2002




Page 2 of 2

properties, including name, may be set.
e Invalid characters typed into a properties text box will be ignored.

e If a property is "<auto>," it will automatically be determined in the experiment creation process.
Change this to specify your own value for the property.

e Clicking "default" will reset the property of the adjoining box to its default value (in many cases
"<auto>.")

o If multiple items of the same type are selected, some boxes may show up as "<multiple>." This means
that the value of this property is different between at least two nodes in the selection. Changing such a
property value (or setting it to default) will result in all selected nodes assuming the new value for that

property. Some properties (such as name and IP address) may not be set simultaneously in this way.

o If multiple items of varying types are selected, the property boxes will still appear on the right, but
may be in a collapsed state. Clicking the '+' will expand one of these.

e Clicking the '-' on an expanded box will collapse it again.

e Click "copy selection" to make a duplicate of the current selection.

http://www.emulab.net/doc/docwrapper.php3?docname=netbuilddoc.html&printable=1 8/5/2002




Page 1 of 2

Project Groups

As an instructional aid, project leaders may designate TAs to lead small groups of project members. This
is accomplished by creating a group (sometimes referred to as a "subgroup"), and designating the TA as
the leader of the group. A project group is a lot like a unix group, and in fact unix groups is the
mechanism used to protect members of one group from members of another group on Emulab nodes.
For each group created, a new unix group is created, and the members of the group added. When a group
member starts an experiment, he/she indicates the group in the Begin Experiment form. All of the nodes
in the experiment will have user accounts built for only those members of the group. In this way,
multiple subgroups of a project can work independently, and be protected from each other via the
generally well understood unix group protection mechanism.

As a convenience, all new projects are created with one new group, termed the default group. All project
members are in the default group, and as its name implies, whenever the group is left unspecified in a
form, it defaults to the project group (this allows you to create a project without any sub groups at all;
new members join the default group, new experiments are created in the default group, etc.).

As project leader, you may create and destroy subgroups, and add or remove project members from your
groups. You are automatically a member of new groups you create; even though you are not the
designated leader of the group, you still retain all of the same permissions that you have as project
leader, within the group. This means that you can terminate experiments that have been created within
the group, and edit the personal information for group members. To create a group, simply go to the
Project Information link at your left, and look for the "Create New Group" link, or go to the Create New
Group page directly. Once you have created a group, you can edit the members of the group by clicking
on the "Edit" option in the group information page.

As group leader, you may approve new user applications to join your group. You may also create and
destroy experiments created within the group. If you are a TA managing a group, you can have new
Emulab users Join your group by telling them to go to the Join Project link at your left, and specifying
the name of your group where it asks for a group name. You will receive an email message for each
person that applies to join your group. To approve (or deny) membership in your group, use the New
User Approval link. If the user who wishes to join your group is already a member of the project, then
the project leader must add them to your group. In other words, there is no mechanism to join multiple
groups via a web form; the Project Leader must do it on the Edit Group page.

These are some important security issues to keep in mind:

e Unix groups are used to protect members of one group from members of another group. Users
may create shared directories by using the unix chgrp command. When accounts are created on
the experimental nodes after a new experiment is started, only those members of the group will
get accounts on the nodes; other members of the same project, not in the group, will not get
accounts.

e Emulab uses NFS mounted filesystems for /users and /proj on the experimental nodes. Because
of the nature of NFS, giving root privledges to a user will allow them to read/write any files on
any filesystems that are mounted, since root access allows them to su as any other user. Thus, any
files in the project directory and in the home directories of other members of the group, can be can
be "compromised" by a group member. Please note that no other directories are NFS mounted;
other projects and users on Emulab are safe.

e It is important to remember that granting "root" permissions to a user in the project (or default
group) and "user" permissions in a subgroup, is inconsistent and can result in a breech of privacy.

http://www.emulab.net/docwrapper.php3?docname=groups.html&printable=1 8/5/2002




Page 2 of 2

Consider this example; user Joe has "root" permissions in the default group, and "user"
permissions in a subgroup. Another user Bob is in the same subgroup as Joe, and since Joe has
"user" permissions, it was probably intended that Joe would not be able to read Bob's files. Joe
now creates an experiment, specifying the default group in the web form. The nodes in Joe's
experiment would get NFS mounts for all of the members in the project (including Bob), and
since Joe has "root" permission in the default group, would be granted root access on his nodes.
Joe can now access the files of all members of the project, including Bob. The correct approach is
to specify "user" permissions in the default group, and either "user" or "root" in the subgroup
(depending on whether subgroup members are mutually trust each other and need to create
experiments).

o Equally dangerous is specifying different levels of trust for a user that is in multiple subgroups of
a project. In this case, any other users that are in the same groups (overlapping) are potentially at
risk. For example, if Joe has "root" permissions in one subgroup, and "user" permissions in a
second subgroup, and there is another user Bob who is in both subgroups, then Joe can access
Bob's files when creating an experiment in one of the subgroups, but not the other. If Joe is really
not supposed to access Bob's files, then Joe should not have "root" permission in a subgroup that
contains Bob.

You have the following choices for Trust:

User - User may log into machines in your experiments

User may create/destroy experiments in your project and has root privileges on

Local Root - . ) 4
machines in your experiments

In addition to Local Root privileges, user may also approve new group members and
Group Root - modify user info for other users within the group. This level of trust is typically given
only to TAs and the like.

http://www.emulab.net/docwrapper.php3?docname=groups.html&printable=1 8/5/2002




Page 1 of 6

Testbed Master Control Daemon/Client Reference

Contents

Introduction

TMCC client program

Node Setup Script

Command Reference
o reboot

status

ifconfig

accounts

mounts

delay

hostnames

rpms

startupcmd

startstatus

ready

readycount

log

O 0O OO0 O O O O O O O O

e Introduction

The Testbed Master Control Daemon (TMCD) is a program that runs on boss.emulab.net, and
provides configuration information to Testbed nodes when they boot up. The Testbed Master
Control Client (TMCC), is a small program that is installed on each node, and is used to connect
to the TMCD to issue requests and get the response. In addition, Testbed nodes use the
TMCC/TMCD to communicate events of interest back to the Emulab Database and to the user via
the Web interface. The TMCD interface is text based; clients issue requests in the form of strings
consisting of a command and an optional argument. The response is also a string, in a very generic
format that can be easly parsed by any C/C++ program or shell interpreter. For example, to
determine how to configure the experimental interfaces on each testbed node in your experiment
when it boots, you would do the following:

tmcc ifconfig

The response to this request would be:

INTERFACE=1 INET=10.0.0.1 MASK=255.255.255.0
INTERFACE=2 INET=10.0.1.1 MASK=255.255.255.0

which indicates that interfaces eth1 and eth2 (or perhaps fxp1 and fxp2) should be configured to
the given IP addresses and netmasks.

« TMCC

The TMCC is a simple client program that runs on the testbed nodes and handles the details of

http://www.emulab.net/doc/docwrapper.php3?docname=tmcd.html&printable=1 8/5/2002




Page 2 of 6

connecting to the TMCD, issuing the request, getting the response, and printing it out. It has been
compiled on FreeBSD 4.x, Redhat Linux 6.2 and 7.1, and Netbsd 1.4, and should compile on just
about any operating system. Alternatively, you can integrate the TMCC into your own programs.
Briefly, the TMCC connects to port 7777 (UDP or TCP) on boss.emulab.net, writes a single
string to the connection, and then waits for an optional response, which is a newline separated list
of strings. The TMMC exits when the other side of the connection is closed by the TMCD. The
source code for the TMCC is available upon request by sending email to Testbed Operations
(testbed-ops@flux.cs.utah.edu)

e Node Setup Script

The Emulab versions of FreeBSD 4.3, Redhat Linux 7.1, and Netbsd 1.4 all run a setup script at
bootup that uses the TMCC client to configure the node. All of the interfaces are configured, user
accounts for each of the members of the project are created, NFS mounts are made, etc. These
setup scripts are located in /etc/testbed on FreeBSD and Netbsd, and in /etc/rc.d/testbed on Linux.
You can use these scripts as a guide when writing setup code to configure your custom operating
systems.

e Command Reference

o reboot

Report that a node has rebooted to the TMCD. This is an informational message that is used
by the TMCD to determine when a node reboots for the first time after its disk has been
reloaded. No response is returned.

o status

Request status information about the project and experiment that the node is currently part
of. Returns the project ID, experiment ID, and the node name from the NS file that
described the topology. This command is typically used to determine if the setup script
needs to do any further configuration; if the node is free, then no other information is going
to be provided by the TMCD. The format of the reply is one of:

FREE
ALLOCATED=pid/eid NICKNAME=name

The first form indicates that the node is not currently allocated to an experiment. The
second form says that the node is running as part of the "eid" experiment in the "pid"
project, and was named "name" in the NS file that described the topology.

o ifconfig

Request the configuration information for each of the network interfaces on the node, as
determined by the topology described in the NS file, and the assignment of IP addresses to
interfaces that is performed when the experiment is configured. The information that is
returned is typically converted into corresponding ifconfig commands on the node.
However, the information can be used in any manner that is appropriate for the operating
system that is running on the node. The reply to this request is one or more lines in the
following format (in the unlikely case that the topology describes a node with no network

http://www.emulab.net/doc/docwrapper.php3?docname=tmcd.html&printable=1 8/5/2002




Page 3 of 6

links, the response to this request will be null):

INTERFACE=Z INET=X.X.X.X MASK=Y.Y.Y.Y MAC=AA:BB:CC:DD:EE:FF

Which says that the network interface with MAC address "AA:BB:CC:DD:EE:FF" is
assigned to IP address "X.X.X. X" with netmask "Y.Y.Y.Y". The INTERFACE specification
is currently invalid, since there no way to achieve a consistent ordering of interfaces
between various operating systems. Rather, the MAC address is used to determine which
interface to configure. A utility program called /etc/testbed/£findif is provided to map
the MAC address to an interface name suitable for use with the ifconfig program. On
Redhat 7.1, the setup script would take this information and issue the following shell
commands.

iface="/etc/testbed/findif AA:BB:CC:DD:EE:FF"
/sbin/ifconfig $iface inet X.X.X.X netmask Y.Y.Y.Y

o accounts

Request group and login account information for each of the project members of the project
that the experiment is running. This information can be used to generate login accounts for
project members on each of the nodes in an experiment. The Emulab versions of FreeBSD,
Linux, and Netbsd all have stub password/group files that do not contain any user accounts
or groups. When a node first boots after being allocated to an experiment, this command is
used to find out what accounts to build. The reply to this request is one or more lines of
group information, followed by one or more lines of login account information:

ADDGROUP NAME=pid GID=XXXX
ADDUSER LOGIN=joe PSWD=ABCD UID=YYYY GID=XXXX ROOT=N NAME="Joe User" \
HOMEDIR=/users/joe GLIST=ZZZ0,ZZZ1

The ADDGROUP reply gives the name of the group and the numeric gid for that group. The
ADDUSER reply has the following fields:

LOGIN  The user/account name.
The encrypted password string, suitable for direct insertion

FSD into the password file.
UID The numeric uid.
GID The primary group for the user, as a numeric gid.
Indicates whether the user should be granted root access by
ROOT placing the user into the root group (wheel group on
FreeBSD/NetBSD).
NAME The full name of the user, suitable for insertion into the

gecos field of the user's password entry.
HOMEDIR The absolute path to be used for the home directory.
A (possibly null) comma separated list of auxiliary group

GLIST | N
1ds, as numeric gids.

On Linux, this information would be converted into the following commands:

http://www.emulab.net/doc/docwrapper.php3?docname=tmcd.html&printable=1 8/5/2002




Page 4 of 6

groupadd -g XXXX pid
useradd -u YYYY -g XXXX -p ABCD -G root,ZZZz0,ZZZ1 -d /users/joe -c "Joe

o mounts

Request the list of remote directories that need to be NFS mounted on the node when it
boots. The reply to this request is one or more lines in the following format:

REMOTE=fs.emulab.net:/users/joe LOCAL=/users/joe
REMOTE=fs.emulab.net:/proj/testbed LOCAL=/proj/myproj

On Linux, this information would be converted into the following commands:

mkdir /users/joe

/sbin/mount fs.emulab.net:/users/joe /users/joe
mkdir /proj/myproj

/sbin/mount fs.emulab.net:/proj/myproj /proj/myproj

o rpms

Request the list of RPMs that should be installed on the node when it boots, as specified in
the NS file on a per-node basis. The reply to this request is null if there are no RPMs to
install, or one or more lines in the following format:

RPM=/path/to/name.rpm

On Linux and Freebsd, each RPM is installed with the rpm command, which will install the
RPM only if it has not already been installed:

rpm -i /path/to/name.rpm
o startupemd

Request the name of the startup script (or program) that should be run when the node boots,
as specified in the NS file on a per-node basis. The reply to this request is null if a startup
script was not specified, or a single line in the following format:

CMD=/path/to/runme UID=joe

Which says to run /path/to/runme as user joe when the node boots. The UID is always
the experiment creator. On FreeBSD, Linux, and NetBSD, the command is run once the
node is running multiuser. If the node reboots before the experiment is terminated, the
command will be run again.

o startstatus

Report the numeric exit value of the startupcmd back to the TMCD so that it can be
recorded and displayed in the "Experiment Information" Web page. In fact, this does not
have to be the result of the startupcmd, but can be the result of any application program.

The intent is to report back information that can be used by the experimentor to determine
when the experiment has finished. Each node reports back status individually. The format of

http://www.emulab.net/doc/docwrapper.php3?docname=tmcd.html&printable=1 8/5/2002




Page 5 of 6

this command is:

tmcc startstatus XX

which sends the numeric value XX back to the TMCD. There is no response from the
TMCD to this command.

o ready

Report an application level ready status back to the TMCD so that it can record it. A count
of nodes (in your experiment) reporting ready is maintained by the TMCD, and is made
available to nodes via the readycount request below. There is no response from the TMCD
to this command.

o readycount

Request the count of nodes that have reported in ready with the ready command above.
This is an application level count; nodes can use this as a very primitive form of
synchronization to determine when all of the nodes in the experiment have started the
application (say, via the startupcmd above) and have reached a point where it is necessary
to wait until all of the nodes have reached the same point. The reply to this request is a
single line in the following format:

READY=N TOTAL=M

which says that N nodes have reported in, of a total number of M nodes in the experiment.
The application can continue to poll until N==M, but be sure to add some delay between each
poll to avoid livelock at the TMCD. Note that the ready count is essentially a use-once
feature; The ready count cannot be reinitialized to zero since there is no actual
synchronization happening. If in the future it appears that a generalized barrier
synchronization would be more useful, we will investigate the implementation of such a
feature.

o hostnames

Request information about the IP addresses and node names of all of the nodes in the
experiment. The intent it to provide the ability to easily generate a suitable /etc/hosts file
that allows experiments to operate using the symbolic names of the nodes (as defined in the
NS file), instead of IP addresses, which are generally assigned by the configuration
software, not the experimentor. Since nodes can use multiple experimental interfaces, the
reply gives the IP address for each interface on each node. An additional alias is returned
for nodes that are directly connected to the node making the hostnames request. Secondary
interfaces, and interfaces that are not directly connected are named with a -X suffix, where
X is the ordinal number of the interface. The reply to this request is one or more lines in the
following format:

NAME=nodeA LINK=X IP=X.X.Y.A ALIAS=nodeA
NAME=nodeB LINK=Y IP=X.X.Y.B ALIAS=nodeB
NAME=nodeC LINK=Z IP=X.X.Z.C ALIAS=

http://www.emulab.net/doc/docwrapper.php3?docname=tmcd.html&printable=1 8/5/2002




Page 6 of 6

The LINK field is the number of the network interface on the destination node, that this node
is connected to. The /etc/hosts file that would be created for this response is:

nodeA-X nodeA
nodeB-Y nodeB
nodeC-2

Mo X
N XX
Qw

Say that nodeA is making this request. NodeA is obviously connected to itself, so it gets an
alias pointing to its own interface. NodeA is directly connected to NodeB on NodeB's ¥
interface, so it to gets an alias so that an application running on nodeA can just use the name
NodeB. NodeC is not directly connected to NodeA (perhaps it is connected to NodeB on
one of NodeB's other interfaces), so it does not get an alias. Refering to nodeC on nodeA
would be confusing and possibly incorrect.

o log

The 1og command can be used by an application to write a message to a log file on
users.emulab.net. This is especially useful on the Sharks, most of which do not have
console serial lines attached. The argument to the log command is a single string, in double
quotes if operating within the shell:

tmcc log "This is a log message"

The log file is stored in /proj/pid/logs/eid.log, where pid is the name of the project
and eid is the name of the experiment. The file is appended to each time; it is the
responsibility of the experimentor to zero the log file when done, or if a new experiment
with the same name is started.

http://www.emulab.net/doc/docwrapper.php3?docname=tmcd.html&printable=1 8/5/2002




	Tutorial
	Tutorial: advanced example
	FAQ
	"ns" command extensions
	netbuild reference
	Project groups reference
	TMCD/TMCC reference

