stream.c 27.4 KB
Newer Older
amaricq's avatar
amaricq committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
/*-----------------------------------------------------------------------*/
/* Program: STREAM                                                       */
/* Revision: $Id: stream.c,v 5.10 2013/01/17 16:01:06 mccalpin Exp mccalpin $ */
/* Original code developed by John D. McCalpin                           */
/* Programmers: John D. McCalpin                                         */
/*              Joe R. Zagar                                             */
/*                                                                       */
/* This program measures memory transfer rates in MB/s for simple        */
/* computational kernels coded in C.                                     */
/*-----------------------------------------------------------------------*/
/* Copyright 1991-2013: John D. McCalpin                                 */
/*-----------------------------------------------------------------------*/
/* License:                                                              */
/*  1. You are free to use this program and/or to redistribute           */
/*     this program.                                                     */
/*  2. You are free to modify this program for your own use,             */
/*     including commercial use, subject to the publication              */
/*     restrictions in item 3.                                           */
/*  3. You are free to publish results obtained from running this        */
/*     program, or from works that you derive from this program,         */
/*     with the following limitations:                                   */
/*     3a. In order to be referred to as "STREAM benchmark results",     */
/*         published results must be in conformance to the STREAM        */
/*         Run Rules, (briefly reviewed below) published at              */
/*         http://www.cs.virginia.edu/stream/ref.html                    */
/*         and incorporated herein by reference.                         */
/*         As the copyright holder, John McCalpin retains the            */
/*         right to determine conformity with the Run Rules.             */
/*     3b. Results based on modified source code or on runs not in       */
/*         accordance with the STREAM Run Rules must be clearly          */
/*         labelled whenever they are published.  Examples of            */
/*         proper labelling include:                                     */
/*           "tuned STREAM benchmark results"                            */
/*           "based on a variant of the STREAM benchmark code"           */
/*         Other comparable, clear, and reasonable labelling is          */
/*         acceptable.                                                   */
/*     3c. Submission of results to the STREAM benchmark web site        */
/*         is encouraged, but not required.                              */
/*  4. Use of this program or creation of derived works based on this    */
/*     program constitutes acceptance of these licensing restrictions.   */
/*  5. Absolutely no warranty is expressed or implied.                   */
/*-----------------------------------------------------------------------*/
# include <stdio.h>
# include <unistd.h>
# include <math.h>
# include <float.h>
# include <limits.h>
# include <sys/time.h>
# include <time.h>

/*-----------------------------------------------------------------------
 * INSTRUCTIONS:
 *
 *	1) STREAM requires different amounts of memory to run on different
 *           systems, depending on both the system cache size(s) and the
 *           granularity of the system timer.
 *     You should adjust the value of 'STREAM_ARRAY_SIZE' (below)
 *           to meet *both* of the following criteria:
 *       (a) Each array must be at least 4 times the size of the
 *           available cache memory. I don't worry about the difference
 *           between 10^6 and 2^20, so in practice the minimum array size
 *           is about 3.8 times the cache size.
 *           Example 1: One Xeon E3 with 8 MB L3 cache
 *               STREAM_ARRAY_SIZE should be >= 4 million, giving
 *               an array size of 30.5 MB and a total memory requirement
 *               of 91.5 MB.  
 *           Example 2: Two Xeon E5's with 20 MB L3 cache each (using OpenMP)
 *               STREAM_ARRAY_SIZE should be >= 20 million, giving
 *               an array size of 153 MB and a total memory requirement
 *               of 458 MB.  
 *       (b) The size should be large enough so that the 'timing calibration'
 *           output by the program is at least 20 clock-ticks.  
 *           Example: most versions of Windows have a 10 millisecond timer
 *               granularity.  20 "ticks" at 10 ms/tic is 200 milliseconds.
 *               If the chip is capable of 10 GB/s, it moves 2 GB in 200 msec.
 *               This means the each array must be at least 1 GB, or 128M elements.
 *
 *      Version 5.10 increases the default array size from 2 million
 *          elements to 10 million elements in response to the increasing
 *          size of L3 caches.  The new default size is large enough for caches
 *          up to 20 MB. 
 *      Version 5.10 changes the loop index variables from "register int"
 *          to "ssize_t", which allows array indices >2^32 (4 billion)
 *          on properly configured 64-bit systems.  Additional compiler options
 *          (such as "-mcmodel=medium") may be required for large memory runs.
 *
 *      Array size can be set at compile time without modifying the source
 *          code for the (many) compilers that support preprocessor definitions
 *          on the compile line.  E.g.,
 *                gcc -O -DSTREAM_ARRAY_SIZE=100000000 stream.c -o stream.100M
 *          will override the default size of 10M with a new size of 100M elements
 *          per array.
 */
#ifndef STREAM_ARRAY_SIZE
#   define STREAM_ARRAY_SIZE	10000000
#endif

/*  2) STREAM runs each kernel "NTIMES" times and reports the *best* result
 *         for any iteration after the first, therefore the minimum value
 *         for NTIMES is 2.
 *      There are no rules on maximum allowable values for NTIMES, but
 *         values larger than the default are unlikely to noticeably
 *         increase the reported performance.
 *      NTIMES can also be set on the compile line without changing the source
 *         code using, for example, "-DNTIMES=7".
 */
#ifdef NTIMES
#if NTIMES<=1
#   define NTIMES	10
#endif
#endif
#ifndef NTIMES
#   define NTIMES	10
#endif

/*  Users are allowed to modify the "OFFSET" variable, which *may* change the
 *         relative alignment of the arrays (though compilers may change the 
 *         effective offset by making the arrays non-contiguous on some systems). 
 *      Use of non-zero values for OFFSET can be especially helpful if the
 *         STREAM_ARRAY_SIZE is set to a value close to a large power of 2.
 *      OFFSET can also be set on the compile line without changing the source
 *         code using, for example, "-DOFFSET=56".
 */
#ifndef OFFSET
#   define OFFSET	0
#endif

/*
 *	3) Compile the code with optimization.  Many compilers generate
 *       unreasonably bad code before the optimizer tightens things up.  
 *     If the results are unreasonably good, on the other hand, the
 *       optimizer might be too smart for me!
 *
 *     For a simple single-core version, try compiling with:
 *            cc -O stream.c -o stream
 *     This is known to work on many, many systems....
 *
 *     To use multiple cores, you need to tell the compiler to obey the OpenMP
 *       directives in the code.  This varies by compiler, but a common example is
 *            gcc -O -fopenmp stream.c -o stream_omp
 *       The environment variable OMP_NUM_THREADS allows runtime control of the 
 *         number of threads/cores used when the resulting "stream_omp" program
 *         is executed.
 *
 *     To run with single-precision variables and arithmetic, simply add
 *         -DSTREAM_TYPE=float
 *     to the compile line.
 *     Note that this changes the minimum array sizes required --- see (1) above.
 *
 *     The preprocessor directive "TUNED" does not do much -- it simply causes the 
 *       code to call separate functions to execute each kernel.  Trivial versions
 *       of these functions are provided, but they are *not* tuned -- they just 
 *       provide predefined interfaces to be replaced with tuned code.
 *
 *
 *	4) Optional: Mail the results to mccalpin@cs.virginia.edu
 *	   Be sure to include info that will help me understand:
 *		a) the computer hardware configuration (e.g., processor model, memory type)
 *		b) the compiler name/version and compilation flags
 *      c) any run-time information (such as OMP_NUM_THREADS)
 *		d) all of the output from the test case.
 *
 * Thanks!
 *
 *-----------------------------------------------------------------------*/

# define HLINE "-------------------------------------------------------------\n"

# ifndef MIN
# define MIN(x,y) ((x)<(y)?(x):(y))
# endif
# ifndef MAX
# define MAX(x,y) ((x)>(y)?(x):(y))
# endif

#ifndef STREAM_TYPE
#define STREAM_TYPE double
#endif

static STREAM_TYPE	a[STREAM_ARRAY_SIZE+OFFSET],
			b[STREAM_ARRAY_SIZE+OFFSET],
			c[STREAM_ARRAY_SIZE+OFFSET];

static double	avgtime[4] = {0}, maxtime[4] = {0}, stdevtime[4] = {0},
		vartime[4] = {0}, mintime[4] = {FLT_MAX,FLT_MAX,FLT_MAX,FLT_MAX},
		avgrate[4] = {0}, stdevrate[4] = {0}, varrate[4] = {0};
		
static double	avgtime_omp[4] = {0}, maxtime_omp[4] = {0}, stdevtime_omp[4] = {0},
		vartime_omp[4] = {0}, mintime_omp[4] = {FLT_MAX,FLT_MAX,FLT_MAX,FLT_MAX},
		avgrate_omp[4] = {0}, stdevrate_omp[4] = {0}, varrate_omp[4] = {0};

static char	*label[4] = {"Copy:      ", "Scale:     ",
    "Add:       ", "Triad:     "};

static double	bytes[4] = {
    2 * sizeof(STREAM_TYPE) * STREAM_ARRAY_SIZE,
    2 * sizeof(STREAM_TYPE) * STREAM_ARRAY_SIZE,
    3 * sizeof(STREAM_TYPE) * STREAM_ARRAY_SIZE,
    3 * sizeof(STREAM_TYPE) * STREAM_ARRAY_SIZE
    };

extern double mysecond();
extern void checkSTREAMresults();
#ifdef TUNED
extern void tuned_STREAM_Copy();
extern void tuned_STREAM_Scale(STREAM_TYPE scalar);
extern void tuned_STREAM_Add();
extern void tuned_STREAM_Triad(STREAM_TYPE scalar);
#endif
#ifdef _OPENMP
extern int omp_get_num_threads();
#endif
int
main()
    {
    int			quantum, checktick();
    int			BytesPerWord;
    int			k;
    ssize_t		j;
    STREAM_TYPE		scalar;
    double		t, times[4][NTIMES];

    /* --- SETUP --- determine precision and check timing --- */

    printf(HLINE);
    printf("STREAM version $Revision: 5.10 $\n");
    printf(HLINE);
    BytesPerWord = sizeof(STREAM_TYPE);
    printf("This system uses %d bytes per array element.\n",
	BytesPerWord);

    printf(HLINE);
#ifdef N
    printf("*****  WARNING: ******\n");
    printf("      It appears that you set the preprocessor variable N when compiling this code.\n");
    printf("      This version of the code uses the preprocesor variable STREAM_ARRAY_SIZE to control the array size\n");
    printf("      Reverting to default value of STREAM_ARRAY_SIZE=%llu\n",(unsigned long long) STREAM_ARRAY_SIZE);
    printf("*****  WARNING: ******\n");
#endif

    printf("Array size = %llu (elements), Offset = %d (elements)\n" , (unsigned long long) STREAM_ARRAY_SIZE, OFFSET);
    printf("Memory per array = %.1f MiB (= %.1f GiB).\n", 
	BytesPerWord * ( (double) STREAM_ARRAY_SIZE / 1024.0/1024.0),
	BytesPerWord * ( (double) STREAM_ARRAY_SIZE / 1024.0/1024.0/1024.0));
    printf("Total memory required = %.1f MiB (= %.1f GiB).\n",
	(3.0 * BytesPerWord) * ( (double) STREAM_ARRAY_SIZE / 1024.0/1024.),
	(3.0 * BytesPerWord) * ( (double) STREAM_ARRAY_SIZE / 1024.0/1024./1024.));
    printf("Each kernel will be executed %d times.\n", NTIMES);
    printf(" The *best* time for each kernel (excluding the first iteration)\n"); 
    printf(" will be used to compute the reported bandwidth.\n");


    /* Get initial value for system clock. */
#pragma omp parallel for
    for (j=0; j<STREAM_ARRAY_SIZE; j++) {
	    a[j] = 1.0;
	    b[j] = 2.0;
	    c[j] = 0.0;
	}

    printf(HLINE);

    if  ( (quantum = checktick()) >= 1) 
	printf("Your clock granularity/precision appears to be "
	    "%d microseconds.\n", quantum);
    else {
	printf("Your clock granularity appears to be "
	    "less than one microsecond.\n");
	quantum = 1;
    }

    t = mysecond();
#pragma omp parallel for
    for (j = 0; j < STREAM_ARRAY_SIZE; j++)
		a[j] = 2.0E0 * a[j];
    t = 1.0E6 * (mysecond() - t);

    printf("Each test below will take on the order"
	" of %d microseconds.\n", (int) t  );
    printf("   (= %d clock ticks)\n", (int) (t/quantum) );
    printf("Increase the size of the arrays if this shows that\n");
    printf("you are not getting at least 20 clock ticks per test.\n");

    printf(HLINE);

    printf("WARNING -- The above is only a rough guideline.\n");
    printf("For best results, please be sure you know the\n");
    printf("precision of your system timer.\n");
    printf(HLINE);
    
    /*	--- MAIN LOOP --- repeat test cases NTIMES times ---  */
    /*  --- SINGLE THREADED ---  */
/*    scalar = 3.0;
    for (k=0; k<NTIMES; k++)
	{
	times[0][k] = mysecond();

	for (j=0; j<STREAM_ARRAY_SIZE; j++)
	    c[j] = a[j];

	times[0][k] = mysecond() - times[0][k];
	
	times[1][k] = mysecond();

	for (j=0; j<STREAM_ARRAY_SIZE; j++)
	    b[j] = scalar*c[j];

	times[1][k] = mysecond() - times[1][k];
	
	times[2][k] = mysecond();

	for (j=0; j<STREAM_ARRAY_SIZE; j++)
	    c[j] = a[j]+b[j];

	times[2][k] = mysecond() - times[2][k];
	
	times[3][k] = mysecond();

	for (j=0; j<STREAM_ARRAY_SIZE; j++)
	    a[j] = b[j]+scalar*c[j];

	times[3][k] = mysecond() - times[3][k];
	}
*/
    /*	--- SUMMARY --- */

//    for (k=1; k<NTIMES; k++) /* note -- skip first iteration */
/*	{
		for (j=0; j<4; j++)
	    {
	    	avgtime[j] = avgtime[j] + times[j][k];
	    	mintime[j] = MIN(mintime[j], times[j][k]);
	    	maxtime[j] = MAX(maxtime[j], times[j][k]);
	    }
	}
	
	for (j=0; j<4; j++) {
		avgtime[j] = avgtime[j]/(double)(NTIMES-1);
		avgrate[j] = 1.0E-06 * bytes[j]/avgtime[j];
	}
*/	
//	for (k=1; k<NTIMES; k++) /* note -- skip first iteration */
/*	{
		for (j=0; j<4; j++)
	    {
	    	vartime[j] += pow((times[j][k] - avgtime[j]), 2);
	    	varrate[j] += pow(((1.0E-06 * bytes[j]/times[j][k]) - avgrate[j]), 2);
	    }
	}
    printf("Single-Threaded Results:\n\n");
    printf("Function      Avg time     Min time     Max time     Standard Deviation\n");
    for (j=0; j<4; j++) {
        vartime[j] = vartime[j] / (double)(NTIMES-1);
        varrate[j] = varrate[j] / (double)(NTIMES-1);
		stdevtime[j] = sqrt(vartime[j]);
		stdevrate[j] = sqrt(varrate[j]);

		printf("%s%11.6f  %11.6f  %11.6f  %11.6f\n", label[j],
	       avgtime[j],
	       mintime[j],
	       maxtime[j],
	       stdevtime[j]);
    }
    printf("\n");
    
    printf("Function    Avg Rate MB/s   Best Rate MB/s   Worst Rate MB/s   Standard Deviation MB/s\n");
    for (j=0; j<4; j++) {

		printf("%s%12.1f   %12.1f     %12.1f    %12.1f\n", label[j],
	       avgrate[j],
	       1.0E-06 * bytes[j]/mintime[j],
	       1.0E-06 * bytes[j]/maxtime[j],
	       stdevrate[j]);
    }
    printf(HLINE);
*/    
#ifdef _OPENMP

    printf("Multi-Threaded Results:\n\n");
#pragma omp parallel 
    {
#pragma omp master
	{
	    k = omp_get_num_threads();
	    printf ("Number of Threads requested = %i\n",k);
        }
    }


	k = 0;
#pragma omp parallel
#pragma omp atomic 
		k++;
    printf ("Number of Threads counted = %i\n\n",k);

#pragma omp parallel for
    for (j=0; j<STREAM_ARRAY_SIZE; j++) {
	    a[j] = 1.0;
	    b[j] = 2.0;
	    c[j] = 0.0;
	}

    /*	--- MAIN LOOP --- repeat test cases NTIMES times ---  */
    /*  --- MULTI THREADED ---  */
    scalar = 3.0;
    for (k=0; k<NTIMES; k++)
	{
	times[0][k] = mysecond();

#pragma omp parallel for
	for (j=0; j<STREAM_ARRAY_SIZE; j++)
	    c[j] = a[j];

	times[0][k] = mysecond() - times[0][k];
	
	times[1][k] = mysecond();

#pragma omp parallel for
	for (j=0; j<STREAM_ARRAY_SIZE; j++)
	    b[j] = scalar*c[j];

	times[1][k] = mysecond() - times[1][k];
	
	times[2][k] = mysecond();

#pragma omp parallel for
	for (j=0; j<STREAM_ARRAY_SIZE; j++)
	    c[j] = a[j]+b[j];

	times[2][k] = mysecond() - times[2][k];
	
	times[3][k] = mysecond();

#pragma omp parallel for
	for (j=0; j<STREAM_ARRAY_SIZE; j++)
	    a[j] = b[j]+scalar*c[j];

	times[3][k] = mysecond() - times[3][k];
	}

    /*	--- SUMMARY --- */

    for (k=1; k<NTIMES; k++) /* note -- skip first iteration */
	{
		for (j=0; j<4; j++)
	    {
	    	avgtime_omp[j] = avgtime_omp[j] + times[j][k];
	    	mintime_omp[j] = MIN(mintime_omp[j], times[j][k]);
	    	maxtime_omp[j] = MAX(maxtime_omp[j], times[j][k]);
	    }
	}
	
	for (j=0; j<4; j++) {
		avgtime_omp[j] = avgtime_omp[j]/(double)(NTIMES-1);
		avgrate_omp[j] = 1.0E-06 * bytes[j]/avgtime_omp[j];
	}
	
	for (k=1; k<NTIMES; k++) /* note -- skip first iteration */
	{
		for (j=0; j<4; j++)
	    {
	    	vartime_omp[j] += pow((times[j][k] - avgtime_omp[j]), 2);
	    	varrate_omp[j] += pow(((1.0E-06 * bytes[j]/times[j][k]) - avgrate_omp[j]), 2);
	    }
	}

    printf("Function      Avg time     Min time     Max time     Standard Deviation\n");
    for (j=0; j<4; j++) {
        vartime_omp[j] = vartime_omp[j] / (double)(NTIMES-1);
        varrate_omp[j] = varrate_omp[j] / (double)(NTIMES-1);
		stdevtime_omp[j] = sqrt(vartime_omp[j]);
		stdevrate_omp[j] = sqrt(varrate_omp[j]);

		printf("%s%11.6f  %11.6f  %11.6f  %11.6f\n", label[j],
	       avgtime_omp[j],
	       mintime_omp[j],
	       maxtime_omp[j],
	       stdevtime_omp[j]);
    }
    printf("\n");
    
    printf("Function    Avg Rate MB/s   Best Rate MB/s   Worst Rate MB/s   Standard Deviation MB/s\n");
    for (j=0; j<4; j++) {

		printf("%s%12.1f   %12.1f     %12.1f    %12.1f\n", label[j],
	       avgrate_omp[j],
	       1.0E-06 * bytes[j]/mintime_omp[j],
	       1.0E-06 * bytes[j]/maxtime_omp[j],
	       stdevrate_omp[j]);
    }
    printf(HLINE);
#endif

#ifdef FILEOUTPUT
    FILE *outfile = NULL;
    outfile = fopen("./stream_out.csv", "w");
    if (outfile != NULL) {
/*
        fprintf(outfile, "copy_max,copy_min,copy_mean,copy_stdev,");
        fprintf(outfile, "scale_max,scale_min,scale_mean,scale_stdev,");
        fprintf(outfile, "add_max,add_min,add_mean,add_stdev,");
        fprintf(outfile, "triad_max,triad_min,triad_mean,triad_stdev,");
*/
#ifdef _OPENMP
        fprintf(outfile, "copy_omp_max,copy_omp_min,copy_omp_mean,copy_omp_stdev,");
        fprintf(outfile, "scale_omp_max,scale_omp_min,scale_omp_mean,scale_omp_stdev,");
        fprintf(outfile, "add_omp_max,add_omp_min,add_omp_mean,add_omp_stdev,");
        fprintf(outfile, "triad_omp_max,triad_omp_min,triad_omp_mean,triad_omp_stdev,");
        fprintf(outfile, "omp_nthreads_used,");
#endif
        fprintf(outfile, "units,timestamp\n");
      /*  for (j=0; j<4; j++) {
            // Best Rate MB/s   Worst Rate MB/s  Avg Rate MB/s  Standard Deviation MB/s
            fprintf(outfile, "%.2f,%.2f,%.2f,%.2f,",
            1.0E-06 * bytes[j]/mintime[j],
            1.0E-06 * bytes[j]/maxtime[j],
            1.0E-06 * bytes[j]/avgtime[j],
            stdevrate[j]);
        }*/
#ifdef _OPENMP
        for (j=0; j<4; j++) {
            // Best Rate MB/s   Worst Rate MB/s  Avg Rate MB/s  Standard Deviation MB/s
            fprintf(outfile, "%.2f,%.2f,%.2f,%.2f,",
            1.0E-06 * bytes[j]/mintime_omp[j],
            1.0E-06 * bytes[j]/maxtime_omp[j],
            1.0E-06 * bytes[j]/avgtime_omp[j],
            stdevrate_omp[j]);
        }
        k = 0;
#pragma omp parallel
#pragma omp atomic 
		k++;
        fprintf (outfile, "%i,",k); // Number of Threads used
#endif
        fprintf(outfile, "MB/s,%lu", (long unsigned) time(NULL));
        fclose(outfile);
    }
#endif

    /* --- Check Results --- */
    //checkSTREAMresults();
    printf(HLINE);

    return 0;
}

# define	M	20

int
checktick()
    {
    int		i, minDelta, Delta;
    double	t1, t2, timesfound[M];

/*  Collect a sequence of M unique time values from the system. */

    for (i = 0; i < M; i++) {
	t1 = mysecond();
	while( ((t2=mysecond()) - t1) < 1.0E-6 )
	    ;
	timesfound[i] = t1 = t2;
	}

/*
 * Determine the minimum difference between these M values.
 * This result will be our estimate (in microseconds) for the
 * clock granularity.
 */

    minDelta = 1000000;
    for (i = 1; i < M; i++) {
	Delta = (int)( 1.0E6 * (timesfound[i]-timesfound[i-1]));
	minDelta = MIN(minDelta, MAX(Delta,0));
	}

   return(minDelta);
    }


// Copyright 2013 Alex Reece.
//
// A cross platform monotonic timer.
#define NANOS_PER_SECF 1000000000.0
#define USECS_PER_SEC 1000000

#if _POSIX_TIMERS > 0 && defined(_POSIX_MONOTONIC_CLOCK)
  // If we have it, use clock_gettime and CLOCK_MONOTONIC.

  #include <time.h>

  double mysecond() {
    struct timespec time;
    // Note: Make sure to link with -lrt to define clock_gettime.
    clock_gettime(CLOCK_MONOTONIC, &time);
    return ((double) time.tv_sec) + ((double) time.tv_nsec / (NANOS_PER_SECF));
  }

#elif defined(__APPLE__)
  // If we don't have CLOCK_MONOTONIC, we might be on a Mac. There we instead
  // use mach_absolute_time().

  #include <mach/mach_time.h>

  static mach_timebase_info_data_t info;
  static void __attribute__((constructor)) init_info() {
    mach_timebase_info(&info);
  }

  double mysecond() {
    uint64_t time = mach_absolute_time();
    double dtime = (double) time;
    dtime *= (double) info.numer;
    dtime /= (double) info.denom;
    return dtime / NANOS_PER_SECF;
  }

#elif defined(_MSC_VER)

  #include <windows.h>

  static double PCFreq = 0.0;

  // According to http://stackoverflow.com/q/1113409/447288, this will
  // make this function a constructor.
  // TODO(awreece) Actually attempt to compile on windows.
  static void __cdecl init_pcfreq();
  __declspec(allocate(".CRT$XCU")) void (__cdecl*init_pcfreq_)() = init_pcfreq;
  static void __cdecl init_pcfreq() {
    // Accoring to http://stackoverflow.com/a/1739265/447288, this will
    // properly initialize the QueryPerformanceCounter.
    LARGE_INTEGER li;
    int has_qpc = QueryPerformanceFrequency(&li);
    assert(has_qpc);

    PCFreq = ((double) li.QuadPart) / 1000.0;
  }

  double mysecond_time() {
    LARGE_INTEGER li;
    QueryPerformanceCounter(&li);
    return ((double) li.QuadPart) / PCFreq;
  }

#else
  // Fall back to rdtsc. The reason we don't use clock() is this scary message
  // from the man page:
  //     "On several other implementations, the value returned by clock() also
  //      includes the times of any children whose status has been collected via
  //      wait(2) (or another wait-type call)."
  //
  // Also, clock() only has microsecond accuracy.
  //
  // This whitepaper offered excellent advice on how to use rdtscp for
  // profiling: http://download.intel.com/embedded/software/IA/324264.pdf
  //
  // Unfortunately, we can't follow its advice exactly with our semantics,
  // so we're just going to use rdtscp with cpuid.
  //
  // Note that rdtscp will only be available on new processors.

  #include <stdint.h>

  static inline uint64_t rdtsc() {
    uint32_t hi, lo;
    asm volatile("rdtscp\n"
                 "movl %%edx, %0\n"
                 "movl %%eax, %1\n"
                 "cpuid"
                 : "=r" (hi), "=r" (lo) : : "%rax", "%rbx", "%rcx", "%rdx");
    return (((uint64_t)hi) << 32) | (uint64_t)lo;
  }

  static uint64_t rdtsc_per_sec = 0;
  static void __attribute__((constructor)) init_rdtsc_per_sec() {
    uint64_t before, after;

    before = rdtsc();
    usleep(USECS_PER_SEC);
    after = rdtsc();

    rdtsc_per_sec = after - before;
  }

  double mysecond() {
    return (double) rdtsc() / (double) rdtsc_per_sec;
  }

#endif

#ifndef abs
#define abs(a) ((a) >= 0 ? (a) : -(a))
#endif
void checkSTREAMresults ()
{
	STREAM_TYPE aj,bj,cj,scalar;
	STREAM_TYPE aSumErr,bSumErr,cSumErr;
	STREAM_TYPE aAvgErr,bAvgErr,cAvgErr;
	double epsilon;
	ssize_t	j;
	int	k,ierr,err;

    /* reproduce initialization */
	aj = 1.0;
	bj = 2.0;
	cj = 0.0;
    /* a[] is modified during timing check */
	aj = 2.0E0 * aj;
    /* now execute timing loop */
	scalar = 3.0;
	for (k=0; k<NTIMES; k++)
        {
            cj = aj;
            bj = scalar*cj;
            cj = aj+bj;
            aj = bj+scalar*cj;
        }

    /* accumulate deltas between observed and expected results */
	aSumErr = 0.0;
	bSumErr = 0.0;
	cSumErr = 0.0;
	for (j=0; j<STREAM_ARRAY_SIZE; j++) {
		aSumErr += abs(a[j] - aj);
		bSumErr += abs(b[j] - bj);
		cSumErr += abs(c[j] - cj);
		// if (j == 417) printf("Index 417: c[j]: %f, cj: %f\n",c[j],cj);	// MCCALPIN
	}
	aAvgErr = aSumErr / (STREAM_TYPE) STREAM_ARRAY_SIZE;
	bAvgErr = bSumErr / (STREAM_TYPE) STREAM_ARRAY_SIZE;
	cAvgErr = cSumErr / (STREAM_TYPE) STREAM_ARRAY_SIZE;

	if (sizeof(STREAM_TYPE) == 4) {
		epsilon = 1.e-6;
	}
	else if (sizeof(STREAM_TYPE) == 8) {
		epsilon = 1.e-13;
	}
	else {
		printf("WEIRD: sizeof(STREAM_TYPE) = %lu\n",sizeof(STREAM_TYPE));
		epsilon = 1.e-6;
	}

	err = 0;
	if (abs(aAvgErr/aj) > epsilon) {
		err++;
		printf ("Failed Validation on array a[], AvgRelAbsErr > epsilon (%e)\n",epsilon);
		printf ("     Expected Value: %e, AvgAbsErr: %e, AvgRelAbsErr: %e\n",aj,aAvgErr,abs(aAvgErr)/aj);
		ierr = 0;
		for (j=0; j<STREAM_ARRAY_SIZE; j++) {
			if (abs(a[j]/aj-1.0) > epsilon) {
				ierr++;
#ifdef VERBOSE
				if (ierr < 10) {
					printf("         array a: index: %ld, expected: %e, observed: %e, relative error: %e\n",
						j,aj,a[j],abs((aj-a[j])/aAvgErr));
				}
#endif
			}
		}
		printf("     For array a[], %d errors were found.\n",ierr);
	}
	if (abs(bAvgErr/bj) > epsilon) {
		err++;
		printf ("Failed Validation on array b[], AvgRelAbsErr > epsilon (%e)\n",epsilon);
		printf ("     Expected Value: %e, AvgAbsErr: %e, AvgRelAbsErr: %e\n",bj,bAvgErr,abs(bAvgErr)/bj);
		printf ("     AvgRelAbsErr > Epsilon (%e)\n",epsilon);
		ierr = 0;
		for (j=0; j<STREAM_ARRAY_SIZE; j++) {
			if (abs(b[j]/bj-1.0) > epsilon) {
				ierr++;
#ifdef VERBOSE
				if (ierr < 10) {
					printf("         array b: index: %ld, expected: %e, observed: %e, relative error: %e\n",
						j,bj,b[j],abs((bj-b[j])/bAvgErr));
				}
#endif
			}
		}
		printf("     For array b[], %d errors were found.\n",ierr);
	}
	if (abs(cAvgErr/cj) > epsilon) {
		err++;
		printf ("Failed Validation on array c[], AvgRelAbsErr > epsilon (%e)\n",epsilon);
		printf ("     Expected Value: %e, AvgAbsErr: %e, AvgRelAbsErr: %e\n",cj,cAvgErr,abs(cAvgErr)/cj);
		printf ("     AvgRelAbsErr > Epsilon (%e)\n",epsilon);
		ierr = 0;
		for (j=0; j<STREAM_ARRAY_SIZE; j++) {
			if (abs(c[j]/cj-1.0) > epsilon) {
				ierr++;
#ifdef VERBOSE
				if (ierr < 10) {
					printf("         array c: index: %ld, expected: %e, observed: %e, relative error: %e\n",
						j,cj,c[j],abs((cj-c[j])/cAvgErr));
				}
#endif
			}
		}
		printf("     For array c[], %d errors were found.\n",ierr);
	}
	if (err == 0) {
		printf ("Solution Validates: avg error less than %e on all three arrays\n",epsilon);
	}
#ifdef VERBOSE
	printf ("Results Validation Verbose Results: \n");
	printf ("    Expected a(1), b(1), c(1): %f %f %f \n",aj,bj,cj);
	printf ("    Observed a(1), b(1), c(1): %f %f %f \n",a[1],b[1],c[1]);
	printf ("    Rel Errors on a, b, c:     %e %e %e \n",abs(aAvgErr/aj),abs(bAvgErr/bj),abs(cAvgErr/cj));
#endif
}

#ifdef TUNED
/* stubs for "tuned" versions of the kernels */
void tuned_STREAM_Copy()
{
	ssize_t j;
#pragma omp parallel for
        for (j=0; j<STREAM_ARRAY_SIZE; j++)
            c[j] = a[j];
}

void tuned_STREAM_Scale(STREAM_TYPE scalar)
{
	ssize_t j;
#pragma omp parallel for
	for (j=0; j<STREAM_ARRAY_SIZE; j++)
	    b[j] = scalar*c[j];
}

void tuned_STREAM_Add()
{
	ssize_t j;
#pragma omp parallel for
	for (j=0; j<STREAM_ARRAY_SIZE; j++)
	    c[j] = a[j]+b[j];
}

void tuned_STREAM_Triad(STREAM_TYPE scalar)
{
	ssize_t j;
#pragma omp parallel for
	for (j=0; j<STREAM_ARRAY_SIZE; j++)
	    a[j] = b[j]+scalar*c[j];
}
/* end of stubs for the "tuned" versions of the kernels */
#endif